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Abstract

We present a number of novel contributions to the multiple-source adaptation
problem. We derive new normalized solutions with strong theoretical guarantees
for the cross-entropy loss and other similar losses. We also provide new guarantees
that hold in the case where the conditional probabilities for the source domains
are distinct. Moreover, we give new algorithms for determining the distribution-
weighted combination solution for the cross-entropy loss and other losses. We
report the results of a series of experiments with real-world datasets. We find that
our algorithm outperforms competing approaches by producing a single robust
model that performs well on any target mixture distribution. Altogether, our theory,
algorithms, and empirical results provide a full solution for the multiple-source
adaptation problem with very practical benefits.

1 Introduction

In many modern applications, often the learner has access to information about several source
domains, including accurate predictors possibly trained and made available by others, but no direct
information about a target domain for which one wishes to achieve a good performance. The target
domain can typically be viewed as a combination of the source domains, that is a mixture of their
joint distributions, or it may be close to such mixtures. In addition, often the learner does not have
access to all source data simultaneously, for legitimate reasons such as privacy or storage limitation.
Thus, the learner cannot simply pool all source data together to learn a predictor.

Such problems arise commonly in speech recognition where different groups of speakers (domains)
yield different acoustic models and the problem is to derive an accurate acoustic model for a broader
population that may be viewed as a mixture of the source groups (Liao, 2013). In object recognition,
multiple image databases exist, each with its own bias and labeled categories (Torralba and Efros,
2011), but the target application may contain images which most closely resemble only a subset of
the available training data. Finally, in sentiment analysis, accurate predictors may be available for
sub-domains such as TVs, laptops and CD players, each previously trained on labeled data, but no
labeled data or predictor may be at the learner’s disposal for the more general category of electronics,
which can be modeled as a mixture of the sub-domains (Blitzer et al., 2007; Dredze et al., 2008).

The problem of transfer from a single source to a known target domain (Ben-David, Blitzer, Crammer,
and Pereira, 2006; Mansour, Mohri, and Rostamizadeh, 2009b; Cortes and Mohri, 2014; Cortes,
Mohri, and Muñoz Medina, 2015), either through unsupervised adaptation techniques (Gong et al.,
2012; Long et al., 2015; Ganin and Lempitsky, 2015; Tzeng et al., 2015), or via lightly supervised
ones (some amount of labeled data from the target domain) (Saenko et al., 2010; Yang et al., 2007;
Hoffman et al., 2013; Girshick et al., 2014), has been extensively investigated in the past. Here, we
focus on the problem of multiple-source domain adaptation and ask how the learner can combine
relatively accurate predictors available for each source domain to derive an accurate predictor for
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any new mixture target domain? This is known as the multiple-source adaptation (MSA) problem
first formalized and analyzed theoretically by Mansour, Mohri, and Rostamizadeh (2008, 2009a)
and later studied for various applications such as object recognition (Hoffman et al., 2012; Gong
et al., 2013a,b). Recently, Zhang et al. (2015) studied a causal formulation of this problem for a
classification scenario, using the same combination rules as Mansour et al. (2008, 2009a). A closely
related problem to the MSA problem is that of domain generalization (Pan and Yang, 2010; Muandet
et al., 2013; Xu et al., 2014), where knowledge from an arbitrary number of related domains is
combined to perform well on a previously unseen domain. Appendix G includes a more detailed
discussion of previous work related to the MSA problem.

Mansour, Mohri, and Rostamizadeh (2008, 2009a) gave strong theoretical guarantees for a distribution-
weighted combination to address the MSA problem, but they did not provide an algorithmic solution
to determine that combination. Furthermore, the solution they proposed could not be used for loss
functions such as cross-entropy, which require a normalized predictor. Their work also assumed a
deterministic scenario (non-stochastic) with the same labeling function for all source domains.

This work makes a number of novel contributions to the MSA problem. We give new normalized
solutions with strong theoretical guarantees for the cross-entropy loss and other similar losses. Our
guarantees hold even when the conditional probabilities for the source domains are distinct. A
by-product of our analysis is the extension of the theoretical results of Mansour et al. (2008, 2009a)
to the stochastic scenario, where there is a joint distribution over the input and output space.

Moreover, we give new algorithms for determining the distribution-weighted combination solution
for the cross-entropy loss and other losses. We prove that the problem of determining that solution
can be cast as a DC-programming (difference of convex) and prove explicit DC-decompositions for
the cross-entropy loss and other losses. We also give a series of experimental results with several
datasets demonstrating that our distribution-weighted combination solution is remarkably robust. Our
algorithm outperforms competing approaches and performs well on any target mixture distribution.

Altogether, our theory, algorithms, and empirical results provide a full solution for the MSA problem
with very practical benefits.

2 Problem setup

Let X denote the input space and Y the output space. We consider a multiple-source domain
adaptation (MSA) problem in the general stochastic scenario where there is a distribution over the
joint input-output space X × Y . This is a more general setup than the deterministic scenario in
(Mansour et al., 2008, 2009a), where a target function mapping from X to Y is assumed. This
extension is needed for the analysis of the most common and realistic learning setups in practice. We
will assume that X and Y are discrete, but the predictors we consider can take real values. Our theory
can be straightforwardly extended to the continuous case with summations replaced by integrals in
the proofs. We will identify a domain with a distribution over X ×Y and consider the scenario where
the learner has access to a predictor hk, for each domain Dk, k ∈ [p] = {1, . . . , p}.

We consider two types of predictor functions hk, and their associated loss functions L under the
regression model (R) and the probability model (P) respectively,

hk ∶X → R L∶R ×Y → R+ (R)
hk ∶X ×Y → [0,1] L∶ [0,1]→ R+ (P)

We abuse the notation and write L(h,x, y) to denote the loss of a predictor h at point (x, y), that
is L(h(x), y) in the regression model, and L(h(x, y)) in the probability model. We will denote by
L(D, h) the expected loss of a predictor h with respect to the distribution D:

L(D, h) = E
(x,y)∼D

[L(h,x, y)] = ∑
(x,y)∈X×Y

D(x, y)L(h,x, y).

Much of our theory only assumes that L is convex and continuous. But, we will be particularly
interested in the case where, in the regression model, L(h(x), y) = (h(x) − y)2 is the squared loss,
and where, in the probability model, L(h(x, y)) = − logh(x, y) is the cross-entropy loss (log-loss).

We will assume that each hk is a relatively accurate predictor for the distribution Dk: there exists
ε > 0 such that L(Dk, hk) ≤ ε for all k ∈ [p]. We will also assume that the loss of the source
hypotheses hk is bounded, that is L(hk, x, y) ≤M for all (x, y) ∈ X ×Y and all k ∈ [p].

2



In the MSA problem, the learner’s objective is to combine these predictors to design a predictor with
small expected loss on a target domain that could be an arbitrary and unknown mixture of the source
domains, the case we are particularly interested in, or even some other arbitrary distribution. It is
worth emphasizing that the learner has no knowledge of the target domain.

How do we combine the hks? Can we use a convex combination rule, ∑pk=1 λkhk, for some λ ∈ ∆?
In Appendix A (Lemmas 9 and 10) we show that no convex combination rule will perform well even
in very simple MSA problems. These results generalize a previous lower bound of Mansour et al.
(2008). Next, we show that the distribution-weighted combination rule is a suitable solution.

Extending the definition given by Mansour et al. (2008), we define the distribution-weighted combi-
nation of the functions hk, k ∈ [p] as follows. For any η > 0, z ∈ ∆, and (x, y) ∈ X ×Y ,

hηz(x) =
p

∑
k=1

zkD
1
k(x) + η

U1(x)
p

∑pk=1 zkD
1
k(x) + ηU1(x)hk(x), (R) (1)

hηz(x, y) =
p

∑
k=1

zkDk(x, y) + η U(x,y)
p

∑pj=1 zjDj(x, y) + ηU(x, y)hk(x, y), (P) (2)

where we denote by D1 the marginal distribution over X , for all x ∈ X , D1(x) = ∑y∈Y D(x, y),
and by U1 the uniform distribution over X . This extension may seem technically straightforward in
hindsight, but the form of the predictor was not immediately clear in the stochastic case.

3 Theoretical guarantees

In this section, we present a series of theoretical guarantees for distribution-weighted combinations
with a suitable choice of the parameters z and η, both for the regression model and for the probability
model. We first give our main result for the general stochastic scenario. Next, for the probability
model with cross-entropy loss, we introduce a normalized distribution weighted combination and
prove that it benefits from strong theoretical guarantees.

Our theoretical results rely on a measure of divergence between two distributions. The one that
naturally comes up in our analysis is the Rényi Divergence (Rényi, 1961). We will denote by
dα(D ∥D′) = eDα(D∥D′) the exponential of the α-Rényi Divergence of two distributions D and D′.
See Appendix F for more details about the notion of Rényi Divergence.

3.1 General guarantees for regression and probability models

Let DT be an unknown target distribution. We will denote by DT (⋅∣x) and Dk(⋅∣x) the conditional
probability distribution on the target and the source domain k respectively. We do not assume that the
target and source conditional probabilities DT (⋅∣x) and Dk(⋅∣x) coincide for all k ∈ [p] and x ∈ X .
This is a significant extension of the MSA scenario with respect to the one considered by Mansour
et al. (2009a), which assumed exactly the same labeling function f for all source domains, in the
deterministic scenario.

Let DT be a mixture of source distributions, such that D1
T ∈ D1 = {∑pk=1 λkD

1
k ∶λ ∈ ∆} in the

regression model, or DT ∈ D = {∑pk=1 λkDk ∶λ ∈ ∆} in the probability model. We also assume
that under the regression model, all possible target distributions DT admit the same (unknown)
conditional probability distribution.

Fix α > 1 and define εT by

εT = max
k∈[p]

[ E
x∼D1

k

[dα (DT (⋅∣x) ∥Dk(⋅∣x))α−1 ]]
1
α

ε
α−1
α M

1
α .

