
Supplementary material

A Computing Krylov subspace solutions

Generic instances of the trust-region and cubic-regularized problems can be globally optimized by
solving the one-dimensional equations

��A�1
� b
�� = R , � > max{��min, 0}. (22)

and ��A�1
� b
�� = �/⇢ , � � ��min, (23)

respectively. However, when d is very large, even a single exact evaluation of kA�1
� bk (which

requires a direct linear system solution) can become prohibitively expensive.

In this case, a general approach to obtaining approximate solutions is to constrain the domain to
a linear subspace Qt ⇢ Rd of dimension t ⌧ d. Let Qt 2 Rd⇥t be an orthogonal basis for Qt

(QT
t Qt = I). Finding the global minimizer in Qt is equivalent to re-parameterizing x as x = Qtx̃

and solving for x̃ 2 Rt, which is also equivalent to solving a t-dimensional problem instance with
Ã = Q

T
t AQt and b̃ = Q

T
t b. For sufficiently large d, the time to solve such problems will be

dominated by the t matrix-vector products required to construct Ã.

In this paper we focus on the choice Qt = Kt(A, b) the Krylov subspace of order t. This choice
offers a significant efficiency boost: we can efficiently construct a basis Qt for which Q

T
t AQt

is tridiagonal, using the Lanczos process, which consists of the following recursion, starting with
q1 = b/ kbk , q0 = 0,

↵t = q
T
t Aqt , q

0
t+1 = Aqt � ↵tqt � �tqt�1 , �t+1 =

��q0t+1

�� , qt+1 = q
0
t+1/

��q0t+1

�� .
The vectors q1, . . . , qt give the columns of Qt while ↵1, . . . ,↵t and �2, . . . ,�t respectively give
the diagonal and off-diagonal elements of the symmetric tridiagonal matrix Ã = Q

T
t AQt; this

makes solving equations (22) and (23) easy. One straightforward approach is to directly compute
the factorization Ã, which for a symmetric tridiagonal matrix of size t takes O(t log t) time [10]. A
more efficient approach—and the one used in practice—is to iteratively solve systems of the form
Ã�x = z and update � using Newton steps [11, 9]. Every tridiagonal system solution can be done
in time O(t), and the Newton steps are shown in [11, 9] to be globally linearly convergent, with
local quadratic convergence. In our experience less than 20 Newton steps generally suffice to reach
machine precision, and so the computational cost is essentially linear in t. It is also possible to avoid
keeping Qt in memory (when t · d storage is too demanding) by running the Lanczos process twice,
once for evaluating x̃ and again to obtain x = Qtx̃.

The Lanczos process produces the same result as Gram-Schmidt orthonormalization of the vectors⇥
b, Ab, . . . , A

t�1
b
⇤

but uses the special structure of that matrix to avoid computing inner products
that are known in advance to be zero. When run for many iterations, the Lanczos process has well-
documented numerical stability issues [35]. However, in our setting we usually seek low to moderate
accuracy solutions and will usually stop at t < 100, for which Lanczos is reasonably stable with
floating point arithmetic even when d is quite large. The application of the Lanczos process—which
is typically used for eigenvector computation—in the context of regularized quadratic optimization
is sometimes referred to as the generalized Lanczos process [17].

A.1 Computing joint Krylov subspace solutions

To solve equations (22) and (23) in subspaces of the form

Kmt(A, {v1, . . . , vm}) := span{Aj
vi}i2{1,...,m},j2{0,...,t�1}

we may use the block Lanczos method [12, 15], a natural generalization of the Lanczos method
that creates an orthonormal basis for the subspace Kmt(A, {v1, . . . , vm}) in which A has a block
tridiagonal form. Overloading the notation defined above so that now qt 2 Rd⇥m and ↵t,�t 2
Rm⇥m, the block Lanczos recursion is given by,

↵t = q
T
t Aqt , q

0
t+1 = Aqt � qt↵t � qt�1�

T
t , (qt+1,�t+1) = QR(q0t+1).
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where QR stands for the QR decomposition (i.e. if (q,�) = QR(a) then q is orthogonal, � is upper
diagonal and a = q · �), and the initial conditions are that q1 is an orthonormalized version of
[v1, . . . , vm] and q0 = 0. The matrix Ã = Q

T
t AQt is now block tridiagonal, with the diagonal and

sub-diagonal blocks given by {↵i}i2{1,...,t} and {�i}i2{2,...,t} respectively. Since the � matrices are
upper diagonal, Ã is a symmetric banded matrix with m non-zeros sub-diagonal bands. Such matrix
admits fast Cholesky decomposition (in time linear in m

2
t), and consequently the Newton method

described above is still efficient.

