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Abstract

This is supplementary material for the paper ’Graphical model inference: Sequen-
tial Monte Carlo meets deterministic approximations’. We give proofs of two
propositions and provide additional details about regularized twisting, the Gaussian
Markov random field application, and the topic model evaluation. We also provide
a self-contained proof of the unbiasedness of the normalizing constant estimate.

1 Proofs

1.1 Proof of Proposition 1

Selecting ψt(x1:t) = ψ∗t (x1:t) =
∫ ∏

j∈F\Ft
fj(xIj )dxt+1:T results in

γψt (x1:t) =
∏
j∈Ft

fj(xIj )

∫ ∏
j∈F\Ft

fj(xIj )dxt+1:T .

Consequently,

γψt (x1:t)

γψt−1(x1:t−1)
=
∏
j∈Ft

fj(xIj )

∫ ∏
j∈F\Ft

fj(xIj )dxt+1:T∫ ∏
j∈F\Ft−1

fj(xIj )dxt:T
.

This expression integrates to 1, and the locally optimal proposal (given by Eq. (2) in the main
paper) is therefore given by qt(xt | x1:t−1) = γψt (x1:t)/γ

ψ
t−1(x1:t−1) for t ≥ 2. For t = 1 we get

q1(x1) ∝ γψ1 (x1) =
∫ ∏

j∈F fj(xIj )dx2:T , which implies q1(x1) = Z−1γψ1 (x1).

We thus get w̃i1 ≡ Z and ωt(x1:t) ≡ 1 for t ≥ 2 and thus ẐT = Z. Furthermore, this implies that all
normalized weights are 1

N and the resampling step will therefore not alter the marginal distributions
of the particle trajectories. The final particle trajectories are therefore distributed according to

q1(x1)

T∏
t=2

qt(xt | xt−1) =
γψ1 (x1)

Z

T∏
t=2

γψt (x1:t)

γψt−1(x1:t−1)
= π(x1:T ).
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In fact, since all importance weights are equal there is no need for resampling. Equivalently, if we
use a low-variance resampling method (such as stratified or systematic) then the resampling step will
output exactly one copy of each particle, and the resampling if effectively turned off. This implies
that the N final trajectories {xi1:T }Ni=1 are i.i.d. draws from π.

1.2 Proof of Proposition 2

For a tree-structured factor graph, let F\sj denote the set of factors in the subtree, containing factor

fj , obtained by removing the edge between factor fj and variable xs. Furthermore, let X\sj denote
all the variables contained in this subtree. It then holds (see, e.g., [1]) that

µj→s(xs) =

∫ ∏
i∈F\sj

fi(xIi)dX
\s
j . (1)

Now, let t be a fixed iteration index. By assumption the sub-graph with variable nodes {1, . . . , t}
and factor nodes {fj : j ∈ Ft} is a tree. Since the complete model is also assumed to be a tree,
this implies that any factor j ∈ F \ Ft is connected to at most one variable node in {1, . . . , t}.
Specifically, let J ⊂ F \ Ft denote the set of factors such that there exists an edge between j ∈ J
and some variable sj ∈ {1, . . . , t}.
It then follows that the the optimal twisting function (Eq. (6) in the main paper) can be factorized as

ψ∗t (x1:t) =

∫ ∏
j∈F\Ft

fj(xIj )dxt+1:T

=
∏
j∈J

∫ ∏
i∈F

\sj
j

fi(xIi)dX
\sj
j

=
∏
j∈J

µj→sj (xsj ).

However, by the definition of µj→(1:t)(x1:t) it also holds, for a tree-structured graph, that

µj→(1:t)(x1:t) =

{
µj→sj (xsj ) if j ∈ J ,
1 otherwise,

which completes the proof.

2 Implementation details for topic model evaluation

In this section we present additional details on the model and implementation used in Section 6.2 of
the main paper. Matlab code is available on GitHub1.

