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Abstract

Saliency methods have emerged as a popular tool to highlight features in an input
deemed relevant for the prediction of a learned model. Several saliency methods
have been proposed, often guided by visual appeal on image data. In this work, we
propose an actionable methodology to evaluate what kinds of explanations a given
method can and cannot provide. We find that reliance, solely, on visual assessment
can be misleading. Through extensive experiments we show that some existing
saliency methods are independent both of the model and of the data generating
process. Consequently, methods that fail the proposed tests are inadequate for
tasks that are sensitive to either data or model, such as, finding outliers in the data,
explaining the relationship between inputs and outputs that the model learned,
and debugging the model. We interpret our findings through an analogy with
edge detection in images, a technique that requires neither training data nor model.
Theory in the case of a linear model and a single-layer convolutional neural network
supports our experimental ﬁndingsﬂ

1 Introduction

As machine learning grows in complexity and impact, much hope rests on explanation methods as
tools to elucidate important aspects of learned models [1} 2]. Explanations could potentially help
satisfy regulatory requirements [3], help practitioners debug their model [4} 5], and perhaps, reveal
bias or other unintended effects learned by a model [6} [7]. Saliency methods’|are an increasingly
popular class of tools designed to highlight relevant features in an input, typically, an image. Despite
much excitement, and significant recent contribution [8H21]], the valuable effort of explaining machine
learning models faces a methodological challenge: the difficulty of assessing the scope and quality
of model explanations. A paucity of principled guidelines confound the practitioner when deciding
between an abundance of competing methods.

We propose an actionable methodology based on randomization tests to evaluate the adequacy
of explanation approaches. We instantiate our analysis on several saliency methods for image
classification with neural networks; however, our methodology applies in generality to any explanation
approach. Critically, our proposed randomization tests are easy to implement, and can help assess the
suitability of an explanation method for a given task at hand.

In a broad experimental sweep, we apply our methodology to numerous existing saliency methods,
model architectures, and data sets. To our surprise, some widely deployed saliency methods are
independent of both the data the model was trained on, and the model parameters. Consequently,

*Work done during the Google AI Residency Program.

2All code to replicate our findings will be available here: https://goo.gl/hBmhDt

3We refer here to the broad category of visualization and attribution methods aimed at interpreting trained
models. These methods are often used for interpreting deep neural networks particularly on image data.
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Figure 1: Saliency maps for some common methods compared to an edge detector. Saliency
masks for 3 inputs for an Inception v3 model trained on ImageNet. We see that an edge detector
produces outputs that are strikingly similar to the outputs of some saliency methods. In fact, edge
detectors can also produce masks that highlight features which coincide with what appears to be
relevant to a model’s class prediction. We find that the methods most similar (see Appendix for SSIM
metric) to an edge detector, i.e., Guided Backprop and its variants, show minimal sensitivity to our
randomization tests.

these methods are incapable of assisting with tasks that depend on the model, such as debugging the
model, or tasks that depend on the relationships between inputs and outputs present in the data.

To illustrate the point, Figure[I|compares the output of standard saliency methods with those of an
edge detector. The edge detector does not depend on model or training data, and yet produces results
that bear visual similarity with saliency maps. This goes to show that visual inspection is a poor
guide in judging whether an explanation is sensitive to the underlying model and data.

Our methodology derives from the idea of a statistical randomization test, comparing the natural
experiment with an artificially randomized experiment. We focus on two instantiations of our general
framework: a model parameter randomization test, and a data randomization test.

The model parameter randomization test compares the output of a saliency method on a trained
model with the output of the saliency method on a randomly initialized untrained network of the
same architecture. If the saliency method depends on the learned parameters of the model, we should
expect its output to differ substantially between the two cases. Should the outputs be similar, however,
we can infer that the saliency map is insensitive to properties of the model, in this case, the model
parameters. In particular, the output of the saliency map would not be helpful for tasks such as model
debugging that inevitably depend on the model parameters.