εT depends on the maximal expected Rényi divergence between the target conditional probability
distribution DT (⋅∣x) and the source ones Dk(⋅∣x),∀k ∈ [p], with the expectation taken over the
source marginal distribution D1

k, and the maximum taken over k ∈ [p]. When the target conditional is
close to all source ones, α can be chosen to be very large and εT is close to ε. In particular, when the
conditional probabilities coincide, for α = +∞, we have εT = ε.
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Theorem 1. For any δ > 0, there exist η > 0 and z ∈ ∆ such that the following inequalities hold for
any α > 1 and any target distribution DT that is a mixture of source distributions:

L(DT , h
η
z) ≤ εT + δ, (R)

L(DT , h
η
z) ≤ ε + δ. (P )

As discussed later, the proof of more general results (Theorem 2 and Theorem 14) is given in
Appendix B. The learning guarantees for the regression and the probability model are slightly
different, since the definitions of the distribution-weighted combinations are different for the two
models. Theorem 1 shows the existence of η > 0 and a mixture weight z ∈ ∆ with a remarkable
property: in the regression model (R), for any target distribution DT whose conditional DT (⋅∣x) is
on average not too far away from Dk(⋅∣x) for any k ∈ [p], and D1

T ∈ D1, the loss of hηz on DT is
small. It is even more remarkable that, in the probability model (P), the loss of hηz is at most ε on
any target distribution DT ∈ D. Thus, hηz is a robust hypothesis with favorable property for any such
target distribution DT .

We now present a more general result, Theorem 2, that relaxes the assumptions under the regression
model that all possible target distributions DT admit the same conditional probability distribution,
and that the target’s marginal distribution is a mixture of source ones. In Appendix B, we show that
Theorem 2 coincides with Theorem 1 under those assumptions. In Appendix B, we further give a
more general result than Theorem 1 under the probability model (Theorem 14).

To present this more general result, we first introduce some additional notation. Given a conditional
probability distribution Q(⋅∣x) defined for all x ∈ X , define εα(Q) as follows:

εα(Q) = max
k∈[p]

[ E
x∼D1

k

[dα (Q(⋅∣x) ∥Dk(⋅∣x))α−1 ]]
1
α

ε
α−1
α M

1
α .

Thus, εα(Q) depends on the maximal expected α-Rényi divergence between Q(⋅∣x) and Dk(⋅∣x),
and εα(Q) = εT when Q(⋅∣x) = DT (⋅∣x). When there exists Q(⋅∣x) such that the expected α-Rényi
divergence is small for all k ∈ [p], then εα(Q) is close to ε for α = +∞. In addition, we will use the
following definitions: Dk,Q(x, y) =D1

k(x)Q(y∣x) and DP,Q = {∑pk=1 λkDk,Q∶λ ∈ ∆}.

Theorem 2 (Regression model). Fix a conditional probability distribution Q(⋅∣x) defined for all
x ∈ X . Then, for any δ > 0, there exist η > 0 and z ∈ ∆ such that the following inequality holds for
any α,β > 1 and any target distribution DT :

L(DT , h
η
z) ≤ [(εα(Q) + δ)dβ(DT ∥ DP,Q)]

β−1
β

M
1
β .

The learning guarantee of Theorem 2 depends on the Rényi divergence between the conditional
probabilities of the source and target domains and a fixed pivot Q(⋅∣x). In particular, when there exists
a pivot Q(⋅∣x) that is close to DT (⋅∣x) and Dk(⋅∣x), for all k ∈ [p], then the guarantee is significant.
One candidate for such a pivot is a conditional probability distribution Q(⋅∣x) minimizing εα(Q).

In many learning tasks, it is reasonable to assume that the conditional probability of the output
labels is the same across source domains. For example, a dog picture represents a dog regardless
of whether the picture belongs to an individual’s personal collection or to a broader database of
pictures from multiple individuals. This is a straightforward extension of the assumption adopted by
Mansour et al. (2008) in the deterministic scenario, where exactly the same labeling function f is
assumed for all source domains. In that case, we have DT (⋅∣x) = Dk(⋅∣x), ∀k ∈ [p] and therefore
dα (DT (⋅∣x) ∥Dk(⋅∣x)) = 1. Setting α = +∞, we recover the main result of Mansour et al. (2008).
Corollary 3. Assume that the conditional probability distributions Dk(⋅∣x) do not depend on k. Then,
for any δ > 0, there exist η > 0 and z ∈ ∆ such that L(Dλ, h

η
z) ≤ ε + δ for any mixture parameter

λ ∈ ∆.

Corollary 3 shows the existence of a parameter η > 0 and a mixture weight z ∈ ∆ with a remarkable
property: for any δ > 0, regardless of which mixture weight λ ∈ ∆ defines the target distribution, the
loss of hηz is at most ε + δ, that is arbitrarily close to ε. hηz is therefore a robust hypothesis with a
favorable property for any mixture target distribution.

To cover the realistic cases in applications, we further extend this result to the case where the
distributions Dk are not directly available to the learner, and instead estimates D̂k have been derived
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from data, and further to the case where the target distribution DT is not a mixture of source
distributions. We will denote by ĥηz the distribution-weighted combination rule based on the estimates
D̂k. Our learning guarantee for ĥηz depends on the Rényi divergence of D̂k and Dk, as well as the
Rényi divergence of DT and the family of mixtures of source distributions.
Corollary 4. For any δ > 0, there exist η > 0 and z ∈ ∆, such that the following inequality holds for
any α > 1 and arbitrary target distribution DT :

L(DT , ĥ
η
z) ≤ [(ε̂ + δ)dα(DT ∥ D̂)]

α−1
α

M
1
α ,

where ε̂ = maxk∈[p] [εdα(D̂k ∥Dk)]
α−1
α

M
1
α , and D̂ = {∑pk=1 λkD̂k ∶λ ∈ ∆}.

Corollary 4 shows that there exists a predictor ĥηz based on the estimate distributions D̂k that is
ε̂-accurate with respect to any target distribution DT whose Rényi divergence with respect to the
family D̂ is not too large (dα(DT ∥ D̂) close to 1). Furthermore, ε̂ is close to ε, provided that D̂ks
are good estimates of Dks (that is dα(D̂k ∥Dk) close to 1). The proof is given in Appendix B.

3.2 Guarantees for the probability model with the cross-entropy loss

Here, we discuss the important special case where L coincides with the cross-entropy loss in the
probability model, and present a guarantee for a normalized distribution-weighted combination
solution. This analysis is a complement to Theorem 1, which only holds for the unnormalized
hypothesis hηz(x, y).

The cross-entropy loss assumes normalized hypotheses. Thus, here, we assume that the source
functions are normalized for every x: ∑y∈Y hk(x, y) = 1, ∀x ∈ X ,∀k ∈ [p]. For any η > 0 and
z ∈ ∆, we define a normalized weighted combination h

η

z(x, y) that is based on distribution-weighted
combination hηz(x, y) defined by (2):

h
η

z(x, y) =
hηz(x, y)

∑y∈Y hηz(x, y)
.

We will first assume the conditional probability distributions Dk(⋅∣x) do not depend on k.
Theorem 5. Assume that there exists µ > 0 such that Dk(x, y) ≥ µU(x, y) for all k ∈ [p] and
(x, y) ∈ X ×Y . Then, for any δ > 0, there exist η > 0 and z ∈ ∆ such that L(Dλ, h

η

z) ≤ ε + δ for any
mixture parameter λ ∈ ∆.

Theorem 5 provides a strong guarantee that is the analogue of Corollary 3 for normalized distribution-
weighted combinations. The theorem can also be extended to the case of arbitrary target distributions
and estimated densities. When the conditional probabilities are distinct across the source domains,
we propose a marginal distribution-weighted combination rule, which is already normalized. We
can directly apply Theorem 1 to that solution and achieve favorable guarantees. More details are
presented in Appendix C.

These results are non-trivial and important, as they provide a guarantee for an accurate and robust
predictor for a commonly used loss function, the cross-entropy loss.

4 Algorithms

We have shown that, for both the regression and the probability model, there exists a vector z defining
a distribution-weighted combination hypothesis hηz that admits very favorable guarantees. But how
can we find a such z? This is a key question in the MSA problem which was not addressed by Mansour
et al. (2008, 2009a): no algorithm was previously reported to determine the mixture parameter z,
even for the deterministic scenario. Here, we give an algorithm for determining that vector z.

In this section, we give practical and efficient algorithms for finding the vector z in the important
cases of the squared loss in the regression model, or the cross-entropy loss in the probability model, by
leveraging the differentiability of the loss functions. We first show that z is the solution of a general
optimization problem. Next, we give a DC-decomposition (difference of convex decomposition)
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of the objective for both models, thereby proving an explicit DC-programming formulation of the
problem. This leads to an efficient DC algorithm that is guaranteed to converge to a stationary point.
Additionally, we show that it is straightforward to test if the solution obtained is the global optimum.
While we are not proving that the local stationary point found by our algorithm is the global optimum,
empirically, we observe that that is indeed the case.

4.1 Optimization problem

Theorem 1 shows that the hypothesis hηz based on the mixture parameter z benefits from a strong
generalization guarantee. A key step in proving Theorem 1 is to show the following lemma.
Lemma 6. For any η, η′ > 0, there exists z ∈ ∆, with zk ≠ 0 for all k ∈ [p], such that the following
holds for the distribution-weighted combining rule hηz :

∀k ∈ [p], L(Dk, h
η
z) ≤

p

∑
j=1

zjL(Dj , h
η
z) + η′. (3)

Lemma 6 indicates that for the solution z, hηz has essentially the same loss on all source domains.
Thus, our problem consists of finding a parameter z verifying this property. This, in turn, can
be formulated as a min-max problem: minz∈∆ maxk∈[p]L(Dk, h

η
z) − L(Dz, h

η
z), which can be

equivalently formulated as the following optimization problem:

min
z∈∆,γ∈R

γ s.t. L(Dk, h
η
z) −L(Dz, h

η
z) ≤ γ, ∀k ∈ [p]. (4)

4.2 DC-decomposition

We provide explicit DC decompositions of the objective of Problem (4) for the regression model with
the squared loss and for the probability model with the cross-entropy loss. The derivations are given
in Appendix D. We first rewrite hηz as the division of two affine functions for both the regression (R)
and the probability (P) model, hz = Jz/Kz , where we adopt the following definitions and notation:

Jz(x) =
p

∑
k=1

zkD
1
k(x)hk(x) +

η

p
U1(x)hk(x), Kz(x) =D1

z(x) + ηU1(x), (R)

Jz(x, y) =
p

∑
k=1

zkDk(x, y)hk(x, y) +
η

p
U(x, y)hk(x, y), Kz(x, y) =Dz(x, y) + ηU(x, y). (P)

Proposition 7 (Regression model, squared loss). Let L be the squared loss. Then, for any k ∈ [p],
L(Dk, h

η
z) −L(Dz, h

η
z) = uk(z) − vk(z), where uk and vk are convex functions defined for all z by

uk(z) = L (Dk + ηU1Dk(⋅∣x), hηz) − 2M∑
x

(D1
k + ηU1)(x) logKz(x),

vk(z) = L (Dz + ηU1Dk(⋅∣x), hηz) − 2M∑
x

(D1
k + ηU1)(x) logKz(x).