B Polynomial approximation results

In this section we state (and prove for ease of reference) two classical results on uniform polynomial
approximation (cf. [24, 26]) that stand at the core of the technical development in this work.
Lemma 4. Let n � 1 and 0 < ↵  �, and let  = �/↵. Then

min
p2Pn

max
x2[↵,�]

|1� xp(x)| = Tn() := 2

✓✓p
+ 1p
� 1

◆n

+

✓p
� 1p
+ 1

◆n◆�1

and
2
⇣
e
2n/(

p
�1) + 1

⌘�1
 Tn()  2e�2n/

p

.

Moreover, there exist x0, x1, . . . , xn 2 [↵,�] and probability distribution ⇡0,⇡1, . . .⇡n such that

min
p2Pn

nX

k=0

⇡k(1� xkp(xk))
2 = [Tn()]

2
.

Proof. Let

Tn(x) =

⇢
cos(n arccos(x)) |x|  1
1
2

�
(x+

p
x2 � 1)n + (x�

p
x2 � 1)n

�
|x| � 1

denote the order n Chebyshev polynomial of the first kind. We claim that p? 2 Pn that solves the
minimax problem minp2Pn maxx2[↵,�] |1� xp(x)| is given by

1� xp
?(x) = Tn() · Tn

✓
+ 1� 2x/↵

� 1

◆
,

where Tn() =
h
Tn

⇣
+1
�1

⌘i�1
guarantees that the RHS has value 1 at x = 0 and therefore p

?

is well defined. Since clearly |Tn(y)|  1 for every y 2 [�1, 1], we have that maxx2[↵,�] |1 �
xp

?(x)| = Tn().

We argue that p? is optimal using the classical alternating signs argument, sometimes also referred to
as Chebyshev’s theorem. First, note that Tn(y) has n+1 extrema in [�1, 1] (at yk = cos(k⇡/n) for
k = 0, . . . , n) and that their values alternate between �1 and 1 (i.e. Tn(yk) = (�1)k). Therefore,
there exist n+1 distinct points x0, x1, . . . , xn 2 [↵,�] for which 1�xip

?(xk) = (�1)kTn(). Let
q 2 Pn satisfy maxx2[↵,�] |1� xq(x)|  Tn(). Then,

p
?(xk)� q(xk) =

[1� xkq(xk)]� [1� xkp
?(xk)]

xk

must be non-positive for even k and non-negative for odd k, and therefore p
? � q must have at least

n roots in [↵,�]. However, p?� q is a polynomial of degree at most n� 1 and can have n roots only
if it is identically 0, so we have that q = p

?, proving that p? is the unique solution of the minimax
problem.

To see the upper and lower bounds on Tn(), note that Tn() = 1/ cosh(n log(1 + 2p
�1

)), that
1
2e

|y|  cosh(y)  1
2 (e

|y| + 1), and that

2

z
 log

✓
1 +

2

z � 1

◆
 2

z � 1
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for all z > 1, where the lower bound above can seen by comparing derivatives.

To see the final part of the lemma, let x0, x1, . . . , xn 2 [↵,�] be the points constructed in the
optimality argument above, and note that this argument continues to hold if the inner maximization
is restricted to these points. Therefore,

min
p2Pn

max
0kn

(1� xkp(xk))
2 =


min
p2Pn

max
0kn

|1� xkp(xk)|
�2

= [Tn()]
2
.

Letting �n+1 denote the probability simplex with n+ 1 variables, we may write

max
0kn

(1� xkp(xk))
2 = max

µ2�n+1

nX

k=0

µk(1� xkp(xk))
2
.

Finally, noting that the objective
Pn

k=0 µk(1 � xkp(xk))2 is linear (and hence concave) in µ and
convex in (the coefficients of) p, we may use Von-Neumann’s lemma and swap the min and max
above, writing

max
µ2�n+1

min
p2Pn

nX

k=0

µk(1� xkp(xk))
2 = min

p2Pn

max
µ2�n+1

nX

k=0

µk(1� xkp(xk))
2 = [Tn()]

2
.

Letting ⇡ denote the distribution attaining the outer maximum, we get the desired result. We remark
in passing that ⇡ may be constructed explicitly using the orthogonality principle of least squares
estimation and orthogonality relations of Chebyshev polynomials.

Lemma 5. Let n � 1 and 0 < ↵  �, let  = �/↵ and define w(x) :=
p
x� ↵. Then

min
p2Pn

max
x2[↵,�]

w(x)|1� xp(x)| = Un () := 2
p
↵

 ✓p
+ 1p
� 1

◆n+ 1
2

�
✓p

� 1p
+ 1

◆n+ 1
2

!�1

and

2
p
↵

⇣
e
2(2n+1)/(

p
�1) � 1

⌘� 1
2  Un ()  2

p
↵

⇣
e
2(2n+1)/

p
 � 2

⌘� 1
2
.