The LDA model is given by

π(θ, x1:T ) ∝ Dir(θ | α)

T∏
t=1

θxt
Φwtxt

(2)

where Dir(θ | α) is a K-dimensional Dirichlet prior over the topic distribution θ. The words of the
document, w1, . . . , wT , are encoded as integers in {1, . . . , V }, where V is the size of the vocabulary.
The variable xt ∈ {1, . . . , K} is the (latent) topic of word wt, and Φ:,k is the probability vector
over words for topic k. For model evaluation we assume that the word distributions Φ and the
concentration parameter for the topic distribution prior α are known (pre-learned), whereas the topic
distribution vector θ as well as the topics x1:T are latent. See [11] for additional details on the model.

The task is to compute the normalizing constant of (2). To this end, Minka and Lafferty [6] proposed
an EP algorithm which works as follows. First we marginalize the latent topics,

π(θ) ∝ Dir(θ | α)

T∏
t=1

{
K∑
k=1

θkΦwtk

}
= Dir(θ | α)

V∏
w=1

{
K∑
k=1

θkΦwk

}nw

, (3)

1https://github.com/freli005/smc-pgm-twist
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where nw is the number of occurrences of word w in the document. Next, we introduce approximate
factors

K∑
k=1

θkΦwk ≈ sw
K∏
k=1

θβwk

k , (4)

where the sw’s and βwk’s are updated one word at a time by moment matching, until convergence.
These updates are not guaranteed to result in a proper approximate distribution, so therefore Minka
and Lafferty [6] propose to skip any update that results in an improper approximation and simply
continue with the next word.

For the twisted SMC algorithm we obtain the following expression for the optimal twisting functions:

ψ∗t (θ, x1:t) = ψ∗t (θ) =
∑
xt+1:T

T∏
s=t+1

θxs
Φwsxs

=

T∏
s=t+1

{
K∑
k=1

θkΦwsk

}
. (5)

Thus, we can naturally use the EP approximation (4) to define

ψt(θ) =

T∏
s=t+1

K∏
k=1

θ
βwsk

k . (6)

Combining this with the non-twisted (unnormalized) target γt(θ, x1:t) = Dir(θ | α)
∏t
s=1 θxs

Φwsxs

we get the twisted target γψt (θ, x1:t) = Dir(θ | gt)
∏t
s=1 θxs

Φwsxs
where gt = α+

∑t
s=1 βws,:. To

ensure proper intermediate targets for the SMC sampler we extend the safety-check mentioned above,
and only apply an EP update if all resulting gt’s are positive. We have found that running the EP
updates in reverse order, from t = T to t = 1, resulted in few skipped updates.

Finally, similarly to [7] we run a Rao-Blackwellized SMC sampler and analytically marginalize θ
conditionally on x1:t for each particle {xi1:t}Ni=1.

3 Implementation details for latent Gaussian Markov field evaluation

In this section we present additional details on the latent Gaussian Markov random field (GMRF)
model of Section 4.3 of the main paper. An R package for obtaining the results of Section 6.3 is also
available on GitHub2.

Let yt|x1, . . . , xT ∼ p(yt|xt), where x = (x1, . . . , xT )T is a GMRF with prior mean vector µ
and precision matrix Q. For simplicity, we assume that each yt and xt is univariate, and that
p(yt|xt) belongs to the exponential family (see [9] for more general treatment of obtaining Laplace
approximations for latent GMRF models). Then

p(x|y) ∝ exp

(
−1

2
(x− µ)TQ(x− µ) +

T∑
t=1

log p(yt|xt)

)
.

Now we use second-order Taylor approximation of
∑T
t=1 log p(yt|xt) around x̃. Denote ξ̇(x̃t) as

the value of the first derivative of log p(yt|z) w.r.t. z at z = x̃t, and similarly ξ̈(x̃t) for the second
derivative. Then

p̃(x|y) ∝ exp

(
−1

2
xTQx+ µTQx+

T∑
t=1

(at + btxt −
1

2
ctx

2
t )

)

∝ exp

(
−1

2
xT(Q+ diag(c))x+ (Qµ+ b)Tx

)
,

2https://github.com/helske/particlefield
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where

at = log p(yt|x̃t)− btx̃t +
1

2
ctx̃

2
t ,

bt = ξ̇(x̃t) + ctx̃t,

ct = −ξ̈(x̃t).