Proposition 8 (Probability model, cross-entropy loss). Let L be the cross-entropy loss. Then, for
k ∈ [p], L(Dk, h

η
z) −L(Dz, h

η
z) = uk(z) − vk(z), where uk and vk are convex functions defined for

all z by

uk(z) = −∑
x,y

[Dk(x, y) + ηU(x, y)] logJz(x, y),

vk(z) =∑
x,y

Kz(x, y) log [Kz(x, y)
Jz(x, y)

] − [Dk(x, y) + ηU(x, y)] logKz(x, y).

4.3 DC algorithm

Our DC decompositions prove that the optimization problem (4) can be cast as the following
variational form of a DC-programming problem (Tao and An, 1997, 1998; Sriperumbudur and
Lanckriet, 2012):

min
z∈∆,γ∈R

γ s.t.(uk(z) − vk(z) ≤ γ) ∧ ( − zk ≤ 0) ∧ (∑pk=1 zk − 1 = 0), ∀k ∈ [p]. (5)
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Figure 1: MSE sentiment analysis under mixture of two domains: (a) (left figure) dvd and
electronics; (b) (right figure) kitchen and books.

The DC-programming algorithm works as follows. Let (zt)t be the sequence defined by repeatedly
solving the following convex optimization problem:

zt+1 ∈ argmin
z,γ∈R

γ (6)

s.t. (uk(z) − vk(zt) − (z − zt)∇vk(zt) ≤ γ) ∧ ( − zk ≤ 0) ∧ (∑pk=1 zk − 1 = 0), ∀k ∈ [p],
where z0 ∈ ∆ is an arbitrary starting value. Then, (zt)t is guaranteed to converge to a local minimum
of Problem (4) (Yuille and Rangarajan, 2003; Sriperumbudur and Lanckriet, 2012). Note that
Problem (6) is a relatively simple optimization problem: uk(z) is a weighted sum of the negative
logarithm of an affine function of z, plus a weighted sum of rational functions of z (squared loss),
and all other terms appearing in the constraints are affine functions of z.

Problem (4) seeks a parameter z verifying L(Dk, h
η
z) − L(Dz, h

η
z) ≤ γ, for all k ∈ [p] for an

arbitrarily small value of γ. Since L(Dz, h
η
z) = ∑pk=1 zkL(Dk, h

η
z) is a weighted average of the

expected losses L(Dk, h
η
z), k ∈ [p], the solution γ cannot be negative. Furthermore, by Lemma 6, a

parameter z verifying that inequality exists for any γ > 0. Thus, the global solution γ of Problem (4)
must be close to zero. This provides us with a simple criterion for testing the global optimality of the
solution z we obtain using a DC-programming algorithm with a starting parameter z0.

5 Experiments

This section reports the results of our experiments with our DC-programming algorithm for finding
a robust domain generalization solution when using squared loss and cross-entropy loss. We first
evaluated our algorithm using an artificial dataset assuming known densities where we could compare
our result to the global solution and found that indeed our global objective approached the known
optimum of zero (see Appendix E for more details). Next, we evaluated our DC-programming
solution applied to real-world datasets: a sentiment analysis dataset (Blitzer et al., 2007) with the
squared loss, a visual domain adaptation benchmark dataset Office (Saenko et al., 2010), as well as a
generalization of digit recognition task, with the cross-entropy loss.

For all real-world datasets, the probability distributions Dk are not readily available to the learner.
However, Corollary 4 extends the learning guarantees of our solution to the case where an estimate
D̂k is used in lieu of the ideal distribution Dk. Thus, we used standard density estimation methods to
derive an estimate D̂k for each k ∈ [p]. While density estimation can be a difficult task in general,
for our purpose, straightforward techniques were sufficient for our predictor ĥηz to achieve a high
performance, since the approximate densities only serve to indicate the relative importance of each
source domain. We give full details about our density estimation procedure in Appendix E.

5.1 Sentiment analysis task with the squared loss

We used the sentiment analysis dataset proposed by Blitzer et al. (2007) and used for multiple-source
adaptation by Mansour et al. (2008, 2009a). This dataset consists of product review text and rating
labels taken from four domains: books (B), dvd (D), electronics (E), and kitchen (K), with
2,000 samples for each domain. We defined a vocabulary of 2,500 words that occur at least twice in
the intersection of the four domains. These words were used to define feature vectors, where every
sample was encoded by the number of occurrences of each word. We trained our base hypotheses
using support vector regression with the same hyper-parameters as in (Mansour et al., 2008, 2009a).
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Table 1: MSE on the sentiment analysis dataset of source-only baselines for each domain, K,D, B,E,
the uniform weighted predictor unif, KMM, and the distribution-weighted method DW based on the
learned z. DW outperforms all competing baselines.

Test Data
K D B E KD BE DBE KBE KDB KDB KDBE

K 1.46±0.08 2.20±0.14 2.29±0.13 1.69±0.12 1.83±0.08 1.99±0.10 2.06±0.07 1.81±0.07 1.78±0.07 1.98±0.06 1.91±0.06
D 2.12±0.08 1.78±0.08 2.12±0.08 2.10±0.07 1.95±0.07 2.11±0.07 2.00±0.06 2.11±0.06 2.00±0.06 2.01±0.06 2.03±0.06
B 2.18±0.11 2.01±0.09 1.73±0.12 2.24±0.07 2.10±0.09 1.99±0.08 1.99±0.05 2.05±0.06 2.14±0.06 1.98±0.06 2.04±0.05
E 1.69±0.09 2.31±0.12 2.40±0.11 1.50±0.06 2.00±0.09 1.95±0.07 2.07±0.06 1.86±0.04 1.84±0.06 2.14±0.06 1.98±0.05
unif 1.62±0.05 1.84±0.09 1.86±0.09 1.62±0.07 1.73±0.06 1.74±0.07 1.77±0.05 1.70±0.05 1.69±0.04 1.77±0.04 1.74±0.04
KMM 1.63±0.15 2.07±0.12 1.93±0.17 1.69±0.12 1.83±0.07 1.82±0.07 1.89±0.07 1.75±0.07 1.78±0.06 1.86±0.09 1.82±0.06
DW(ours) 1.45±0.08 1.78±0.08 1.72±0.12 1.49±0.06 1.62±0.07 1.61±0.08 1.66±0.05 1.56±0.04 1.58±0.05 1.65±0.04 1.61±0.04

Table 2: Digit dataset statistics.
SVHN MNIST USPS

# train images 73,257 60,000 7,291
# test images 26,032 10,000 2,007
image size 32x32 28x28 16x16
color rgb gray gray

Table 3: Digit dataset accuracy.
Test Data

svhn mnist usps mu su sm smu mean

CNN-s 92.3 66.9 65.6 66.7 90.4 85.2 84.2 78.8
CNN-m 15.7 99.2 79.7 96.0 20.3 38.9 41.0 55.8
CNN-u 16.7 62.3 96.6 68.1 22.5 29.4 32.9 46.9
CNN-unif 75.7 91.3 92.2 91.4 76.9 80.0 80.7 84.0
DW (ours) 91.4 98.8 95.6 98.3 91.7 93.5 93.6 94.7
CNN-joint 90.9 99.1 96.0 98.6 91.3 93.2 93.3 94.6

We compared our method (DW) against each source hypothesis, hk. We also computed a privileged
baseline using the oracle λmixing parameter, λ-comb: ∑pk=1 λkhk. λ-comb is of course not accessible
in practice since the target mixture λ is not known to the user. We also compared against a previously
proposed domain adaptation algorithm (Huang et al., 2006) known as KMM. It is important to note
that the KMM model requires access to the unlabeled target data during adaptation and learns a new
predictor for every target domain, while DW does not use any target data. Thus KMM operates in a
favorable learning setting when compared to our solution.

We first considered the same test scenario as in (Mansour et al., 2008), where the target is a mixture of
two source domains. The plots of Figures 1a and 1b report the results of our experiments. They show
that our distribution-weighted predictor DW outperforms all baseline predictors despite the privileged
learning scenarios of λ-comb and KMM. We also compared our results with the weighted predictor
used in the empirical studies by Mansour et al. (2008), which is not a realistic solution since it is using
the unknown target mixture λ as z to compute hz . Nevertheless, we observed that the performance
of this ”cheating” solution almost always coincides with that of our DW algorithm and thus did not
include it in our plots and tables to avoid confusion.

Next, we compared the performance of DW with accessible baseline predictors on various target
mixtures. Since λ is not known in practice, we replaced λ-comb with the uniform combination of all
hypotheses (unif), ∑pk=1 hk/p. Table 1 reports the mean and standard deviations of MSE over 10
repetitions. Each column corresponds to a different target test data source. Our distribution-weighted
method DW outperforms all baseline predictors across all test domains. Observe that, even when the
target is a single source domain, our method successfully outperforms the predictor which is trained
and tested on the same domain. Results on more target mixtures are available in Appendix E.

5.2 Recognition tasks with the cross-entropy loss

We considered two real-world domain adaptation tasks: a generalization of a digit recognition task
and a standard visual adaptation Office dataset.

For each individual domain, we trained a convolutional neural network (CNN) and used the output
from the softmax score layer as our base predictors hk. We computed the uniformly weighted
combination of source predictors, hunif = ∑pk=1 hk/p. As a privileged baseline, we also trained a
model on all source data combined, hjoint. Note, this approach is often not feasible if independent
entities contribute classifiers and densities, but not full training datasets. Thus this approach is not
consistent with our scenario, and it operates in a much more favorable learning setting than our
solution. Finally, our distribution weighted predictor DW was computed with hks, density estimates,
and our learned weighting, z. Our baselines then consists of the classifiers from hk, hunif, hjoint,
and DW.
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Table 4: Office dataset accuracy: We report accuracy across six possible test domains. We show
performance all baselines: CNN-a,w,d, CNN-unif, DW based on the learned z, and the jointly
trained model CNN-joint. DW outperforms all competing models.