Moreover, there exist x0, x1, . . . , xn 2 [↵,�] and probability distribution ⇡0,⇡1, . . .⇡n such that

min
p2Pn

nX

k=0

⇡kw
2(xk)(1� xkp(xk))

2 = [Un ()]
2
.

Proof. Let

Un(x) =

(
1p

1�x2 sin((n+ 1) arccos(x)) |x|  1
1

2
p
x2�1

�
(x+

p
x2 � 1)n+1 � (x�

p
x2 � 1)n+1

�
|x| � 1

denote the order n Chebyshev polynomial of the second kind. We claim that p? 2 Pn that solves
the minimax problem minp2Pn maxx2[↵,�](x� ↵)1/2|1� xp(x)| is given by

1� xp
?(x) =

Un ()

w(�)
· U2n

 r
� x/↵

� 1

!
,

where Un () = w(�)
h
U2n

⇣q


�1

⌘i�1
guarantees that the RHS has value 1 at x = 0 and there-

fore p? is well defined (note that U2n(·) is an even polynomial and therefore U2n(
p
·) is a polynomial

of degree n). For x 2 [↵,�], we have by the definition of p⇤ and the expression for U2n,

w(x)(1� xp
?(x)) = Un () · sin

 
(2n+ 1) arccos

 r
� x/↵

� 1

!!
.

Therefore, we have that w(x)|1 � xp
?(x)|  Un () for every x 2 [↵,�], and moreover we have

that w(xk)(1� xkp
?(xk)) = (�1)k · Un (), for the points x0, . . . xn 2 [↵,�] satisfying

r
� xk/↵

� 1
= cos

✓
⇡

2
· 2k + 1

2n+ 1

◆
.
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Hence, the alternating signs argument from the proof of Lemma 4 holds here as well and we have
that p? is optimal and that minp2Pn maxx2[↵,�] w(x)|1� xp(x)| = Un ().

To see the upper and lower bounds on Un (), note that Un () =
p
↵/ sinh((n+ 1

2 ) log(1+
2p
�1

)),
that for y � 0, sinh(y) = 1p

2

p
cosh(2y)� 1 gives 1

2

p
e2y � 2  sinh(y)  1

2

p
e2y � 1, and that

(as in Lemma 4) 2
z  log

⇣
1 + 2

z�1

⌘
 2

z�1 .

The final part of the lemma follows exactly as in Lemma 4.

C Proofs from Section 2

C.1 Proof of auxiliary lemmas

Lemma 1 (Approximate matrix inverse). Let ↵,� satisfy 0 < ↵  �, and let  = �/↵. For
any t � 1 there exists a polynomial p of degree at most t � 1, such that for every M satisfying
↵I � M � �I ,

kI �Mp(M)k  2e�2t/
p

.

Proof. This is an immediate consequence of Lemma 4, as

min
p2Pt

max
↵I�M��I

kI �Mp(M)k = min
p2Pt

max
�2[↵,�]

|1� � · p(�)| = Tt().

Lemma 2 (Convex trust-region problem). Let t � 1, M ⌫ 0, v 2 Rd and r � 0, and let fM,v(x) =
1
2x

T
Mx+ v

T
x. There exists xt 2 Kt(M, v) such that

kxtk  r and fM,v(xt)� min
kxkr

fM,v(x) 
4�max(M) · r2

(t+ 1)2
.

Proof. Let g : Rd ! R be convex with L-Lipschitz gradient and let Q ✓ Rd be a convex set
containing the point 0. Consider Nesterov’s accelerated gradient method for minimization of g,
which comprises the following recursion [28, Scheme (2.2.17)],

xk+1 = min
x2Q

⇢
x
Trg(yk) +

L

2
kx� ykk2

�
= ⇧Q

✓
yk � 1

L
rg(yk)

◆

↵
2
k+1/(1� ↵k+1) = ↵

2
k ) ↵k+1 = �↵

2
k

2
+

↵
2
k

2

s

1 +
4

↵2
k

yk+1 = xk+1 + ↵k+1(↵
�1
k � 1)(xk+1 � xk),

where ⇧Q(·) is the Euclidean projection to Q. Letting ↵0 = 1 and y0 = x0 = 0, and letting x
?

denote any minimizer of g in Q, the analysis of Tseng [37, Corollary 2(b)] gives2,

g(xt)� g(x?)  4Lmaxz2Q kzk2

(t+ 1)2
. (24)

Taking g = fM,v and Q = Br = {x | kxk  r}, we note that fM,v is convex with L := �max(M)-
Lipschitz gradient, and that the projection step guarantees that kxtk  r for every t. Therefore, to
establish the lemma it remains only to argue that xt as defined above is in Kt(M, v); we shall see
this by simple induction, whose basis is y0, x0 2 K0(M, v) = {0}. Assume now that yk, xk 2
Kk(M, v) for some k � 0. This implies

yk � 1

L
rg(yk) = yk � 1

L
Ayk � 1

L
v 2 Kk+1(M, v).

