A Proof of Theorem 3.1: Integration error of discretized diffusions

Proof of Theorem 3.1. Denoting by AX,,, = X,,41 — X,,, and using the integral form Taylor’s theorem on u ¢ (X, 1) around
the previous iterate X,,,, and taking expectations, we obtain

E[uf(Xerl) - uf(Xm)] = E[<vuf(Xm)7 AXm>] + %E [<AXm7 v2uf(Xm)AXm>] (A1)
+3E[(A X, V3up (X)) [AXm, AXn))]
L LA = 1)PEAX , VAiug (X + TAX ) [AX y AX oy AX, ) dr

The first term on the right hand side can be written as

EKvuf(Xm)aAXm” :E[<vuf(Xm)777b( m) + \[0( Zm)|,
=nE[(Vus(Xm),b(Xm))] +fE[<VUf(Xm) o(Xm)Zm)],
=nE[(Vus(Xn), b(Xm))],

where in the last step, we used the fact that Z,,, is independent from X,,, and that odd moments of Z,,, are 0. Similarly for the
second and the third terms, we obtain respectively

TE[(AXn, V2up (X)) AX )]
= LE[(B(Xm), V2up (Xo)b(Xn))] + BE[(V2up(X), 00T (X)),
and
FE[(AX, V3up(Xm) [AX ] AX )]

— CE[(b(Xn), Vus (X)X (X)] + BE[(VEus (X) (X)) 00T (X)),

By combining these with (3.2), we find that (A.1) can be written as

Efus (Xms1) — g (Xm)] = HEL (X)) = p()} + BE[(B(Xom), V2ur (X )b(Xm))]
FEE[(B(Xon), Vs (X)) (X)X )]
+EE[(VPuy (X)) (X)), 00T (X00))]

1 = TPE[(A X, Vg (X + TAX ) [A Xy AX o] AX) ] dr

Finally, dividing each term by 7, averaging over m, and using the triangle inequality, we reach the bound

o E[f (X)) — p(f)‘ (A2)
— MTI ‘Zm 1 [uf(Xm-‘rl) f(XTn)]‘ + ﬁ‘zﬁﬂ ERb(Xm)a VQUf(Xm)b(Xm»] ‘
+ [ E LX), TPy (X)X IB(Xin)) |

+ o !Zm_1 [<v3uf<Xm>[b<Xm>1, 00T (X))
6M17‘Zm 1Jo 1_7)3E[<AXWL7V uf(X +TAX )[AvaAXm]AXmﬂdT‘

For the first term on the right hand side, using Condition 3 and Lemma A.2, we can write

[Soh oy Bl (Xomi1) = up(Xon))| = [Bluy (Xar41) = s (X0)) (A3)

< i (up)E[(1+ | X a1 15 + 1 X I X a1 — Xall2]s
< firn (ug)E[2 + 3| Xara |57 + 3] X0 157,

~ 2 T, MNe e
< 6 (u) (2+ 2Lz + a3 ).

where we used Young’s inequality in the second step and Lemma A.2 in the last step.
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The second term in the above inequality can be bounded by
S [ B [((X0n), V2 (X DX | < 527 AL B[ (6(Xim), V20 (X )b(Xon) ] (A4)
ﬁzﬁf L E[V20p (Xm)llop |6(X0m) 3]
2 SM B[+ [ XnlB)(A+ [ Xonll2)?]
mle zm VE[14 (1 X 1572
%(ﬂ Beze + |ollye)),

IN

IN

| /\

IN

where in the last step we used Lemma A.2.

Similarly, the third and the fourth terms in the inequality (A.2) can be bounded as
)\ n
St E[(0(Xom), T3 (Xon) B (X0n)] | < TR0 S0 B[L 4 1 Xon 1577

< i§<3 (2+ 220 4 ), (A3)

,,72

6M

and

2 | St E[(Vus (Xo) (X)), 00T (X)) | < 0565 S0 B[1+ 11 X ll3]

nAbA ¢ (2+ 2Brme 4 ||| ) (A.6)