The data randomization test compares a given saliency method applied to a model trained on a
labeled data set with the method applied to the same model architecture but trained on a copy of the
data set in which we randomly permuted all labels. If a saliency method depends on the labeling of
the data, we should again expect its outputs to differ significantly in the two cases. An insensitivity to
the permuted labels, however, reveals that the method does not depend on the relationship between
instances (e.g. images) and labels that exists in the original data.

Speaking more broadly, any explanation method admits a set of invariances, i.e., transformations
of data and model that do not change the output of the method. If we discover an invariance that is
incompatible with the requirements of the task at hand, we can safely reject the method. As such, our
tests can be thought of as sanity checks to perform before deploying a method in practice.

Our contributions

1. We propose two concrete, easy to implement tests for assessing the scope and quality of
explanation methods: the model parameter randomization test, and the data randomization test.
These tests apply broadly to explanation methods.

2. We conduct extensive experiments with several explanation methods across data sets and model
architectures, and find, consistently, that some of the methods tested are independent of both the
model parameters and the labeling of the data that the model was trained on.



3. Of the methods we tested, Gradients & GradCAM pass the sanity checks, while Guided BackProp
& Guided GradCAM fail. In the other cases, we observe a visual perception versus ranking dichotomy,
which we describe in our results.

4. Consequently, our findings imply that the saliency methods that fail our tests are incapable of
supporting tasks that require explanations that are faithful to the model or the data generating process.

5. We interpret our findings through a series of analyses of linear models and a simple 1-layer
convolutional sum-pooling architecture, as well as a comparison with edge detectors.

2 Methods and Related Work

In our formal setup, an input is a vector x € R?. A model describes a function S: R? — R,
where C' is the number of classes in the classification problem. An explanation method provides an
explanation map E: R? — R? that maps inputs to objects of the same shape.

We now briefly describe some of the explanation methods we examine. The supplementary materials
contain an in-depth overview of these methods. Our goal is not to exhaustively evaluate all prior
explanation methods, but rather to highlight how our methods apply to several cases of interest.

The gradient explanation for an input « is Egaq(x) = g—f (8,22} 23]]. The gradient quantifies how
much a change in each input dimension would a change the predictions S(x) in a small neighborhood

around the input.

Gradient © Input. Another form of explanation is the element-wise product of the input and the
gradient, denoted z ® g—i, which can address “gradient saturation”, and reduce visual diffusion [13].

Integrated Gradients (IG) also addresses gradient saturation by summing over scaled versions of
the input [14]). IG for an input x is defined as Fig(z) = (x — &) X fol Wda, where T is a

“baseline input” that represents the absence of a feature in the original input x.

Guided Backpropagation (GBP) [9] builds on the “DeConvNet” explanation method [10] and
corresponds to the gradient explanation where negative gradient entries are set to zero while back-
propagating through a ReLU unit.

Guided GradCAM. Introduced by Selvaraju et al. [19]], GradCAM explanations correspond to the
gradient of the class score (logit) with respect to the feature map of the last convolutional unit of a
DNN. For pixel level granularity GradCAM can be combined with Guided Backpropagation through
an element-wise product.

SmoothGrad (SG) [[16] seeks to alleviate noise and visual diffusion [[14,[13]] for saliency maps by

averaging over explanations of noisy copies of an input. For a given explanation map £, SmoothGrad

is defined as Eyy(z) = + vazl E(z+g;), where noise vectors g; ~ N(0,02)) are drawn i.i.d. from

a normal distribution.

2.1 Related Work

Other Methods & Similarities. Aside gradient-based approaches, other methods ‘learn’ an expla-
nation per sample for a model [20} [17, 12, [15, 11} 21]. More recently, M. Ancona [24]] showed that
for ReLU networks (with zero baseline and no biases) the e-LRP and DeepLift (Rescale) explanation
methods are equivalent to the input © gradient. Similarly, Lundberg and Lee [18]] proposed SHAP
explanations which approximate the shapley value and unify several existing methods.