Test Data
amazon webcam dslr aw ad wd awd mean

CNN-a 75.7 ± 0.3 53.8 ± 0.7 53.4 ± 1.3 71.4 ± 0.3 73.5 ± 0.2 53.6 ± 0.8 69.9 ± 0.3 64.5 ± 0.6
CNN-w 45.3 ± 0.5 91.1 ± 0.8 91.7 ± 1.2 54.4 ± 0.5 50.0 ± 0.5 91.3 ± 0.8 57.5 ± 0.4 68.8 ± 0.7
CNN-d 50.4 ± 0.4 89.6 ± 0.9 90.9 ± 0.8 58.3 ± 0.4 54.6 ± 0.4 90.0 ± 0.7 61.0 ± 0.4 70.7 ± 0.6
CNN-unif 69.7 ± 0.3 93.1 ± 0.6 93.2 ± 0.9 74.4 ± 0.4 72.1 ± 0.3 93.1 ± 0.5 75.9 ± 0.3 81.6 ± 0.5
DW (ours) 75.2 ± 0.4 93.7 ± 0.6 94.0 ± 1.0 78.9 ± 0.4 77.2 ± 0.4 93.8 ± 0.6 80.2 ± 0.3 84.7 ± 0.5
CNN-joint 72.1 ± 0.3 93.7 ± 0.5 93.7 ± 0.5 76.4 ± 0.4 76.4 ± 0.4 93.7 ± 0.5 79.3 ± 0.4 83.6 ± 0.4

We began our study with a generalization of digit recognition task, which consists of three digit
recognition datasets: Google Street View House Numbers (SVHN), MNIST, and USPS. Dataset
statistics as well as example images can be found in Table 2. We trained the ConvNet (or CNN)
architecture following Taigman et al. (2017) as our source models and joint model. We used the
second fully-connected layer’s output as our features for density estimation, and the output from
the softmax score layer as our predictors. We used the full training sets per domain to learn the
source model and densities. Note, these steps are completely isolated from one another and may be
performed by unique entities and in parallel. Finally, for our DC-programming algorithm we used a
small subset of 200 real image-label pairs from each domain to learn the parameter z.

Our next experiment used the standard visual adaptation Office dataset, which has 3 domains: amazon,
webcam, and dslr. The dataset contains 31 recognition categories of objects commonly found in an
office environment. There are 4,110 images total with 2,817 from amazon, 795 from webcam, and
498 from dslr.

We followed the standard protocol from Saenko et al. (2010), whereby 20 labeled examples are
available for training from the amazon domain and 8 labeled examples are available from both the
webcam and dslr domains. The remaining examples from each domain are used for testing. We
used the AlexNet Krizhevsky et al. (2012) ConvNet (CNN) architecture, and used the output from
the softmax score layer as our base predictors, pre-trained on ImageNet and used fc7 activations as
our features for density estimation Donahue et al. (2014).

We report the performance of our algorithm and that of baselines on the digit recognition dataset in
Table 3, and report the performance on the Office dataset in Table 4. On both datasets, we evaluated
on various test distributions: each individual domain, the combination of each two domains and the
fully combined set. When the test distribution equals one of the source distributions, our distribution-
weighted classifier successfully outperforms (webcam,dslr) or maintains the performance of the
classifier which is trained and tested on the same domain. For the more realistic scenario where the
target domain is a mixture of any two or all three source domains, the performance of our method
is comparable or marginally superior to that of the jointly trained network, despite the fact that
we do not retrain any network parameters in our method and that we only use a small number of
per-domain examples to learn the distribution weights – an optimization which may be solved on a
single CPU in a matter of seconds for this problem. This again demonstrates the robustness of our
distribution-weighted combined classifier to a varying target domain.

6 Conclusion

We presented practically applicable multiple-source domain adaptation algorithms for the squared
loss and the cross-entropy loss. Our algorithms benefit from a series of very favorable theoretical
guarantees. Our results further demonstrate empirically their effectiveness and their importance in
adaptation problems in practice.
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A Lower bounds for convex combination rules

In this section, we give lower bounds for convex combination rule, for both squared loss and cross-
entropy loss. For any α ∈ ∆, we define the convex combination rule for the regression and the
probability model as follows:

gα(x) =
p

∑
k=1

αkhk(x), (R) (7)

gα(x, y) =
p

∑
k=1

αkhk(x, y). (P) (8)

Lemma 9 (Regression model, squared loss). There is a mixture adaptation problem for which the
expected squared loss of gα is 1

4
.

Proof. Let X = {a, b}, and Y = {0,1}. Consider D0(x, y) = 1x=a,y=0, h0(x) = 0, and D1(x, y) =
1x=b,y=1, h1(x) = 1. Consider the target distribution DT = 1

2
D0 + 1

2
D1. Then, for any convex

combination rule gα = αh0 + (1 − α)h1 = 1 − α,

(1

2
)

2

= (1

2
α + 1

2
(1 − α))

2

= ( ∑
(x,y)∈X×Y

DT (x, y)∣gα(x) − y∣)
2

≤ ∑
(x,y)∈X×Y

DT (x, y)(gα(x) − y)2 = L(DT , gα).

Note that the hypotheses h0 and h1 have zero error on their own domain, i.e. ε = 0. However, no
convex combination rule will perform well on the target distribution DT .
Lemma 10 (Probability Model, cross-entropy loss). There is a mixture adaptation problem for which
the expected cross-entropy loss of gα is log(p).

Proof. Let X = {x1, . . . , xk}, and Y = {y1, . . . , yk}. Consider Dk(x, y) = 1x=xk,y=yk , and
hk(x, y) = 1y=yk . Consider the largest cross-entropy loss of gα on any target mixture Dλ(x, y):

max
λ∈∆
L(Dλ, gα) = max

λ∈∆

p

∑
k=1

−λk log(αk) = max
k∈[p]

[− log(αk)] .

Choosing α ∈ ∆ to minimize that adversarial loss gives

min
α∈∆

max
k∈[p]

[− log(αk)] = log(p).

Therefore any convex combination rule gα incurs at least a loss of log(p).

Again, the base hypotheses hks have zero error on their own domain, yet there is no convex combina-
tion rule that is robust against arbitrary target mixture.
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B Theoretical analysis for the stochastic scenario

In this section, we give a series of theoretical results for the general stochastic scenario with their
full proofs. We will separate the proofs for the regression model (Appendix B.1) and the probability
model (Appendix B.3), since the definitions of the distribution weighted combination are different in
the two models.

B.1 Regression model

The proofs for the regression model (R) are presented in the following order: we first assume the
conditional probabilities are the same across source domains, and prove Lemma 6; using that, we
prove Corollary 3 and Corollary 4. Finally, we relax the assumption of same conditionals, and prove
Theorem 2, which is a stronger version of Theorem 1.

Our proofs make use of the following Fixed-Point Theorem of Brouwer.

Theorem 11. For any compact and convex non-empty set C ⊂ Rp and any continuous function
f ∶C → C, there is a point x ∈ C such that f(x) = x.

Lemma 6. For any η, η′ > 0, there exists z ∈ ∆, with zk ≠ 0 for all k ∈ [p], such that the following
holds for the distribution-weighted combining rule hηz :

∀k ∈ [p], L(Dk, h
η
z) ≤

p

∑
j=1

zjL(Dj , h
η
z) + η′. (9)

Proof. Consider the mapping Φ∶∆→∆ defined for all z ∈ ∆ by

[Φ(z)]k =
zk L(Dk, h

η
z) + η′

p

∑pj=1 zjL(Dj , h
η
z) + η′

.

Φ is continuous since L(Dk, h
η
z) is a continuous function of z and since the denominator is positive

(η′ > 0). Thus, by Brouwer’s Fixed Point Theorem, there exists z ∈ ∆ such that Φ(z) = z. For that z,
we can write

zk =
zk L(Dk, h

η
z) + η′

p

∑pj=1 zjL(Dj , h
η
z) + η′

,

for all k ∈ [p]. Since η′ is positive, we must have zk ≠ 0 for all k. Dividing both sides by zk gives
L(Dk, h

η
z) = ∑pj=1 zjL(Dj , h

η
z)+η′− η′

pzk
≤ ∑pj=1 zjL(Dj , h

η
z)+η′, which completes the proof.

Corollary 3. Assume that the conditional probability distributions Dk(⋅∣x) do not depend on k. Then,
for any δ > 0, there exist η > 0 and z ∈ ∆ such that L(Dλ, h

η
z) ≤ ε + δ for any mixture parameter

λ ∈ ∆.

Proof. We first upper bound, for an arbitrary z ∈ ∆, the expected loss of hηz with respect to the
mixture distribution Dz defined using the same z, that is L(Dz, h

η
z) = ∑pk=1 zkL(Dk, h

η
z). By

definition of hηz and Dz , we can write

L(Dz, h
η
z) = ∑

(x,y)
Dz(x, y)L(hηz(x), y)

= ∑
(x,y)

Dz(x, y)L
⎛
⎜
⎝

p

∑
k=1

zkD
1
k(x) + η

U1(x)
p

D1
z(x) + ηU1(x) hk(x), y

⎞
⎟
⎠
.
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By convexity of L, this implies that

L(Dz, h
η
z) ≤ ∑

(x,y)
Dz(x, y)

p

∑
k=1

zkD
1
k(x) + η

U1(x)
p

D1
z(x) + ηU1(x) L(hk(x), y)

≤ ∑
(x,y)

Dz(y∣x)D1
z(x)

p

∑
k=1

zkD
1
k(x) + η

U1(x)
p

D1
z(x) + ηU1(x) L(hk(x), y)

≤ ∑
(x,y)

Dz(y∣x)
p

∑
k=1

(zkD1
k(x) + η

U1(x)
p

)L(hk(x), y).