IA

For the last term, we write
it |t E[Jy (1= 73 (A X, T (Xn + 7AXn) DX AXn] AX )7 |
Ml n
< it om=1 Jo 1= TV GR[(L+ | X + 7AX 3| A X |3] dr.
We first bound the expectation in the above integral
E[(1+ | Xm + TAXm[3)|AXmll3] < E[S(n4||b(Xm)II% + 0?0 (Xim)Winll2) (A7)
X (1 31X g 3 D)8 + 3 2 0 (X Won3)
= A+ 7B, where
A BE[(1+ 3" X 13) 10X )13 + 1?10 (Xim) Won12)]
B 283" E[("[b(Xn)l[5 + 120 (X)W l13) 7160 0) 13 + 177 [[0(Xn) Wi [[3)] -
Using Condition 1, Lemma E.1 and n < 1, we obtain

A §8{n4[ﬁE[1 X l18] + 37 EE[L + | X 13)]

n s
+ 2 | SEE[L+ | Xnllf] + 3732 [L+ | Xnnl1374]] }
<L A+ SPADE[L + | X [57Y], and

B <8 37 12/ 2E [ 2 b6 [ P () 0 () Wonl 3

+ 3[6(Xm) 5[0 (Xim) [ + [ (X ) Win II"“}
<n2+n/232+;( AL+ (n+4)(n + 2)A8) (7207 + D) E[L + | Xonll5 ],
<P /2 L 15 (AR + n2AL) (A + nIIADE[L + || XI5
Plugging this in (A.7), we obtain
E[(1+ [ X + TAX[[5) [AX 0 3]
<E[1+ || X3+ [H?’;‘l( INE 4 302AE) 4 /2 L1sm (A 4 n2ME) (0 + n!w;)]

12



Therefore, the last term in (A 2) can be bounded by

- [ JH1 = 73 (AKX, Vg (X + TAX,)[AX AXm}AXm)dT} ‘ (A8)

= g‘”’& Zm VE[L+ [ X 5]
X Jo (1= )3 (B4 A0 + 30°A0) + rn /2 B 15" (N 4+ n2A8) (O + nltag) ) dr.
Using Lemma A.2 and

fo y3rrdr < 5 and fol(l —r)ddr =1,
the right hand side of (A.8) can be bounded by
S (L0 (200 + 3N8) /2 ke 157 (A + n2A) (O + mia) ) (24 2222 4 ). (A9)

Combining the above bounds in (A.3), (A.4), (A.5), (A.6) and (A.9) and applying them on (A.2), we reach the final bound

b S B ()] = ()] < (ersky + ean -+ e /20 (s 4 [l2]3)
where
C1 :6<17
ca =15 [G2A8 + G2 + a1+ 37D,
=L [g@,ﬁ + G 4377 Y) + AL (M 4 n2A) (AR + nuAg)} . and
72+ 2,8 + n )\a + Gr (neér(—:fTB) ,
foréqzozando?g:[a—ne a/4]+. O

A.1 Dissipativity for higher order moments

It is well known that the dissipativity condition on the second moment carries directly to the higher order moments [22]. The
following lemma will be useful when we bound the higher order moments of the discretized diffusion.
Lemma A.1. Forn > k > 2, we have the following relation

n—k n—
Allzlly = lllz ™ Allel§ + 3n(n = k)llz|3 |0 T ()15
Further, assume that Conditions I and 2 hold, and n > 3. Then,
Allzlly < —allzlly + Brn
where
_ nhe | & [(nAat6r8\"
ﬁnn—ﬁJfTﬂL?(W) ;
with &y = [a — n)\, /4] 4 and &y =
Proof. The proof for the first statement easily follows from the following expression,

Allzl|s =nllz)|5~*(, b(z)) + sn(n = 2)llz)|5 ez T, 00 () + nllz)s (o (@)
For second statement, we use the first statement with £ = 2 and Conditions 1 and 2. First, we consider the case » = 1 and write

- —4

Allzlly =gnllz(l3 2«‘\Ilﬂfl\%ln( - )HxII” (@™, UJT(x)%
< — sanfall§ + 3nllzlz ™ + fenln = 2)(l2ll; ™ + ||$||"_2)>
= — ganl|z[|3 + %n(n*Z)IIIH P {380+ pn(n - 2) |3

Using the inequality given in Lemma E.3 twice, we obtain
Aq
Allzlls < = ganllz|lz + {Fn(n —2) + 580} 2]z~

n a(n 2) " " n(n—2)A, B
< —alzl|z + T(za +a(n 2)) + S Jr2(2—1)'

Same calculation yields a similar expression for the case » = 2. Generalizing, we obtain the following formula,

n ar(n—2 nlg n n(n—2)A, n
Aol < - allallg + 22 (e 4 25)" 4 2tiie 4 o0

2ra,.