Fragility. Ghorbani et al. [25] and Kindermans et al. [26] both present attacks against saliency
methods; showing that it is possible to manipulate derived explanations in unintended ways. Nie
et al. [27] theoretically assessed backpropagation based methods and found that Guided BackProp
and DeconvNet, under certain conditions, are invariant to network reparamaterizations, particularly
random Gaussian initialization. Specifically, they show that Guided BackProp and DeconvNet both
seem to be performing partial input recovery. Our findings are similar for Guided BackProp and
its variants. Further, our work differs in that we propose actionable sanity checks for assessing
explanation approaches. Along similar lines, Mahendran and Vedaldi [28]] also showed that some
backpropagation-based saliency methods lack neuron discriminativity.



Current assessment methods. Both Samek et al. [29] and Montavon et al. [30] proposed an input
perturbation procedure for assessing the quality of saliency methods. Dabkowski and Gal [17]
proposed an entropy-based metric to quantify the amount of relevant information an explanation
mask captures. Performance of a saliency map on an object localization task has also been used for
assessing saliency methods. Montavon et al. [30] discuss explanation continuity and selectivity as
measures of assessment.

Randomization. Our label randomization test was inspired by the work of Zhang et al. [31]], although
we use the test for an entirely different purpose.

2.2 Visualization & Similarity Metrics

We discuss our visualization approach and overview the set of metrics used in assessing similarity
between two explanations.

Visualization. We visualize saliency maps in two ways. In the first case, absolute-value (ABS), we
take absolute values of a normalized’|map. For the second case, diverging visualization, we leave the
map as is, and use different colors to show positive and negative importance.

Similarity Metrics. For quantitative comparison, we rely on the following metrics: Spearman rank
correlation with absolute value (absolute value), Spearman rank correlation without absolute value
(diverging), the structural similarity index (SSIM), and the Pearson correlation of the histogram of
gradients (HOGs) derived from two maps. We compute the SSIM and HOGs similarity metric on
ImageNet examples without absolute ValuesE] These metrics capture a broad notion of similarity;
however, quantifying human visual perception is still an active area of research.

3 Model Parameter Randomization Test

The parameter settings of a model encode what the model has learned from the data during training,
and determine test set performance. Consequently, for a saliency method to be useful for debugging a
model, it ought to be sensitive to model parameters.

As an illustrative example, consider a linear function of the form f(z) = wix1 + waxe with input
x € R2. A gradient-based explanation for the model’s behavior for input x is given by the parameter
values (w1, ws), which correspond to the sensitivity of the function to each of the coordinates.
Changes in the model parameters therefore change the explanation.

Our proposed model parameter randomization test assesses an explanation method’s sensitivity
to model parameters. We conduct two kinds of randomization. First we randomly re-initialize
all weights of the model both completely and in a cascading fashion. Second, we independently
randomize a single layer at a time while keeping all others fixed. In both cases, we compare the
resulting explanation from a network with random weights to the one obtained with the model’s
original weights.

3.1 Cascading Randomization

Overview. In the cascading randomization, we randomize the weights of a model starting from the
top layer, successively, all the way to the bottom layer. This procedure destroys the learned weights
from the top layers to the bottom ones. Figure 2] visualizes the cascading randomization for several
saliency methods. In Figures [3]and ] we show the Spearman metrics as well as the SSIM and HOGs
similarity metrics.

The gradient shows sensitivity while Guided BackProp is invariant. We find that the gradient
map is sensitive to model parameters. We also observe sensitivity for the GradCAM masks. On the
other hand, across all architectures and datasets, Guided BackProp and Guided GradCAM show no
change regardless of model degradation.

*We normalize the maps to the range [—1.0, 1.0]. Normalizing in this manner potentially ignores peculiar
characteristics of some saliency methods. For example, Integrated gradients has the property that the attributions
sum up to the output value. This property cannot usually be visualized. We contend that such properties will not
affect the manner in which the output visualizations are perceived.