2 translating to the notation of [37], take �(x, v) = g(x) and P (x) to be the indicator of Q, so that
qP (·) = g(x?), note that ✓k (↵k in our notation) satisfies ✓k  2/(2 + k). We discuss alternative references
for this result after the proof.
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Further, note that projection to the Euclidean ball Br is simply scaling:

⇧Q(z) = ⇧Br (z) =
r

max{r, kzk} · z,

and therefore xk+1 2 Kk+1(M, v). Finally, yk+1 is simply a linear combination of xk+1 and xk

and therefore is also in Kk+1(M, v), concluding the induction and the proof.

A bound similar to (24) appears in Nesterov’s earlier analysis [28, Theorem 2.2.3], but with an
the additional factor proportional to g(0) � g(x?) which is not immediately upper bounded by
1
2Lmaxz2Q kzk2 due to the constraint z 2 Q. The bound (24) also appears in later work of Allen-
Zhu and Orecchia [2].
Lemma 3 (Finding eigenvectors, [24, Theorem 4.2]). Let M ⌫ 0 be such that uT

Mu = 0 for some
unit vector u 2 Rd, and let v 2 Rd. For every t � 1 there exists zt 2 Kt(M, v) such that

kztk = 1 and z
T
t Mzt 

kMk
16(t� 1

2 )
2
log2

 
�2 + 4

kvk2

(uT v)2

!
.

Proof. Let �(1)  �(2)  · · ·  �(d) denote the eigenvalues of M and let u1, u2, . . . , ud denote
their corresponding (orthonormal) eigenvectors. By our assumption �(1) = 0 and we have also
�(d) = kMk. We let

v(i) := u
T
i v

denote the component of v in the eigenbasis of M . Define

errt := min
p2Pt

(p(M)v)TMp(M)v

kp(M)vk2
= min

p2Pt

Pd
i=1 v

2
(i)p

2(�(i))�(i)
Pd

i=1 v
2
(i)p

2(�(i))
,

and let q 2 Pt attain the minimum above. Setting zt = q(M)v/ kq(M)vk, we see that

errt = z
T
t Mzt =

Pd
i=1 v

2
(i)q

2(�(i))�(i)
Pd

i=1 v
2
(i)q

2(�(i))
,

and so our proof comprises of bounding errt from above.

We invoke Lemma 5 with n = t� 1, ↵ = errt and � = �(d) = kMk; let q̃(x) = 1� xp
?(x) 2 Pt

be the polynomial for which the Lemma guarantees

max
x2[errt,�(d)]

(x� errt)
1/2|q̃(x)| = Ut�1 () .

By the optimality of q, we have that

errt 
Pd

i=1 v
2
(i)q̃

2(�(i))�(i)
Pd

i=1 v
2
(i)q̃

2(�(i))
.

Rearranging and noting that q̃(�(1)) = q̃(0) = 1, we obtain

errt 
dX

i=2

v
2
(i)

v2(1)

(�(i)�errt)q̃
2(�(i)) 

kvk2 � v
2
(1)

v2(1)

max
�2[errt,�(d)]

(��errt)q̃
2(�) =

 
kvk2

v2(1)

� 1

!
[Ut�1 ()]

2
.

Lemma 5 provides the bound

[Ut�1 ()]
2  4errt

e
2(2t�1)

p
errt/kMk � 2

.

Substituting the upper bound into errt 
�kvk2

v2
(1)

�1
�
[Ut�1 ()]2 and rearranging gives the result.
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C.2 Proof of Corollary 3

Corollary 3. Let v be uniformly distributed on the unit sphere in Rd, let � > 0 and let

b̃ = b+ � · v.
Let s̃trt 2 argminx2Kt(A,b̃),kxkR fA,b̃(x) :=

1
2x

T
Ax+ b̃

T
x. For any � > 0,

fA,b(s̃
tr
t )� fA,b(s

tr
? ) 

(�max � �min)R2

(t� 1
2 )

2

"
4 +

I{�min<0}

2
log2

 
2kb̃k

p
d

��

!#
+ 2�R (14)

with probability at least 1� � with respect to the random choice of v.

Proof. Let x̃?
tr 2 argminx2Kt(A,b̃),kxkR fA,b̃(x) be a solution to the perturbed problem. Since v is

a unit vector, for any feasible x we have

fA,b(x)� fA,b(s
tr
? ) = fA,b̃(x)� fA,b̃(s

tr
? ) + � · vT (str? � x)  fA,b̃(x)� fA,b̃(s

tr
? ) + 2�R

 fA,b̃(x)� fA,b̃(x̃
?
tr) + 2�R, (25)

and so it suffices to argue about the perturbed optimality gap fA,b̃(s̃
tr
t )� fA,b̃(s

tr
? ).