Next, observe that Dz(y∣x) = ∑pk=1
zkD

1
k(x)

D1
z(x)

Dk(y∣x) =Dk(y∣x) for any k ∈ [p] since by assumption
Dk(y∣x) does not depend on k. Thus,

L(Dz, h
η
z) ≤ ∑

(x,y)
Dz(y∣x)

p

∑
k=1

(zkD1
k(x) + η

U1(x)
p

)L(hk(x), y)

= ∑
(x,y)

p

∑
k=1

(zkDk(x, y) + ηDk(y∣x)
U1(x)
p

)L(hk(x), y)

=
p

∑
k=1

zkL(Dk, hk) +
η

p

p

∑
k=1

∑
(x,y)

Dk(y∣x)U1(x)L(hk(x), y)

≤
p

∑
k=1

zkL(Dk, hk) + ηM ≤
p

∑
k=1

zkε + ηM = ε + ηM.

Now, choose z ∈ ∆ as in the statement of Lemma 6. Then, the following holds for any mixture
distribution Dλ:

L(Dλ, h
η
z) =

p

∑
k=1

λkL(Dk, h
η
z) ≤

p

∑
k=1

λk(L(Dz, h
η
z) + η′)

= L(Dz, h
η
z) + η′ ≤ ε + ηM + η′.

Setting η = δ
2M

and η′ = δ
2

concludes the proof.

Next, we extend to the case where the target distribution is arbitrary, that is, the target distribution is
not necessarily a mixture of source distributions.

Corollary 12. For any δ > 0, there exist η > 0 and z ∈ ∆, such that the following inequality holds for
any α > 1 and arbitrary target distribution DT :

L(DT , h
η
z) ≤ [(ε + δ)dα(DT ∥ D)]

α−1
α

M
1
α .

Proof. For any hypothesis h∶X → Y and any distribution D, by Hölder’s inequality, the following
holds:

L(DT , h) = ∑
(x,y)∈X×Y

DT (x, y)L(h(x), y)

= ∑
(x,y)∈X×Y

[ DT (x, y)
D(x, y)α−1α

] [D(x, y)α−1α L(h(x), y)]

≤
⎡⎢⎢⎢⎢⎣
∑

(x,y)

DT (x, y)α
D(x, y)α−1

⎤⎥⎥⎥⎥⎦

1
α ⎡⎢⎢⎢⎢⎣
∑

(x,y)
D(x, y)L(h(x), y) α

α−1

⎤⎥⎥⎥⎥⎦

α−1
α

.
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Thus, by definition of dα, for any h such that L(h(x), y) ≤M for all (x, y), we can write

L(DT , h) ≤ dα(DT ∥D)α−1α
⎡⎢⎢⎢⎢⎣
∑

(x,y)
D(x, y)L(h(x), y) α

α−1

⎤⎥⎥⎥⎥⎦

α−1
α

= dα(DT ∥D)α−1α
⎡⎢⎢⎢⎢⎣
∑

(x,y)
D(x, y)L(h(x), y)L(h(x), y) 1

α−1

⎤⎥⎥⎥⎥⎦

α−1
α

≤ dα(DT ∥D)α−1α
⎡⎢⎢⎢⎢⎣
∑

(x,y)
D(x, y)L(h(x), y)M 1

α−1

⎤⎥⎥⎥⎥⎦

α−1
α

≤ [dα(DT ∥D)L(D, h)]
α−1
α

M
1
α .

Now, by Corollary 3, there exist z ∈ ∆ and η > 0 such that L(D, hηz) ≤ ε + δ for any mixture
distribution D ∈ D. Thus, in view of the previous inequality, we can write,for any D ∈ D,

L(DT , h
η
z) ≤ [(ε + δ)dα(DT ∥D)]

α−1
α

M
1
α .

Taking the infimum of the right-hand side over all D ∈ D completes the proof.

Corollary 4. For any δ > 0, there exist η > 0 and z ∈ ∆, such that the following inequality holds for
any α > 1 and arbitrary target distribution DT :

L(DT , ĥ
η
z) ≤ [(ε̂ + δ)dα(DT ∥ D̂)]

α−1
α

M
1
α ,

where ε̂ = maxk∈[p] [εdα(D̂k ∥Dk)]
α−1
α

M
1
α , and D̂ = {∑pk=1 λkD̂k ∶λ ∈ ∆}.

Proof. By the first part of the proof of Corollary 12, for any k ∈ [p] and α > 1, the following
inequality holds:

L(D̂k, hk) ≤ [dα(D̂k ∥Dk)L(Dk, hk)]
α−1
α

M
1
α

≤ [εdα(D̂k ∥Dk)]
α−1
α

M
1
α ≤ ε̂.

We can now apply the result of Corollary 12 (with ε̂ instead of ε and D̂k instead of Dk). In view that,
there exist η > 0 and z ∈ ∆ such that

L(DT , ĥ
η
z) ≤ [(ε̂ + δ)dα(DT ∥ D̂)]

α−1
α

M
1
α ,

for any distribution D̂ in the family D̂. Taking the infimum over all D̂ in D̂ completes the proof.

Corollary 4 uses Rényi divergence in both directions: dα(DT ∥ D̂) requires Supp(DT ) ⊆ Supp(D̂),
and dα(D̂k ∥ Dk) requires Supp(D̂k) ⊆ Supp(Dk), k ∈ [p]. In our experiments in Section 5, we
used a bigram language model for sentiment analysis, and kernel density estimation with a Gaussian
kernel for object recognition. Both density estimation methods fulfill these requirements.

Finally we prove our main result Theorem 1 under the regression model (R). We do so by proving
a more general result, Theorem 2, and showing that it will coincide with Theorem 1 under the
assumption that D1

T ∈ D1 and DT (⋅∣x) coincides for all DT .
Theorem 2 (Regression model). Fix a conditional probability distribution Q(⋅∣x) defined for all
x ∈ X . Then, for any δ > 0, there exist η > 0 and z ∈ ∆ such that the following inequality holds for
any α,β > 1 and any target distribution DT :

L(DT , h
η
z) ≤ [(εα(Q) + δ)dβ(DT ∥ DP,Q)]

β−1
β

M
1
β . (10)
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Proof. For any k ∈ [p], by Hölder’s inequality, the following holds:

L(Dk,Q, hk) =∑
x,y

D1
k(x)Q(y∣x)L(hk, x, y)

=∑
x

D1
k(x)∑

y

[ Q(y∣x)
Dk(y∣x)

α−1
α

] [Dk(y∣x)
α−1
α L(hk, x, y)]

≤∑
x

D1
k(x)dα(x;Q, k)α−1α [∑

y

Dk(y∣x)L(hk, x, y)
α
α−1 ]

α−1
α

,

where, for simplicity, we write dα(x;Q, k) = dα (Q(⋅∣x) ∥Dk(⋅∣x)). Using the boundedness of the
loss and Hölder’s inequality again, we can write

L(Dk,Q, hk) ≤∑
x

D1
k(x)

1
α dα(x;Q, k)α−1α

⎡⎢⎢⎢⎣
∑
y

Dk(x, y)L(hk, x, y)
⎤⎥⎥⎥⎦

α−1
α

M
1
α

≤ [∑
x

D1
k(x)dα(x;Q, k)α−1]

1
α ⎡⎢⎢⎢⎣
∑
x,y

Dk(x, y)L(hk, x, y)
⎤⎥⎥⎥⎦

α−1
α

M
1
α

≤ [ E
D1
k

[dα(x;Q, k)α−1]]
1
α

ε
α−1
α M

1
α ≤ εα(Q).

We can now apply the result of Corollary 12, with β instead of α, εα(Q) instead of ε and Dk,Q instead
of Dk. This completes the proof.

When D1
T ∈ D1, D1

T (x)Q(y∣x) ∈ DP,Q and we can write

dβ(DT ∥ DP,Q) ≤
⎡⎢⎢⎢⎢⎣
∑
x,y

[D1
T (x)DT (y∣x)]β

[D1
T (x)Q(y∣x)]β−1

⎤⎥⎥⎥⎥⎦

1
β−1

= [∑
x

D1
T (x)∑

y

[DT (y∣x)]β
[Q(y∣x)]β−1

]
1
β−1

= [ E
D1
T

[dβ(DT (⋅∣x) ∥ Q(⋅∣x))β−1]]
1
β−1

.

Applying this inequality to (10) yields

L(DT , h
η
z) ≤ [(εα(Q) + δ)dβ(DT ∥ DP,Q)]

β−1
β

M
1
β

≤ (εα(Q) + δ)
β−1
β [ E

D1
T

[dβ(DT (⋅∣x) ∥ Q(⋅∣x))β−1]]
1
β

M
1
β . (11)

Notice that when the target distribution DT is arbitrary but admits a fixed (and unknown) conditional
probability distribution DT (⋅∣x), we can set Q(⋅∣x) =DT (⋅∣x) in (11). We then have dβ(DT (⋅∣x) ∥
Q(⋅∣x)) = 1 for all x ∈ X and L(DT , h

η
z) ≤ (εα(Q) + δ)

β−1
β M

1
β . Thus, Theorem 2 coincides with

the statement of Theorem 1 for the regression model by setting β = +∞.

B.2 Choice of z

We have shown the existence of a robust solution hηz that works well for arbitrary target distribution
DT . However, in the proof of Theorem 2, the choice of z depends on a fixed conditional probability
distribution Q(⋅∣x). In practice, if the learner assumes that the conditional probability distribution
Dk(⋅∣x) coincides, he can then set Q(⋅∣x) = Dk(⋅∣x) and use Dk to solve the DC programming
problem (4) for z. When the conditional probabilities are distinct, however, the learner needs to first
come up with a choice of Q(⋅∣x), and then solve the DC programming problem (4) for z with Dk,Q

instead of Dk , and the theoretical guarantees of hz depend on Q(⋅∣x).