Now given our guess x̃, we have a Gaussian approximation of the posterior density of x, given as
a canonical parametrization Nc(Qµ+ b,Q+ diag(c)). Next we can expand again using the point
Qµ+ b, and repeat until convergence. This gives as an approximating Gaussian model with posterior
precision matrix Q̃ = Q + diag(ĉ) and mean vector µ̃ = Qµ + b̂, with the same posterior mode
x̂ as our original model. We follow [10, 4] and use Z̃p(y|x̂)/p̃(y|x̂) as an approximate likelihood,
where Z̃ is the likelihood of the approximating model, and the ratio term is an approximation of
E[p(y|x)/p̃(y|x)] .

For twisted SMC we define the observational level densities as p̃(yt|xt) = exp(ât + b̂txt − 1
2 ĉtx

2
t ),

and sample from p̃(xt|x1:t−1, y1:T ). In order to sample from from this distribution, we will first order
x from last to first for easier bookkeeping, i.e. we write

p̃(x1:T |y1:T ) = N


xT...
x1


∣∣∣∣∣∣∣
µ̃T...
µ̃1

 ,{LTLT
T

}−1 ,

where LT is a Cholesky factor for Q̃. Denote also the lower right t× t block of LT as

Lt =

[
L̂t 0

L̂t−1,t Lt−1

]
.

Now by marginalization and conditioning on x1:t−1 we have

p̃(xt | x1:t−1, y1:T ) = N (xt | µ̃t|t−1, {L̂tL̂T
t }−1),

with

µ̃t|t−1 = µ̃t −
L̂T
t−1,t

L̂t


xt−1...
x1

−
µ̃t−1...
µ̃1


 .

4 Modified twisting functions which ensure bounded SMC weights

As noted in [5], a direct approximation of the optimal twisting function may lead to unbounded
SMC weights, which may cause unstable behavior. This can often be resolved by a regularization.
We review how such regularization can be applied in the setting of expectation propagation; the
application in GMRF and LBP follow similar steps. Suppose that we have an approximately optimal
twisting function of the form

ψt(x1:t) :=

∫ ∏
j∈F\Ft

f̃j(xIj )dxt+1:T ,

where f̃j form our approximate model. Now, let ψ̃t(x1:t) := ψt(x1:t) + ε, with ε ≥ 0 being a
constant ‘regularization’ factor. Let γt(x1:t) :=

∏
j∈Ft

fj(xIj ) denote the ‘untwisted’ unnormalized

targets and γψ̃t := γtψ̃t the ‘twisted’ unnormalized targets. We may now use a proposal of the form

qt(xt | x1:t−1) =
[
1− λt(x1:t−1)

]
π̃t(xt | x1:t−1) + λt(x1:t−1)st(xt | x1:t−1),

where st(xt | x1:t−1) is a ‘safeguard proposal’,

π̃t(xt | x1:t−1) :=

( ∏
j∈Ft

f̃j(xIj )

)
ψt(x1:t)

ψt−1(x1:t−1)
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is the ‘approximately optimal’ proposal, and the mixture weights λt(x1:t−1) ∈ [0, 1] are defined as

λt(x1:t−1) :=
ε

ψt−1(x1:t−1) + ε
.

The SMC weights now take the form

ωt(x1:t) =
γψ̃t (x1:t)

γψ̃t−1(x1:t−1)qt(xt | x1:t−1)

=
γt(x1:t)

[
ψt(x1:t) + ε

]
γt−1(x1:t−1)

[∏
j∈Ft

f̃j(xIj )ψt(x1:t) + εst(xt | x1:t−1)
]

=

∏
j∈Ft

fj(xIj )
[
ψt(x1:t) + ε

]∏
j∈Ft

f̃j(xIj )ψt(x1:t) + εst(xt | x1:t−1)
.

Note that if ε = 0, this reduces to the simple form stated in the main paper. But if ε > 0, ψt
are bounded, and st are ‘safe’ SMC proposals for the untwisted model, that is, st(xt | x1:t−1) ≥
δ
∏
j∈Ft

fj(xIj ) for some δ > 0, then the SMC weights ωt are bounded.