Applying the bound (5) on the perturbed problem gives us

fA,b̃(s̃
tr
t )� fA,b̃(x̃

?
tr) 

(�max � �min)R2

(t� 1
2 )

2

"
4 +

I{�min<0}

2
log2

 
2

kb̃k
|uT

minb̃|

!#
, (26)

and a simple argument on the density of uT
minb̃ (cf. [5, Lemma 4.6]) shows that

|uT
minb̃| �

� · �p
d

with probability at least 1� �. (27)

Combining the bounds (25), (26) and (27) gives the result (14).

D Proof of lower bounds

In what follows, we break Theorem 5 into two parts, one for the linear convergence lower bound (19)
and one for the sublinear lower bounds (20) and (21). We restate each sub-theorem in a way that
clearly shows our control over problem-dependent parameters when constructing the hard problem
instances. In our proofs we will make use of the following expression for the optimality gap in the
cubic-regularization problem,

f̂A,b,⇢ (x)� f̂A,b,⇢ (s
cr
? ) =

1

2
(x� s

cr
? )

T
A⇢kscr?k(x� s

cr
? )+

⇢

6
(kscr? k � kxk)2 (kscr? k+ 2kxk) , (28)

where A⇢kscr?k = A+ ⇢ kscr? k I .

D.1 Proof of linear convergence lower bound

Theorem 5, part I. Let �min,�max,�?,� 2 R such that �min  �max, �? > max{�min, 0} and
R,� > 0. For every t � 1 and every d > t there exists A 2 Rd⇥d, b 2 Rd and ⇢ > 0 such that

• all eigenvalues of A are in [�min,�max],

• the solution s
cr
? = argminx2Rd f̂A,b,⇢(x) satisfies ⇢ kscr? k = �?,

• f̂A,b,⇢(0)� f̂A,b,⇢(scr? ) = �, and

f̂A,b,⇢(s)�f̂A,b,⇢(s
cr
? ) >

✓
1 +

⇢ kscr? k
3(⇢ kscr? k+ �min)

◆�1 h
f̂A,b,⇢(0)� f̂A,b,⇢(s

cr
? )
i
exp

8
<

:� 4tq
⇢kscr?k+�max

⇢kscr?k+�min
� 1

9
=

; .

for every s 2 Kt(A, b).
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Proof. From Lemma 4 with ↵ = �? + �min, � = �? + �max and n = t, we have that there exist
⇠0, . . . , ⇠t 2 [↵,�] and probability distribution ⇡0, . . . ,⇡t such that

min
p2Pt

tX

k=0

⇡k(1� ⇠kp(⇠k))
2 � e

�4t/(
p
�1)

,

where  = �/↵ = (�max+�?)/(�min+�?). We let ⇠ and
p
⇡ denote vectors with entries ⇠0, . . . , ⇠t

and
p
⇡0, . . . ,

p
⇡t respectively.

To construct the problem instance (A, b, ⇢) we assume without loss of generality d = t+1, as higher
dimensional instances can be obtained by zero-padding a (t+ 1)-dimensional construction. We set

A = diag(⇠ � �?), b = µA
1/2
�?

p
⇡ and ⇢ = �?/

��A�1
�?

b
�� ,

where we will choose µ > 0 to set the value of f̂A,b,⇢(0) � f̂A,b,⇢(scr? ). First, we note that for any
value of µ our choice of ⇢ guarantees that

��A�1
�?

b
�� = �?/⇢, making s

cr
? = �A

�1
�?

b the unique global
minimizer of f̂A,b,⇢. We therefore have by equation (28)

f̂A,b,⇢(0)� f̂A,b,⇢(s
cr
? ) =

1

2
s
cr
?
T
A�?s

cr
? +

⇢ kscr? k
6

kscr? k
2 =

µ
2

2

✓
1 +

�?

3

p
⇡
T
A

�1
�?

p
⇡

◆
,

so for every � > 0 there is µ for which f̂A,b,⇢(0) � f̂A,b,⇢(scr? ) = �. Noting that
p
⇡
T
A

�1
�?

p
⇡ 

(�? + �min)�1 k
p
⇡k2 = (�? + �min)�1, we also have

µ
2

2
� �

✓
1 +

�?

3(�? + �min)

◆�1

.

Now, every s 2 Kt(A, b) is of the form s = �p(A�?)b for p 2 Pt, and using equation (28) again
we have

f̂A,b,⇢(s)� f̂A,b,⇢(s
cr
? ) �

1

2

���A1/2
�?