< — aflallg + 5 (22pE02) " 4 2

2ra,
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A.2 Proof of Lemma A.2: Markov Chain Moment Bounds

Lemma A.2. Let the Conditions I and 2 hold. For n > 1, denote by n. an even integer satisfying n. > n. If the step size satisfies

n<1lA 2(,”6_1)[!(1-‘,—)?5/2"!‘)\0/2)”6’
then we have
. 2Brne
E[[| Xom|8] <[lzllze + 1 + 2zze,

M n e 2 T Ne
37 Tt EllXon3] <floflge +1 + 2z2e,
Proof of Lemma A.2. First, we handle the even moments. For n > 1, we write
E[[| X0 +nb(Xm) + /10 (X)W [[3"] = IE[(IIXmH% + 216X ) I3 + nllo (X)W 3

20X, b(Xim)) + 20 (X, 0 (Xn) W) + 20" (0(Xim), 0 (X )W) |

n

1
= Zk1+k2+...+k6:n (kl,kg ..... k6)77
B [ B 1600 I3l (56) W |35 X, 5 )) (s 0 (X ) Wi ) (B X ), (X ) Wi,

2ko+kz+ka+ks/2+3ke/2 9kat+ks+ke

2
SE[HXmH%"]+77E[AHXm||§"]+Z k1+kiz..;+ka:n (kl,k;..,ke)772k2+k3+k4+k5/2+3k6/2 gkatks+ke
1S even
2k2+k3+24+25/2+3k6/2>1

B [ 3R (X [352 4R (X )P [0 R

3
n 2ko+ks+ka+ks/243kes/2 9ka+ks+k
S tbebothomn (o) (2 + ks + kg — 1)llyPhetbahictka 248k /2 kit ke
ks+kg is even
2ko+ks+katks/243ke/2>1

E (11 355 (X0 ) |3 4R o (X I | 4 (1= na) B[ X 13] + 1By

4
< (1 —na+ 7722pn)]E[||Xm”%n} + nBron + 772Pn
where

1 n ”)\ik2+k4+k6)\2k3+k5+k6
Pn =50 atkatetke=n (o ke ko) (2R3 ks Hhe—1)!! CPLTES T
ks+kg is even
2ko+ks+katks/24+3ke/2>1

In the above derivation, step (1) follows from multinomial expansion theorem, step (2) follows from that the odd moments
of a Gaussian random variable is 0, and that the terms with coefficient 1 add up to E[A[|X,,[|3"]. Step (3) follows from
Cauchy-Schwartz, Lemma E.1, and Condition 2, and finally step (4) uses Condition 1 and the fact that < 1.

A compact and more interpretable estimate for p,, can be obtained as follows,

1 " n /\ik2+k4+k6)\2k3+k5+k6
Pn S§(2n - 1)"Ek1+k2+...+k6:n (khkz,.wke 22k +2k3 ke
1
2

=120 DU+ A 1 ARy,

The above result reads
E[|Xms1l5"] < ma(ME[Xml13"] + Fn(n)

where 7, (1) = 1 — na + 1?2py,, and 7,,(n) = nBr2n + n?pn. Notice that 7,,(0) = 1 and 7),(0) = —a is negative. Therefore,
we may obtain 7,(n) < 1 by choosing 7 small. More specifically, we have 7,(n) < 1 when < a/2p,,, but by choosing
1 < «/(4p,) we have control over the second term as well. That is, by Lemma E.2, we immediately obtain

E[|XunllZ"] <ralm)™ ]2 + H2ls
<7 ()™ |22 + 2Br2nta/2

(03

§||x||2n + 2Br,in+a

14



and
M 2Br,on+
LM E[1Xnl3] < [laf? + 2rnte

@

where we use a looser bound to ensure that the right hand side is larger than 1.

The above analysis only covers the even moments so far. For any integer n, denote by n. an even integer that is not smaller than n.
Then, by the Holder’s inequality we write

377 <l 4 2eete)

(e

E[l[ Xml2] <E[[| Xm]

e 4 2Brime
<zl + == + 1,

which concludes the proof.