5 Unbiasedness of the normalizing constant estimate

It is well known that the SMC normalizing constant estimate is unbiased, i.e., E[Ẑt] = Zt; see,
e.g., [2, 12, 8, 7]. However, there are many (equivalent) formulations of generic SMC algorithms
presented in the literature, and therefore also many (equivalent) expressions for the normalizing
constant estimate. For instance, the estimator is sometimes explicitly modified to take ESS-based
resampling into account [3, 12], and sometimes it is expressed in terms of so called adjustment
multiplier weights [7]. However, the simple form of the normalizing constant estimator

Ẑt =

t∏
s=1

{
1

N

N∑
i=1

w̃is

}
(7)

is in fact valid for any instance of Algorithm 1 (see the main paper), as long as the unnormalized
weights w̃it are computed as stated in the algorithm:

w̃it = ωt(x
i
1:t)w

ait
t−1/ν

ait
t−1

with ωt(x1:t) = γt(x1:t)/ (γt−1(x1:t−1)qt(xt | x1:t−1)) , for t ≥ 2, w̃i1 = γ1(xi1)/q1(xi1) and
wit = w̃it/

∑N
j=1 w̃

j
t . In particular, as argued in the main paper this includes ESS-based resampling:

set the resampling probabilities νit−1 ≡ 1/N and use a low-variance resampling method whenever
the ESS is above the resampling threshold, which effectively turns the resampling off.3 We can thus
use the simple expression (7) also in such situations.

For completeness we therefore provide a proof of the unbiasedness of (7) (for any instance of
Algorithm 1 of the main paper) below. The proof itself is not new and closely follows [8, 7].

Let Gt = σ
(
{xi1}Ni=1, {xis, ais}Ni=1 : s = 2, . . . , t

)
denote the filtration generated by all random

variables simulated in Algorithm 1 up until iteration t. We assume that the resampling probabilities
{νit−1}Ni=1 used at iteration t are Gt−1-measureable and that the resampling method is unbiased:

E

[
N∑
i=1

1(ait = j)

∣∣∣∣∣ Gt−1
]

= Nνjt−1, j = 1, . . . , N. (8)

Let t be a fixed index and define recursively the functions ft(x1:t) ≡ 1 and

fs(x1:s) =

∫
fs+1(x1:s+1)γs+1(x1:s+1)dxs+1

γs(x1:s)

3In a practical implementation it is of course more efficient to skip the resampling step when the ESS is
above the threshold. However, this interpretation is useful for the sake of analysis, since it means that we do not
need to treat the case with ESS-triggered resampling separately.
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for s = t− 1, t− 2, . . . , 1. Let

Qs =

(
1

N

N∑
i=1

w̃isfs(x
i
1:s)

)
s−1∏
u=1

{
1

N

N∑
i=1

w̃iu

}
for s = 1, . . . , t. Note that Qt = Ẑt.

Now, for 2 ≤ s ≤ t, consider

E[Qs | Gs−1] = E

[
1

N

N∑
i=1

w̃isfs(x
i
1:s)

∣∣∣∣∣ Gs−1
]
×
s−1∏
u=1

{
1

N

N∑
i=1

w̃iu

}
where the first factor of the right-hand-side can be written as

E

 1

N

N∑
i=1

w
ais
s−1

ν
ais
s−1

∫
ωs((x

ais
1:s−1, xs))fs((x

ais
1:s−1, xs))q(xs | x

ais
1:s−1)dxs

∣∣∣∣∣∣ Gs−1


=

N∑
j=1

wjs−1

νjs−1
fs−1(xj1:s−1)× E

[
1

N

N∑
i=1

1(ais = j)

∣∣∣∣∣ Gs−1
]

=

N∑
j=1

wjs−1fs−1(xj1:s−1)

and where we have used (8) for the last equality. It follows that

E[Qs | Gs−1] =

N∑
i=1

w̃is−1∑N
j=1 w̃

j
s−1

fs−1(xi1:s−1)×
s−1∏
u=1

{
1

N

N∑
i=1

w̃iu

}
= Qs−1.

Thus, {Qs : s = 1, . . . , t} is a Gs-martingale, so

E[Ẑt] = E[Qt] = E[Q1] =

∫
ω1(x1)f1(x1)q1(x1)dx1 =

∫
γ1(x1)f1(x1)dx1

=

∫
γ2(x1:2)f2(x1:2)dx1:2 = · · · =

∫
γt(x1:t)ft(x1:t)dx1:t = Zt.
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