(s� s
cr
? )
���
2 (a)
=

1

2

���(I �A�?p(A�?))A
�1/2
�?

b

���
2

(b)
=

µ
2

2

nX

k=0

⇡k(1� ⇠kp(⇠k))
2

(c)
� µ

2

2
e
�4t/(

p
�1)

,

where in (a) we substituted s = �p(A�?)b and s
cr
? = �A

�1
�?

b, in (b) we used our construction of
A and b, and in (c) we used the guarantee from Lemma 4. The result follows from substituting our
lower bound on µ

2 and recalling that �? = ⇢ kscr? k.

D.2 A lower bound for finding eigenvectors

The “non-convex” lower bound is in its heart a statement about the difficulty of approximating an
extremal eigenvector in a Krylov subspace, which we state explicitly here. The proof of the lemma
consists of applying “in reverse” the same polynomial approximation result (Lemma 5) that Kuczyn-
ski and Wozniakowski [24] use for proving upper bounds on finding eigenvector with the Lanczos
method (which we state as Lemma 3).
Lemma 6 (Finding eigenvectors: lower bound). For every d > 0, vector v 2 Rd, unit vector u 2 Rd

and t < d, there exists matrix M 2 Rd⇥d such that M ⌫ 0, Mu = 0, and for every z 2 Kt(M, v),

z
T
t Mzt

kMk kztk2
� min

(
1

4
,

1

64(t� 1
2 )

2
log2

 
�3 + 4

kvk2

(uT v)2

!)
.

Proof. We take kMk = 1 without loss of generality; results for arbitrary norms of M follow by
scaling the construction below. Define

errt := min

(
1

4
,

1

64(t� 1
2 )

2
log2

 
�3 + 4

kvk2

(uT v)2

!)
. (29)
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We apply Lemma 5 with n = t � 1, ↵ = errt and � = 1, to obtain ⇠1, . . . , ⇠t 2 [errt, 1] and
probability distribution ⇡1, . . . ,⇡t such that

min
p2Pt�1

tX

k=1

⇡k(⇠k � errt)(1� ⇠kp(⇠k))
2 � 4errt

e
2(2t�1)/( 1p

errt
�1) � 1

. (30)

We assume without loss of generality that d = t + 1 (otherwise we zero-pad), and construct M
as follows. First, we take the eigenvalues of M to be 0, ⇠1, . . . , ⇠t, satisfying 0 � M � I . Next,
we let u be the eigenvector of M corresponding to eigenvalue 0, satisfying Mu = 0. Finally,
for i = 1, . . . , t we choose the eigenvector ui corresponding to eigenvalue ⇠i such that (uT

i v)
2 =

⇡i(kvk2 � (uT
v)2).

Assume by contradiction

min
z2Kt(M,v)

z
T
Mz

kzk2
< errt, (31)

and let q 2 Pt be be such that
Pt

i=1 ⇠iq
2(⇠i)(uT

i v)
2

q2(0)(uT v)2 +
Pt

i=1 q
2(⇠i)(uT

i v)
2
=

(q(M)v)TMq(M)v

kq(M)vk2
= min

z2Kt(M,v)

z
T
Mz

kzk2
< errt.

Rearranging, using (uT
i v)

2 = ⇡i(kvk2 � (uT
v)2), and letting q̃(x) = q(x)/q(0), we have that

errt >

 
kvk2

(uT v)2
� 1

!
tX

i=1

⇡i(⇠i � errt)q̃
2(⇠i) �

 
kvk2

(uT v)2
� 1

!
4errt

e
2(2t�1)/( 1p

errt
�1) � 1

.

where in the last transition we used that q̃(0) = 1 and therefore it is of the form 1� xp(x) for some
p 2 Pt�1, so the lower bound (30) applies. Rearranging gives

errt > h

 
1

16(t� 1
2 )

2
log2

 
�3 + 4

kvk2

(uT v)2

!!
, h(x) =

x

(1 +
p
x)2

.

Using h(x) � 1
4 min{1, x} and the definition (29) of errt, we see that the above bound gives the

contradiction errt > errt and therefore assumption (31) must be false and we have the desired result
minz2Kt(M,v)

zTMz
kzk2 � errt.

D.3 Proof of sublinear convergence lower bound

Theorem 5, part II. Let �min,�max, R, ⌧ 2 R such that �min  �max, ⌧ � 1 and R > 0. For
every t � 1 and every d > t there exists A 2 Rd⇥d, b 2 Rd and ⇢ > 0 such that

• all eigenvalues of A are in [�min,�max],

• the solution s
cr
? = argminx2Rd f̂A,b,⇢(x) satisfies kscr? k = R,

• there exists unit eigenvector umin such that uT
minAumin = �min and kbk

|uT
minb|

= ⌧ , and

f̂A,b,⇢(s)� f̂A,b,⇢(s
cr
? ) > min

(
�
�
max � �min ,

�max � �min

16(t� 1
2 )