B Proof of Theorem 3.2: Stein Factor Bounds

Let (P;)$2,, denote the transition semigroup of the diffusion (Z)$2, with drift and diffusion coeffieients b, o, so that (P;f)(z) =
E[f(Z#)] for each x € R? and ¢ > 0. Define the function

Pin(b,0) = pi(b) + npi(0)® + ¢i(0)?
and the constants

Yi,n =1,
91771 :n(pl,n72<ba 0)7

— @2,7172(17;0')
Y2m = ney,2n—2(b,0)

02, =3n¢1,2n—2(b, 0) + N2 —2(b,0),

_ 15502,1172(b70)+5¢3,n—2(ba0)
73’” - 471901,4n72(b’<7) ’

03,0 =Tnp1 3n—2(b,0) + 10n@32 5, —2(b, o) + 3nws n—2(b,0),

__pa,0(b,0)4+6p3,0(b,0)+502 0(b,0)
742 = 1601.6(6,0) ’

012 =311 5(b,0) + 272 2(b,0) + 1231 (b, 0) + @a,0(b, 0).

Our proof of Theorem 3.2 will use a representation of the Poisson equation solution in terms of the transition semigroup, i.e.,

up(@) = fo~ p(f) = (Pif)(@)dt, (B.1)
coupled with the following bounds on the derivatives of the semigroup. See [12] for a proof of the above representation.
Theorem B.1 (Semigroup derivative bounds [12]). Ler (P;)2, denote the transition semigroup of a diffusion with drift and
diffusion coeffieients b and o. Define 01(t) = log(o2(t)/01(t)), 02(t) = [log(o1(t)/02(t)/01(0))]/log(01(t)/01(0)), &1 = «a,
and a2 = infysola — nAo(1V 02(t)]4. If f : R? — R is pseudo-Lipschitz continuous of order n then P,f satisfies the
pseudo-Lipschitz bounds

and

firn(Pef) < i (for(t)wr(t)  and 710 (Prf) < 2010 (f)er (t)wr(t) (B.2)
for
wo(t) = 1+ 401 (1) ~1/7 01 (0)/2 (1 + 2| Lve2artind 7).
Furthermore, V2P, f satisfies the degree-n polynomial growth bound
Ton(Prf) < &o1(t — 1w (t—1) for (B.3)
& =4 (f){1+ (Br.on/a) %} 01(0)w,(1)70,0(c™ ) [1 + ’Y;/; + ,Ul((f)} e02:2/2,
If, in addition, 7a.3 ,(f) < 0o, V3P, f satisfies the degree-n polynomial growth bounds, for t > 2,
Tan(Prf) < &o1(t —2)w,(t —1) where (B.4)
&3 = 4ji1,n (f)71,0(0)F12,0(0)F0,0(0 7 ) Fo:1,0(0 1) 01 (0)wy (1) €24/
X (747753 + 725 + 152 {1 + (Bron/)°},
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and, fort < 2,

Ton(Pr) < 2130 (F) (14375 +75/3) 4/ {1+ (Brgn /) V7] (B.5)
If, in addition, 74, (f) < 0o, VAP, f satisfies the degree-n polynomial growth bounds, for t > 3
Tan(Pef) < &o1(t — 3w, (t — 1), where (B.6)
&4 = 4 0 (f)T1,0(0)*F1:3,0(0)Fo,0(0 )2 Roi,0 (0~ ) e 201 (0)w, (1) {1 + (B, 6n/04)1/6}

X [42 + 327;{; + 6722 + Q’Yé{g + 37;{2 + 247;{4 + 3’72{4 + 12’72,6 + 5’73,2 + 5’73,3 + 74{2 + 6’72/;72 6:|
and, fort < 3,

Fan(Pf) < 2714 n(F){1+ (Bren/a)/°} {1 6054 + 23 + 3775 + 4y + s } t01,2/2 (B.7)

To establish the first Stein factor bound (;, we combine the representation (B.1), the triangle inequality, and the definition of
pseudo-Lipschitzness to find that

Jug(z) = up(y)l <[5 |(Pef) (@) = (Pef)(y)ldt,
<Jo An(Pf)dt(d+ [lzl3 + lyl3)]z = ylla-
Invoking the pseudo-Lipschitz constant for P, f (B.2) now yields the first Stein factor bound.