Can we find a robust solution z using only the original distributions Dk,∀k ∈ [p], even when
the conditional probability distributions Dk(⋅∣x) vary by k? The answer is yes. We now prove a
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variant of Theorem 2 where the choice of z only depends on Dk,∀k ∈ [p]. This variant allows
us to always use Dks in the DC programming formulation (4). In what follows, we denote by
D = {∑pk=1 λkDk, λ ∈ ∆}, and Dz,Q(x, y) = ∑pk=1 zkDk,Q.
Theorem 13. Given any η, η′ > 0, there exits z ∈ ∆ such that the following holds for any λ ∈ ∆:

L(Dλ, h
η
z) ≤ min

Q(⋅∣x)
{[dα(Dz ∥Dz,Q)]

α−1
α [max

k∈[p]
dα(Dk,Q ∥Dk)]

(α−1)2

α2 M
2α−1
α2 ε

(α−1)2

α2

+ [dα(Dz ∥Dz,Q)]
α−1
α Mη

α−1
α + η′}. (12)

When the conditional probability distributions Dk(⋅∣x) do not depend on k, (12) recovers the result
of Corollary 3.

Furthermore, denote by E(ε, α, η, η′) the above upper bound of L(Dλ, h
η
z) for any λ ∈ ∆. There

exists z ∈ ∆ such that for arbitrary target distribution DT ,

L(DT , h
η
z) ≤ [E(ε, α, η, η′)dα(DT ∥ D)]

α−1
α

M
1
α .

Proof. Given any conditional probability distribution Q(⋅∣x), by the proof of Corollary 12, for any
z ∈ ∆,

L(Dz, h
η
z) ≤ [dα(Dz ∥Dz,Q)L(Dz,Q, h

η
z)]

α−1
α

M
1
α . (13)

By the proof of Corollary 3 and Corollary 12,

L(Dz,Q, h
η
z) ≤

p

∑
k=1

zkL(Dk,Q, hk) + ηM

≤
p

∑
k=1

zk[dα(Dk,Q ∥Dk)L(Dk, hk)]
α−1
α

M
1
α + ηM

≤ dα(Q)M 1
α ε

α−1
α + ηM,

where for simplicity we write dα(Q) = maxk∈[p] dα(Dk,Q ∥ Dk)
α−1
α . Applying this inequality

to (13) yields

L(Dz, h
η
z) ≤ dα(Dz ∥Dz,Q)

α−1
α L(Dz,Q, h

η
z)

α−1
α M

1
α

≤ dα(Dz ∥Dz,Q)
α−1
α [dα(Q)M 1

α ε
α−1
α + ηM]

α−1
α M

1
α

≤ [dα(Dz ∥Dz,Q)dα(Q)]
α−1
α M

2α−1
α2 ε

(α−1)2

α2

+ [dα(Dz ∥Dz,Q)]
α−1
α Mη

α−1
α .

Next, let Dλ be an arbitrary mixture of source domains, λ ∈ ∆. Notice that Lemma 6 does not rely
on any assumption of conditional probabilities, thus given fixed η, η′, we can still find z such that
L(Dk, h

η
z) ≤ L(Dz, h

η
z)+ η′ for all k ∈ [p], which implies that L(Dλ, h

η
z) ≤ L(Dz, h

η
z)+ η′ for any

λ ∈ ∆. Thus, the choice of z only depends on Dk,∀k ∈ [p]. This proves (12).

When the conditional probability distributions Dk(⋅∣x) do not depend on k, let Q(⋅∣x) = Dk(⋅∣x),
thus dα(Dz ∥Dz,Q) = 1 and dα(Q) = 1. Setting α = +∞ and choosing η, η′ accordingly, we recover
the result of Corollary 3.

Finally, by the proof of Corollary 12, for any λ ∈ ∆,

L(DT , h
η
z) ≤ [dα(DT ∥Dλ)L(Dλ, h

η
z)]

α−1
α

M
1
α

≤ [dα(DT ∥Dλ)E(ε, α, η, η′)]
α−1
α

M
1
α .

Taking the infimum of the right-hand side over all Dλ ∈ D completes the proof.
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The main difference between Theorem 2 and Theorem 13 is the dependency of z: in Theorem 2,
z depends on a prefixed Q(⋅∣x), while in Theorem 13, z only depends on Dk. The guarantees in
Theorem 13 ensure that we can first use Dk, k ∈ [p] to find a solution z such that hηz admits essentially
the same loss on all source domains. Then, the performance of hηz on arbitrary target distribution DT

relies on how close the source and target conditional probability distributions are to a pivot Q(⋅∣x), as
well as on the divergence between DT and D.

B.3 Probability model

In this section, we first present a series of general theoretical results for the probability model (P) in
the same order as in Appendix B.1. Many of the them are similar to those for the regression model,
except that we do not assume anything about the conditional probabilities throughout the proofs. In
several instances, the proofs are syntactically the same as their counterparts in the regression model
(R). In such cases, we do not reproduce them.
Lemma 6. For any η, η′ > 0, there exists z ∈ ∆, with zk ≠ 0 for all k ∈ [p], such that the following
holds for the distribution-weighted combining rule hηz :

∀k ∈ [p], L(Dk, h
η
z) ≤

p

∑
j=1

zjL(Dj , h
η
z) + η′. (14)

Proof. The proof is syntactically the same as that for the regression model.

Corollary 3. For any δ > 0, there exist η > 0 and z ∈ ∆, such that L(Dλ, h
η
z) ≤ ε+ δ for any mixture

parameter λ ∈ ∆.

Proof. Modifying the proof of Corollary 3 for the regression model gives

L(Dz, h
η
z) = ∑

(x,y)∈X×Y
Dz(x, y)L(hηz(x, y))

= ∑
(x,y)

Dz(x, y)L
⎛
⎜
⎝

p

∑
k=1

zkDk(x, y) + ηU(x,y)
p

Dz(x, y) + ηU(x, y) hk(x, y)
⎞
⎟
⎠
.

By convexity of L, this implies that

L(Dz, h
η
z) ≤ ∑

(x,y)
Dz(x, y)

p

∑
k=1

zkDk(x, y) + ηU(x,y)
p

Dz(x, y) + ηU(x, y) L
(hk(x, y)).

Next, since Dz(x,y)
Dz(x,y)+ηU(x,y) ≤ 1, the following holds:

L(Dz, h
η
z) ≤ ∑

(x,y)
(

p

∑
k=1

(zkDk(x, y) + ηU(x,y)
p

)L(hk(x, y)))

=
p

∑
k=1

zkL(Dk, hk) +
η

p

p

∑
k=1

L(U, hk)

≤
p

∑
k=1

zkε + ηM = ε + ηM.

Now choose z ∈ ∆ as in the statement of Lemma 4a.Then, the following holds for any mixture
distribution Dλ:

L(Dλ, h
η
z) =

p

∑
k=1

λkL(Dk, h
η
z) ≤

p

∑
k=1

λk(L(Dz, h
η
z) + η′)

= L(Dz, h
η
z) + η′ ≤ ε + ηM + η′.

Setting η = δ
2M

and η′ = δ
2

concludes the proof.
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Since we do not assume the conditional probabilities are the same across domains, we can di-
rectly prove the following theorem for the conditional probability model (P), which coincides with
Theorem 1 when DT ∈ D.
Theorem 14. For any δ > 0, there exist η > 0 and z ∈ ∆, such that the following inequality holds for
any α > 1 and arbitrary target distribution DT :

L(DT , h
η
z) ≤ [(ε + δ)dα(DT ∥ D)]

α−1
α

M
1
α (P ).

Proof. The proof is syntactically the same as that of Corollary 12 for the regression model.

Corollary 15. Then, for any δ > 0, there exist η > 0 and z ∈ ∆, such that the following inequality
holds for any α > 1 and arbitrary target distribution DT :

L(DT , ĥ
η
z) ≤ [(ε̂ + δ)dα(DT ∥ D̂)]

α−1
α

M
1
α ,

where ε̂ = maxk∈[p] [εdα(D̂k ∥Dk)]
α−1
α

M
1
α , and D̂ = {∑pk=1 λkD̂k ∶λ ∈ ∆}.

Proof. The proof is syntactically the same as that of Corollary 4 for the regression model.
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C Specific theoretical analysis for the cross-entropy loss

Next, we give a specific theoretical analysis for the case of the cross-entropy loss. This is needed
since the cross-entropy loss assumes normalized hypotheses. Thus, we are giving guarantees for the
performance of normalized distribution-weighted predictor.

We will first assume that the conditional probability of the output labels is the same for all source
domains, that is, for any (x, y), Dk(y∣x) is independent of k.

Theorem 5. Assume that there exists µ > 0 such that Dk(x, y) ≥ µU(x, y) for all k ∈ [p] and
(x, y) ∈ X ×Y . Then, for any δ > 0, there exist η > 0 and z ∈ ∆ such that L(Dλ, h

η

z) ≤ ε + δ for any
mixture parameter λ ∈ ∆.

Proof. By the proof of Corollary 3 for the probability model, for any mixture distribution Dλ:

L(Dλ, h
η
z) ≤ ε + ηM + η′,

for some η > 0, η′ > 0. For any x ∈ X ,

∑
y∈Y

hηz(x, y) = ∑
y∈Y

p

∑
k=1

zkDk(x, y) + ηU(x,y)
p

Dz(x, y) + ηU(x, y) hk(x, y)

≤ ∑
y∈Y

p

∑
k=1

zkDk(x, y) + ηU(x,y)
p

Dz(x, y)
hk(x, y)

= 1 + η
⎡⎢⎢⎢⎢⎣

1

p
∑
y∈Y

p

∑
k=1

U(x, y)
Dz(x, y)

hk(x, y)
⎤⎥⎥⎥⎥⎦
. (15)

By assumption, Dk(x, y) ≥ µU(x, y) for any (x, y). Therefore Dz(x, y) ≥ µU(x, y) for any z ∈ ∆.
Since 0 ≤ hk(x, y) ≤ 1, equation (15) is further upper bounded by

∑
y∈Y

hηz(x, y) ≤ 1 + η
⎡⎢⎢⎢⎢⎣

1

p
∑
y∈Y

p

∑
k=1

U(x, y)
Dz(x, y)

hk(x, y)
⎤⎥⎥⎥⎥⎦
≤ 1 + η∣Y ∣

µ
.

It follows that

L(Dλ, h
η

z) = L(Dλ, h
η
z) + E

x∼Dλ

[ log (∑
y∈Y

hηz(x, y))] ≤ ε + ηM + η′ + log(1 + η∣Y ∣
µ

)

≤ ε + η (M + ∣Y ∣
µ

) + η′.

Setting η = δ

2(M+ ∣Y ∣µ )
and η′ = δ

2
concludes the proof.