2
log2

 
kbk2

(uT
minb)

2

!)
kscr? k

2

32
,

where �
�
max = min{�max, 0}, and

f̂A,b,⇢(s)� f̂A,b,⇢(s
cr
? ) >

(�max � �min) kscr? k
2

16(t+ 1
2 )

2
.

for every s 2 Kt(A, b).
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Proof. We begin with the first, “non-convex” bound, which is essentially a reduction to the eigenvec-
tor problem. Here we assume �min  0 as otherwise the lower bound is vacuous. We use Lemma 6
to construct M 2 Rd⇥d and unit vectors umin, v 2 R

d such that M ⌫ 0, kMk = �max � �min,
Mumin = 0, kvk /|uT

minv| = ⌧ and for every z 2 Kt(M, v)
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16(t� 1
2 )

2
log2

 
kvk2

(uT
minv)

2

!)
:= ✏t, (32)

where �
�
max = min{�max, 0}. We let " > 0 be a parameter to be specified later. We let

�? = ��min + "

and construct the cubic regularization instance as follows

A = M + �minI , b =
R��A�1
�?

v
��v , ⇢ = �?/R.

The solution for this instance is unique and satisfies s
cr
? = �A

�1
�?

b = �RA
�1
�?

v/
��A�1

�?
v
�� so that

kscr? k = R, and moreover we note that kbk ! 0 as " ! 0. For every s 2 Kt(M, v) = Kt(A, b),

f̂A,b,⇢(s) =
1

2
s
T
As+ b

T
s+

⇢

3
ksk3 � �kbk ksk+ 1

2
(�min + ✏t) ksk2 +

⇢

3
ksk3 .

The RHS above is minimal for

ksk = R̃ := ��min + ✏t

2⇢
+

s✓
�min + ✏t

2⇢

◆2

+
kbk
⇢

 ��min � ✏t

⇢
+

s
kbk
⇢

,

where the bound holds since our definition of ✏t implies ✏t  ��min and so ��min � ✏t � 0. The
minimum value of the RHS satisfies

f̂A,b,⇢(s) � �2

3
kbk R̃� 1

6
(��min � ✏t)R̃

2
. (33)

Taking without loss of generality u
T
minb  0 and using ⇢ = �?/R, and �? = ��min + ", we have

f̂A,b,⇢(s
cr
? )  f̂A,b,⇢(R · umin) 

1

2
�minR

2 +
1

3
�?R
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1

6
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2 +
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3
R

2
. (34)

Recall that kbk ! 0 as " ! 0, and take " > 0 sufficiently small so that

" < ✏t/24 and kbk  min{✏tR/24, ✏2t/⇢},

which implies also

R̃  ��min � ✏t

⇢
+

✏t

⇢
=

��min

⇢
 �?

⇢
= R.

Using R̃  R, we may replace R̃ with R in the bound (33), and combining this with (34) and the
bounds on kbk and " we obtain

f̂A,b,⇢(s)� f̂A,b,⇢(s
cr
? ) �
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6
R

2 � 2 kbk
3

R� "

3
R
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8
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2
.

Recalling kscr? k = R and the definition (32) of ✏t, we get the desired “non-convex” lower bound.

To derive the alternative, “convex” lower bound, we again let 0 < " < �max � �min be a parameter
to be determined, and we apply Lemma 5 with n = t, ↵ = ", � = �max � �min to obtain points
⇠0, . . . , ⇠t 2 [0,�max � �min] and probability masses ⇡0, . . . ,⇡t such that

min
p2Pn

nX
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⇡k(⇠k � ")(1� ⇠kp(⇠k))
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Ut

✓
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.
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To construct the hard instance we again set
�? = ��min + ".

Letting ⇠ and
p
⇡ denote vectors with entries ⇠i and

p
⇡i, we set

A = diag(⇠ � �?) , b = R ·A�?

p
⇡ , ⇢ = �?/R.

Again we have that scr? = �A
�1
�?

b is the unique solution and kscr? k = R k
p
⇡k = R. Let s 2

Kt(A, b), then
s = �p(A�?)b = p(A�?)A�?s
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? = �Rp(A�?)A�?

p
⇡

for some p 2 Pt. By equality (28) we have
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Note that
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Therefore, we can choose " sufficiently small so that
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,

which gives the proof for the “convex” lower bound, as kscr? k = R.

E Numerical experiment details

Random problem generation,  < 1 We generate random cubic regularization instances
(A, b, ⇢) as follows. We take �max = 1 and draw �min ⇠ U [�1,�0.1], where U [a, b] denotes
the uniform distribution on [a, b]. We then fix two eigenvalues of A to be �min,�max and draw the
other d � 2 eigenvalues independently from U [�min,�max]. We then take A to be diagonal with
said eigenvalues. This is without much loss of generality (as the Krylov subspace method is rota-
tionally invariant), and it allows us to quickly compute matrix-vector products, whose computation
nevertheless accounts for much of the experiment running time when using d = 106.