For each additional Stein factor, the dominated convergence theorem will enable us to differentiate under the integral sign. For the
second Stein factor (o, using the second derivative of the representation (B.1) and the bound (B.3), we obtain

[(u, V2ug (z)v)| < [ [(u, VAP f) (z)v) | dt
<4p2 {1+ (Bron/@)/*Hina (N (L + [z ]3) [ull2]v]l2,

where
p2 :fooo 52 LAt)o1(t — LA we(t — LA t)dt

=01(0)w(0) fiy Ex(t)dt + Ex(1) [° 01(t — Dw, (t — 1)dt,

=Q1(0)wr(0)7r0’0(o_ o1 (0)wr (1)e%2/2 |24 25 + ()| + (1) [ o1 (B (1)t
The final bound is obtained by taking the supremum over v and v, i.e.,

IV (@) lop = SUP|u = ofjo=1 (8 Vi (@)0) < G(1+ [l2]3),
where
Go 2 26501(0)w, (0) + & [5° 01(H)w, (£)dt,  with
&2 = 4 n(F){1+ (Bron/a)*}o1(0)w,(1)To,0(0 ") [1 + ’Y;/S + m(a)} e¥22/2,

For the third Stein factor (3, using the third derivative of the representation (B.1), and the bounds (B.4) and (B.5), we obtain
|V3uy () [v, u, w)| §f02|V3(Pt D @) v, u,wl|dt + 7 |V3(Pf) (@) v, u, w]|dt
<[4 15 (N (1 + 3955 + 353) €42 {1 + (Brn /) )
+&s fy ot — 2wr(t — 1)dt} (L + [l wlizllvll2flwl2-

Consequently, we obtain

IV (2)]lop < Cs(1+ [|2[|5) where

G = AT1a,0(f) (1 + 3703 + 7303) {1+ (Bron/@)7*} + & [ 01 (t)w,(t + 1)dt and

€3 = 41,0 (f)71,0(0)T1:2,0(0) 70,00~ ) T0:1,0(0 ) 1 (0)ewr (1)%s:4/2

X (74 Ts + a5 + 1) {1+ (Bron/a) o}
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Lastly, for the fourth Stein factor (4 using the fourth derivative of the representation (B.1) together with the bounds (B.6) and
(B.7),

Vs (@) v, u,w, 9| <[5 [VEPL) @) o, u,w, yl|dt + [5° VP ()0, u,w, y]|dE
S [6ﬁ1:4,n(f) [1 + 672 4 + 472 3+ 372 3 + 473 3 + . /2} 304'2/2{1 + (Br,Gn/a)l/a}

& f5 o1t = 3)wi(t - 1)dt} (T 2 [[ull2llvll2llwll2]ly]l2-
The final result follows from taking a supremum over u, v, w, y:
Vg (@)llop < Ca(1+ [[z]|5) where
G = 6714 ()[1+ 6935 + 4923 + 335 + 4955 + 3] ¥02/2{1 + (Bron /) o}
+ & fooo o1(t)w,-(t + 2)dt,
and
&4 = 4 n(f)71,0(0)*F13,0(0)T0,0(0 1) To:2,0(0 1) €2 01 (0)wy (1)
1/6 3 1/2 1/3 2/3 1/4 1/2 /6
X {1+ (Bron/a)°}" |42 + 32,5 + 6722 + 2955 + 35 + 24,1 + 3755 + 1295¢
+ 573/2 + 573/3 + ’74/2 + 6’72/27 ol

C Proofs of Expected Suboptimality Bounds

Proof of Prop. 4.1. We begin by proving the more general claim (4.2). Our dissipativity assumption together with the diffusion
moment bounds in [12] implies that p(|| - ||3) < 3/c. Moreover, as noted in the proof of [25, Prop. 3.4], the differential entropy is
bounded by that of a multivariate Gaussian with the same second moments:

e <2 e
—paogp) < dog(2mepllla)y < dog(2med),

Meanwhile, log p(z*) = —log [ p(z x*)dx. Our smoothness assumption, a polar coordinate transform, and the integral
identity of [16, 3.326 2] 1mp1y that

[ p(@)/p(a*)dz = [exp(logp(x) —logp(z*))dz > [exp(—Cllz — z*|]3)dx (C.1)
= fo Sa—1riLexp(=Cr¥)dr = Sq_195T (5 )C"d/(w)
where Sy_1 = 2F( 3 /2) is the surface area of the unit sphere in R< and I'() is the Gamma function. Since, by [18, Thm. 2],
Lz +y)/T(y) = a¥ 7 forall 2,y > 0,

(5

:D‘m‘
-

logp(a*) < 5 log(C) —log(*55T(55)) = 55 log(C) + § log(}) ~ log(57¢Fy) (C2)
< 55 log(C) + §log(£) — (5 — 1)§ log(%)
< 55 log(27) + § log(5).