>See appendix for a discussion on calibration of these metrics.
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Figure 2: Cascading randomization on Inception v3 (ImageNet). Figure shows the original
explanations (first column) for the Junco bird. Progression from left to right indicates complete
randomization of network weights (and other trainable variables) up to that ‘block’ inclusive. We
show images for 17 blocks of randomization. Coordinate (Gradient, mixed_7b) shows the gradient
explanation for the network in which the top layers starting from Logits up to mixed_7b have been
reinitialized. The last column corresponds to a network with completely reinitialized weights.

The danger of the visual assessment. On visual inspection, we find that integrated gradients and
gradient®input show a remarkable visual similarity to the original mask. In fact, from Figure 2] it
is still possible to make out the structure of the bird even after multiple blocks of randomization.
This visual similarity is reflected in the rank correlation with absolute value (Figure [3} Top), SSIM,
and the HOGs metric (Figure ). However, re-initialization disrupts the sign of the map, so that the
Spearman rank correlation without absolute values goes to zero (Figure 3} Bottom) almost as soon as
the top layers are randomized. This observed visual perception versus numerical ranking dichotomy
indicates that naive visual inspection of the masks does not distinguish networks of similar structure
but widely differing parameters. We explain the source of this phenomenon in our discussion section.

3.2 Independent Randomization

Overview. As a different form of the model parameter randomization test, we conduct an independent
layer-by-layer randomization with the goal of isolating the dependence of the explanations by layer.
Consequently, we can assess the dependence of saliency masks on lower versus higher layer weights.

Results. We observe a correspondence between the results from the cascading and independent layer
randomization experiments (see Figures ??, 22, 2?2, and ?? in the Appendix). As previously observed,
Guided Backprop and Guided GradCAM masks remain almost unchanged regardless of the layer that
is independently randomized across all networks. Similarly, we observe that the structure of the input
is maintained, visually, for the gradient®input and Integrated Gradient methods.



Figure 3: Similarity Metrics for Cascading Randomization. We show results for Inception v3
on ImageNet, CNN on Fashion MNIST, and MLP on MNIST. See appendix for MLP on Fashion
MNIST and CNN on MNIST. In all plots, y axis is the rank correlation between original explanation
and the randomized explanation derived for randomization up to that layer/block, while the x axis
corresponds to the layers/blocks of the DNN starting from the output layer. The vertical black
dashed line indicates where successive randomization of the network begins, which is at the top layer.
Top: Spearman Rank correlation with absolute values, Bottom: Spearman Rank correlation without
absolute values. Caption Note: For Inception v3 on ImageNet no ABS, the IG, gradient-input, and
gradients all coincide. For MLP-MNIST IG and gradient-input coincide.
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Figure 4: Similarity Metrics for Cascading Randomization. Figure showing HOGs similarity and
SSIM between original input masks and the masks generated as the Inception v3 is randomized in
a cascading manner. Caption Note: For SSIM: Inception v3 - ImageNet, IG and gradient®input
coincide, while GradCAM, Guided GradCAM, and Guided BackProp are clustered together at the
top.

4 Data Randomization Test

The feasibility of accurate prediction hinges on the relationship between instances (e.g., images)
and labels encoded by the data. If we artificially break this relationship by randomizing the labels,
no predictive model can do better than random guessing. Our data randomization test evaluates the
sensitivity of an explanation method to the relationship between instances and labels. An explanation
method insensitive to randomizing labels cannot possibly explain mechanisms that depend on the
relationship between instances and labels present in the data generating process. For example, if an
explanation did not change after we randomly assigned diagnoses to CT scans, then evidently it did
not explain anything about the relationship between a CT scan and the correct diagnosis in the first
place (see [32] for an application of Guided BackProp as part of a pipepline for shadow detection in
2D Ultrasound).

In our data randomization test, we permute the training labels and train a model on the randomized
training data. A model achieving high training accuracy on the randomized training data is forced to
memorize the randomized labels without being able to exploit the original structure in the data. As it


