The analysis above depends on the key assumption that the conditional distributions Dk(y∣x) are
independent of k. When this assumption does not hold, we can show that there is a lower bound
of log(p) on the generalization error L(Dλ, h

η

z). However, this lower bound coincides with that of
convex combination rule (Lemma 10). In that case, one can use the following marginal distribution-
weighted combination instead:

h̃ηz(x, y) =
p

∑
k=1

zkD
1
k(x) + η

U1(x)
p

∑pj=1 zjD
1
j(x) + ηU1(x)hk(x, y), (16)

where D1
k(x) is the marginal distribution over X , D1

k(x) = ∑y∈Y Dk(x, y), and U1(x) is a uniform
distribution over X . Observe that h̃ηz(x, y) is already normalized.

One can modify Theorem 2 to obtain generalization guarantees for h̃ηz under distinct conditional
probabilities assumption. Let DT (x, y), εα(Q) and DP,Q be defined as before.
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Theorem 16. For any δ > 0, there exist η > 0 and z ∈ ∆ such that the following inequality holds for
any α,β > 1 and arbitrary target distribution DT :

L(DT , h̃
η
z) ≤ [(εα(Q) + δ)dβ(DT ∥ DP,Q)]

β−1
β

M
1
β .

Proof. The proof is syntactically the same as that of Theorem 2.

Finally, we can extend Theorem 5 and Theorem 16 to the case where only estimate distributions D̂ks

are available, and the predictor ĥηz and ̃̂
hηz based on the estimates D̂k still admit favorable guarantees.

The results and proofs are similar to proving Corollary 4 from Corollary 12 in the regression model,
thus omitted here.
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D DC-decomposition

In this section we give the full proofs for the DC-decompositions presented in Section 4.2.

D.1 Regression model

Proposition 7. Let L be the squared loss. Then, for any k ∈ [p], L(Dk, h
η
z) − L(Dz, h

η
z) =

uk(z) − vk(z), where uk and vk are convex functions defined for all z by

uk(z) = L (Dk + ηU1Dk(⋅∣x), hηz) − 2M∑
x

(D1
k + ηU1)(x) logKz(x),

vk(z) = L (Dz + ηU1Dk(⋅∣x), hηz) − 2M∑
x

(D1
k + ηU1)(x) logKz(x).

Proof. First, observe that (hηz(x) − y)2 = fz(x, y) − gz(x), where for every (x, y) ∈ X ×Y , fz and
gz are convex functions defined for all z:

fz(x, y) = (hηz(x) − y)
2 − 2M logKz(x),

gz(x) = −2M logKz(x).

This is true because the Hessian matrix of fz and gz are

Hfz =
2

K2
z

[hD,zhTD,z + (M − (y − hηz)2)DDT ] ,

Hgz =
2M

K2
z

DDT ,

where hD,z is a p-dimensional vector defined as [hD,z]k = Dk(hk + y − 2hηz) for k ∈ [p], and
D = (D1,D2, . . . ,Dp)T . Using the fact that M ≥ (y − hηz)2, Hfz and Hgz are positive semidefinite
matrices, therefore fz, gz are convex functions of z.

Thus, uk(z) = ∑(x,y)(D1
k + ηU1)(x)Dk(y∣x)fz(x, y) is convex. Similarly, we can write the second

term of vk(z) as ∑x(D1
k + ηU1)(x)gz(x), it is convex. Using the notation previously defined, we

can write the first term of vk(z) as

L(Dz + ηU1Dk(⋅∣x), hηz) =∑
x

Jz(x)2

Kz(x)
− 2E(y∣x)Jz(x) +E(y2∣x)Kz(x).

The Hessian matrix of J2
z /Kz is

∇2
z (

J2
z

Kz
) = 1

Kz
(hD − hηzD)(hD − hηzD)T

where hD = (h1D1, h2D2, . . . , hpDp)T and D = (D1,D2, . . . ,Dp)T . Thus J2
z /Kz is convex.

−2E(y∣x)Jz(x) + E(y2∣x)Kz(x) is an affine function of z and is therefore convex. Therefore the
first term of vk(z) is convex, which completes the proof.

D.2 Probability model

Proposition 8. Let L be the cross-entropy loss. Then, for k ∈ [p], L(Dk, h
η
z) − L(Dz, h

η
z) =

uk(z) − vk(z), where uk and vk are convex functions defined for all z by

uk(z) = −∑
x,y

[Dk(x, y) + ηU(x, y)] logJz(x, y),

vk(z) =∑
x,y

Kz(x, y) log [Kz(x, y)
Jz(x, y)

]

− [Dk(x, y) + ηU(x, y)] logKz(x, y).
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Proof. Using the notation previously introduced, we can now write

L(Dk, h
η
z) −L(Dz, h

η
z)

= E
(x,y)∼Dk

[− loghηz(x, y)] − E
(x,y)∼Dz

[− loghηz(x, y)]

=∑
x,y

(Dz(x, y) −Dk(x, y)) log [ Jz(x, y)
Kz(x, y)

]

=∑
x,y

[Kz(x, y) − (Dk(x, y) + ηU(x, y))] log [ Jz(x, y)
Kz(x, y)

]

= uk(z) − vk(z).
uk is convex since − logJz is convex as the composition of the convex function − log with an affine
function. Similarly, − logKz is convex, which shows that the second term in the expression of vk is a
convex function. The first term can be written in terms of the unnormalized relative entropy:1

∑
x,y

Kz(x, y) log [Kz(x, y)
Jz(x, y)

]

= B(Kz ∥ Jz) + ∑
(x,y)

(Kz − Jz)(x, y).

The unnormalized relative entropy B(⋅ ∥ ⋅) is jointly convex (Cover and Thomas, 2006),2 thus
B(Kz ∥ Jz) is convex as the composition of the unnormalized relative entropy with affine functions
(for each of its two arguments). (Kz − Jz) is an affine function of z and is therefore convex too.

1The unnormalized relative entropy of P and Q is defined by B(P ∥ Q) = ∑x,y P (x, y) log [
P (x,y)
Q(x,y) ] +

∑(x,y)(Q(x, y) − P (x, y)).
2To be precise, it can be shown that the relative entropy is jointly convex using the so-called log-sum

inequality (Cover and Thomas, 2006). The same proof using the log-sum inequality can be used to show the
joint convexity of the unnormalized relative entropy.
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Figure 2: Synthetic global loss versus iteration for squared loss. Our solution converges to the global
optimum of zero.

(a) (b)

Figure 3: (a) Artificial dataset for cross-entropy loss, with three domains (red, green and blue)
and three categories (triangle, square, circle). (b) Artificial dataset global loss versus iteration for
cross-entropy loss. We empirically find that our solution converges to the global optimum of zero.

E Additional experiment results

In this section we provide experiment results on artificial datasets to show that our global objective
indeed approaches the known optimal of zero with DC-programming algorithm, for both squared loss
and cross-entropy loss. We also provide details of our density estimation procedure on the real-world
applications, as well as additional experiment results to show that our distribution-weighted predictor
DW is robust across various test data mixtures.

E.1 Artificial dataset

We first evaluated our algorithm on synthetic datasets, for both squared loss and cross-entropy loss.

Consider the following multiple source domain study by Mansour et al. (2009a). Let g1, g2, g3, g4

denote the Gaussian distributions with means (1,1), (−1,1), (−1,−1), and (1,−1) and unit variance
respectively. Each domain was generated as a uniform mixture of Gaussians: D1 from {g1, g2, g3}
and D2 from {g2, g3, g4}. The labeling function is f(x1, x2) = x2

1 + x2
2. We trained linear regressors

for each domain to produce base hypotheses h1 and h2. Finally, as the true distribution is known for
this artificial example, we directly use the Gaussian mixture density function to generate our Dks.

With this data source, we used our DC-programming solution to find the optimal mixing weights z.
Figure 2 shows the global objective value (of Problem 4) vs number of iterations with the uniform
initialization z0 = [1/2,1/2]. Here, the overall objective approaches 0.0, the known global minimum.
To verify the robustness of the solution, we have experimented with various initial conditions and
found that the solution converges to the global solution in each case.

We next evaluate our algorithm on cross-entropy loss. Here we generate the two-dimensional dataset
shown in Figure 3a, which has three domains, denoted in the colors red, green, and blue, and three
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Table 5: MSE on sentiment analysis dataset: target domain as various combinations of two domains.
Test Data

KD BE KB KE DB DE

K 1.83±0.08 1.99±0.10 1.87±0.08 1.57±0.06 2.25±0.08 1.94±0.10
D 1.95±0.07 2.11±0.07 2.12±0.07 2.11±0.05 1.95±0.06 1.94±0.06
B 2.10±0.09 1.99±0.08 1.96±0.07 2.21±0.06 1.87±0.07 2.13±0.05
E 2.00±0.09 1.95±0.07 2.05±0.05 1.60±0.05 2.36±0.07 1.91±0.07
unif 1.73±0.06 1.74±0.07 1.74±0.05 1.62±0.04 1.85±0.05 1.73±0.06
KMM 1.83±0.07 1.82±0.07 1.78±0.12 1.65±0.10 1.97±0.13 1.88±0.08
DW 1.62±0.07 1.61±0.08 1.59±0.05 1.47±0.04 1.75±0.05 1.64±0.05

Table 6: MSE on the sentiment analysis dataset: target domain as various mixture of four domains:
(0.4,0.2,0.2,0.2), (0.2,0.4,0.2,0.2), (0.2,0.2,0.4,0.2), (0.2,0.2,0.2,0.4) of K, D, B, E respec-
tively.

Test Data
KDBE KDBE KDBE KDBE

K 1.78±0.05 1.94±0.10 1.96±0.08 1.84±0.07
D 2.02±0.10 1.98±0.10 2.06±0.11 2.05±0.09
B 2.01±0.12 2.01±0.14 1.94±0.14 2.06±0.11
E 1.93±0.08 2.04±0.10 2.08±0.10 1.89±0.08
unif 1.69±0.06 1.74±0.07 1.75±0.08 1.70±0.06
KMM 1.83±0.12 1.92±0.14 1.87±0.15 1.85±0.13
DW 1.55±0.08 1.62±0.08 1.59±0.09 1.56±0.08

categories, denoted as squares, circles, and triangles. Each domain is generated according to a Gaus-
sian mixture model, one mixture per category, with random means. The means of each corresponding
category across domains are related according to a random fixed orthonormal transformation. Finally,
the covariance of each mixture is diagonal and fixed across categories. We choose covariance magni-
tudes of 0.05, 0.05, and 0.3 for the red, green, and blue domains, respectively. We then train a logistic
regression classifier per domain to produce score functions, hk. Finally, as the true distribution is
known for this artificial example, we forgo density estimation and use the Gaussian mixture density
function to generate our Dks.