The result (4.2) now follows by summing the estimates (C.1) and (C.2).

Now consider the case in which p = p, 9. By design, =* is also a global minimizer of f with V f(z*) = 0. Therefore, by Taylor’s
theorem, we have for each =

log pso(2*) — log py () = 7(f(x) — f(a*))"
= y(Vf(a"),z —2%) + $(z — 2", V2 () (& — 2")))°
< 25D |z — 27|,

The generalized Gibbs result (4.1) now follows from the general claim (4.2) and Jensen’s inequality as p- o(v(f(z) — f(2*))%)
08 6(f (@) — f (%)) for 6 € (0,1].

v

Proof of Prop. 4.3. Let « = 1/k. We have

J((z = b)TA@@ — b)) exp(—=y((x = b)T A(w — ))*)da
Jexp(—((x — )T A( — b))")dx

]:EZL’Np’y,a [f(.l?)] - f* =
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Using the variable change y = A'/2?(x — b),dy = det(A'/?)dz, the above equals

Lyl exp(=~llyl**)dy _ J5° Sa—ar®™ r?exp(—yr®M)dr [ r* T exp(—yr®®)dr
J exp(—v(ly[I2*)dy T JT SairdTlexp(—yr2o)dr T [° rd=lexp(—yr2)dr

where S;_1 is the surface area of the unit sphere in R¢. Substituting an explicit expression for these integrals we get

D(52)/207 D T(+3) 1o
r()ar?e T Tr(E) T

2a

where I'(+) is the Gamma function. Substituting back k¥ = 1/, and noting that I'(z + 1) = 2T'(z) for all z, we get that the above
equals

.

k
r % k) — — k—1 . _ k k %d+1 1

o

D Proof of Prop. 3.5: User-friendly Wasserstein decay for Gibbs measures

Define 6, (x) = (0, (z)o, (z)T — s21)Y/? = %5@). Our assumptions imply
(y(@) by () —y) | loy(@) —aWIIE  11(64(2) —a,(y) " (= —y)lI3
sz — yll3/2 sz — yll3 s2[lz — yl3
L m@) V(@) =m)VIiy),z —y)  (V.mz) —mly), 2 —y) +lo(z) - ()%
- sgllz — yll3 sgllz — yll3

2Bl il — g, > R
S| =l eyl < R

as advertised.

E Auxiliary Lemmas

Lemma E.1 (Quadratic form moment bounds). For W,,, ~ Ng(0, I) which is independent from X, we have
E[[lo(Xm)Wnl3"] < (20— DUE[[lo(Xm)IF"]-

Proof. The exact expressions for the quadratic form moments can be found in [21]. We simply use the properties of Frobenius

norm to obtain a compact upper bound. O

Lemma E.2. For a sequence of real nonnegative numbers {a;}?_ satisfying a;41 < Ta; + v for v € (0,1) and v € R we have
1 n
w21 @ < ao + T

Proof. By the recursive inequality, we have

1

-7
1—7°

a; < Tlag +

Averaging over ¢, we obtain

1 n ) 1 n i 1—7°
n Zi:1 a; Sn i=1 (GOT + Y 1—r )7
agT 1—7™" Y o
S n 1-7 + 1-7 S ap + 1—77

where in the last step, we used 7 < 1 and the Bernoulli inequality

1—-m"=1-(1-(1-7)"<n(l-1).
Lemma E.3. Forz,a,c > 0and m > 1, we have ax™ + a(c/a)™/m > cx™ L.
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Proof. The derivative of the polynomial p(x) = az™ — cx™~* + b has m — 2 roots at 0, and a root at zg = c¢(m — 1)/(am).
Therefore, p(x) for = > 0, attains its minimum value at zo. We choose b = a(c/a)™ /m so that

p(zo) =(azg — c)xf)”_l +b

=b— (=)™ >0,

ma'™

where for the last step, we use f(z) = (1 — 1/z)*~! <1forz > 1and lim,; f(z) = 1. O
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