For a desired condition number , we let

�? :=
�max � �min

� 1
and as usual denote A�? = A + �?I . To generate b, ⇢, we draw a standard normal d-dimensional
vector v ⇠ N (0; I) and let

b =

s
2

vTA
�1
�?

v + �?
3 vTA

�2
�?

v
· v , ⇢ =

�?

kA�1
�?

bk
,

The above choice of b and ⇢ guarantees that ⇢
��A�1

�?
b
�� = �? and therefore s

cr
? = �A

�1
�?

b is the
unique solution and the problem condition number satisfies

�max + ⇢ kscr? k
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=
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= 

as desired. Moreover, our scaling of b guarantees that
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◆
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Our technique for generating (A, b, ⇢) is similar to the one we used in [5] to test gradient descent for
cubic regularization. The main difference is that in [5] the value of ⇢ is fixed and consequently there
is no control over the initial optimality gap.

For every value of , we generate 5,000 problem instances independently as described above.
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Figure 2: Optimality gap of Krylov subspace solutions on random cubic-regularization problems,
versus subspace dimension t. Each plot shows result for problem instances with a different eigen-
gap � = (�max � �min)/(�2 � �min), where �2 is the smallest eigenvalue larger than �min. Each
line represents median suboptimality, and shaded regions represent inter-quartile range. Different
lines correspond to different randomization settings.

Random problem generation,  = 1 We let A = diag(�) where �1 = �min = �0.5, �d =
�max = 0.5 and �2, . . . ,�d�1 are drawn i.i.d. from U [�min+ �,�max] where we take the eigen-gap
� = 10�4 and d = 106.

As  = 1, we let
�? = ��min

and denote Â�?
:= diag(�2 + �?, . . . ,�max + �?). We generate b and ⇢ by drawing a standard

normal (d� 1)-dimensional vector v, and letting

b1 = 0 , b2:d =

s
2

vT Â
�1
�?

v + (1 + ⌧2)�?
3 vT Â

�2
�?

v
v , ⇢ =

�?

kÂ�1
�?

b2:dk
p
1 + ⌧2

,

where ⌧ is a parameter that determines the weight of the eigenvector corresponding to �min in the
solution (when ⌧ = 1 we have a pure eigenvector instance); we take ⌧ = 10. A global minimizer
s
cr
? of the problem instance (A, b, ⇢) generated above has the form,

[scr? ]1 = ±⌧kÂ�1
�?

b2:dk , [scr? ]2:d = �Â
�1
�?

b2:d.

As in the case  < 1, it is easy to verify that the scaling of b guarantees f̂A,b,⇢(0)� f̂A,b,⇢(scr? ) = 1.

When  = 1, the choice of eigen-gap � strongly affects optimization performance. We explore this
in Figure 2, which repeats the experiment described above with different values of � (and d = 105).
As seen in the figure, the non-randomized Krylov subspace solution becomes more suboptimal as �
increases. Moreover, randomization “kicks-in” after roughly log d/

p
� iterations, when eigen-gap-

dependent linear convergence begins.

To create each plot, we draw 10 independent problem instances from the distribution described
above, and for each problem instance run each randomization approach with 50 different random
seeds; we observe that sampling problem instances and sampling randomization seeds contribute
similar amount of variation to the final ensemble of results.

Hardness of generated problems It is well known that the performance of subspace methods
improves dramatically when the eigenvalues of A are clustered [35]. Taking the eigenvalues of A
to be uniformly distributed produces very little clustering, making the instances we draw somewhat
hard. However, examining the proof of the lower bound (19) we see that the worst case eigenvalues
are of the form �k = �min + (�max � �min) sin

2
✓k where ✓1, . . . ✓d are equally spaced in [0,⇡/2].

This is fairly different from a uniform distribution (asymptotically as d ! 1 it becomes an arcsine
distribution), and consequently we think that uniformly distributing the eigenvalues makes for a
challenging but not quite adversarial test case.
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Computing Krylov subspace solutions We use the Lanczos process to obtain a tridiagonal rep-
resentation of A as described in Section A. To obtain full optimization traces we solve equation (23)
after every Lanczos iteration, warm-starting � with the solution from the previous step and the min-
imum eigenvalue of the current tridiagonal matrix. We use the Newton method described by Cartis
et al. [9, Algorithm 6.1] to solve the equation (23) in the Krylov subspace. For the  < 1 experi-
ment, we stop the process when |

��A�1
� b
��� �/⇢| < 10�12 or after 25 tridiagonal system solves are

computed. For the  = 1 experiment we allow up to 100 system solves.
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