With this data source, we use our DC-programming solution to find the optimal mixing weights, z.
Since only each convex sub-problem is guaranteed to converge, Figure 3b reports this global loss vs
iteration when initializing z0 = 1/p, uniform weights. Here, the overall objective approaches 0.0, the
known global minimum.To verify the robustness of the solution, we have experimented with various
initial conditions and found the solution converges to the global solution from each case.

E.2 Sentiment analysis task for squared loss

We begin by detailing our density estimation method for the sentiment analysis experiment. We first
used the same vocabulary defined for feature extraction to train a separate bigram statistical language
model for each domain, using the OpenGrm library (Roark et al., 2012). Next, we randomly draw
a sample set Sk of 10,000 sentences from each bigram language model. We define D̂k to be the
empirical distribution of Sk, which is a very close estimate of marginal distribution of the language
model, thus it is also a good estimate of Dk. We approximate the label of a randomly generated
sample xi by taking the average of the hks: yi = ∑{k∶xi∈Sk} hk(xi)/∣{k∶xi ∈ Sk}∣. These randomly
drawn samples were used to find the fixed-point z.

Note that we only use estimates of the marginal distributions (language models) to find z and do not
use any labels. We use the original product review text and rating labels for testing. Their densities
D̂k were estimated by the bigram language models directly, therefore a close estimate of Dk.

Next we compare DW to accessible predictors on various test mixture domains. Table 5 shows MSE
on all combinations of two domains. Table 6, 7 reports MSE on additional test mixture domains.
The first four target mixtures correspond to various orderings of (0.4,0.2,0.2,0.2). The next six
target mixtures correspond to various orderings of (0.3,0.3,0.2,0.2). In column titles we bold the
domain(s) with highest weight.
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Table 7: MSE on the sentiment analysis dataset: target domain as various mixture of four domains:
(0.3,0.3,0.2,0.2), (0.3,0.2,0.3,0.2), (0.3,0.2,0.2,0.3), (0.2,0.3,0.3,0.2), (0.2,0.3,0.2,0.3),
(0.2,0.2,0.3,0.3) of K, D, B, E respectively.

Test Data
KDBE KDBE KDBE KDBE KDBE KDBE

K 1.86±0.10 1.87±0.07 1.79±0.08 1.96±0.10 1.89±0.10 1.89±0.08
D 2.01±0.13 2.05±0.12 2.04±0.12 2.03±0.12 2.02±0.13 2.06±0.12
B 2.01±0.15 1.98±0.14 2.05±0.13 1.98±0.15 2.04±0.14 2.01±0.13
E 2.00±0.10 2.01±0.09 1.91±0.08 2.08±0.10 1.97±0.08 1.99±0.08
unif 1.72±0.09 1.72±0.08 1.69±0.07 1.75±0.08 1.72±0.08 1.73±0.08
KMM 1.85±0.16 1.86±0.14 1.85±0.15 1.90±0.14 1.89±0.16 1.90±0.14
DW 1.58±0.10 1.57±0.10 1.55±0.09 1.61±0.10 1.59±0.08 1.58±0.09

In all these experiments, our distribution-weighted predictor DW outperforms all competing baselines:
the source only baselines for each domain, K, D, B, E, a uniform weighted predictor unif, and
KMM.

E.3 Recognition tasks for cross-entropy loss

Here, we describe our density estimation technique for the object recognition task.

To estimate the per domain densities, we first extract per image features using the in-domain Con-
vNet model, and then estimate the marginal distribution D1

k(x) over the per domain collection of
features, using non-parametric kernel density estimation with a Gaussian kernel and a cross-validated
bandwidth parameter. We use estimated marginals D̂1

k instead of estimated joint distributions D̂k,
because when the conditional probabilities are the same across domains and when η → 0, hηz(x, y)
converges to a normalized predictor h̃z(x, y) = ∑pk=1

zkD
1
k(x)

∑pj=1 zjD1
j(x)

hk(x, y). Thus in our experiments,

we approximate ĥηz(x, y) with ̃̂
zh(x, y) using our estimated marginal distributions D̂1

k(x).
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F Rényi Divergence

The Rényi Divergence measures the divergence between two distributions. It is parameterized by
α ∈ [0,+∞] and denoted by Dα. The α-Rényi Divergence of two distributions D and D′ is defined
by

Dα(D ∥D′) = 1

α − 1
log ∑

(x,y)∈X×Y
D(x, y) [ D(x, y)

D′(x, y)]
α−1

, (17)

where, for α ∈ {0,1,+∞}, the expression is defined by taking the limit. It can be shown that the
Rényi Divergence is always non-negative and that for any α > 0, Dα(D ∥D′) = 0 iff D =D′ (Arndt,
2004). We will denote by dα(D ∥D′) the exponential:

dα(D ∥D′) = eDα(D∥D
′) =

⎡⎢⎢⎢⎢⎣
∑

(x,y)∈X×Y

Dα(x, y)
D′α−1(x, y)

⎤⎥⎥⎥⎥⎦

1
α−1

. (18)

The Rényi divergence (and dα(D ∥D′)) is a non-decreasing function of α; in particular, the following
inequality holds:

dα(D ∥D′) ≤ d∞(D ∥D′) = sup
(x,y)∈X×Y

[ D(x, y)
D′(x, y)] . (19)
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G Related work on multiple source adaptation (MSA)

We give an extensive discussion of related work on multiple source adaptation (MSA) problem here,
and point out how our scenario and our results are distinct from most previous works.

The learning scenario that we consider is distinct from and is more challenging than the one considered
by many other existing multiple source adaptation (MSA) studies:

1. We assume that the learner does not have access to and therefore cannot combine all the
source labeled data together to jointly train a target predictor. This is a very realistic
assumption with legitimate reasons, such as data privacy, storage limitation, etc. Instead, the
learner is only given pre-trained models, density estimations from the source domains, and a
small subset of combined source labeled data.

2. We are not given any target data, even unlabeled, and we are competing against any target
mixture distribution. This is a significantly more difficult problem. Remarkably, the learner
only needs to run our algorithm DW once to obtain a single predictor, which is guaranteed to
perform well on any target mixture. This is also verified experimentally.

To our knowledge, there is no discussion of this learning scenario other than by Mansour et al. (2008,
2009a). On the contrary, most MSA algorithms require access to the full combined source data to
jointly train a predictor. In addition, many MSA algorithms require a set of labeled or unlabeled data
from the target domain, and the solution only performs well on that specific target domain. If the
target domain changes, the learner has to rerun the algorithm to find a new solution. Besides, many
MSA algorithms do not admit theoretical guarantees, while we provide a careful analysis and series
of strong theoretical guarantees for our algorithm DW.

In what follows, we categorize and discuss previous works on MSA problem by their learning
scenarios.

Combine source data. Khosla et al. (2012) considered a similar setting where the learner trains a
single predictor for any target domain and where the learner has access to source data but not target
data. However, Khosla et al. (2012) combine all the source data to jointly train the final predictor and
a large set of combined data is necessary for a good predictor. Additionally, the solution of Khosla
et al. (2012) only works for linear functions, a very limited family of hypotheses. DW does not
combine all the source data, and works for hypotheses of any form. Blanchard et al. (2011) presented
MSA algorithms with theoretical guarantees. However, it combines all source data and target data to
learn a final predictor. This paper also makes the strong assumption that the source and the target
domains are i.i.d. realizations of some distribution, and their learning guarantee is with respect to that
distribution. DW makes no assumption about the relationship between the source domains. Hoffman
et al. (2012) considered multiclass classification problem where the predicted label for a novel test
point is determined by a weighted sum of probabilities of each category given that the test point
comes from a particular source domain. The weights are the predicted probability that the test point
belongs to each source domain, which are learned via SVM on all source data combined. Zhang et al.
(2015) considered a causal view of MSA where label Y is the cause for features X , and learned a
weighted combination of source conditional probabilities (PX ∣Y ) by minimizing the maximum mean
discrepancy (MMD) on the combined source data. Muandet et al. (2013) proposed Domain-Invariant
Component Analysis (DICA) to transform features onto a low dimensional subspace by minimizing
dissimilarity across multiple source domains, while preserving relationship between features and
label. The projection is learned via a kernel-based optimization on all source data combined. Recently,
Pei et al. (2018) extended domain adversarial learning techniques for the multiple source setting.

Use labeled target data. Duan et al. (2009, 2012) considered a somewhat similar problem where
the learner leverages pre-trained predictors from the source domains to learn a good predictor on the
target domain. However, they assume plenty of unlabeled target data to form a meaningful regularizer
and they also assume a small set of labeled target data. Their solution directly depends on the labeled
and unlabeled target data and is of course only useful for that specific target. Yang et al. (2007) also
considered the problem of combining pre-trained classifiers from multiple auxiliary datasets to adapt
to a target dataset, and the solution is to learn a good linear combinations of auxiliary classifiers using
Adaptive SVMs on the labeled target data.
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Others. Crammer et al. (2008) dealt with a problem with multiple sources distinct from domain
adaptation where the sources have the same input distribution but can have different labels, modulo
some disparity constraints. (See also discussion by Mansour et al. (2009a)). Gong et al. (2012)
proposed a Rank of Domain (ROD) metric that ranks multiple source domains by how likely they
are to adapt well to a target domain. Gong et al. (2013a) learned domain-invariant features by first
constructing multiple auxiliary tasks based on landmarks within the source data, and then learning
new feature representations from each auxiliary task. Gong et al. (2013b) proposed to discover
multiple latent domains by maximizing two key properties, distinctiveness and learnability, between
latent domains. Xu et al. (2014) also considered the problem of discovering latent domains, and
proposed to learn exemplar-SVMs with low-rank structure.
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