
Appendix

A Synthetic data experiments

We ran two experiments on synthetic data. In the first, we evaluate mode collapse for PacGAN,
GANs, ALI, and MD in order to reproduce Table 1 from [25]. In the second, we evaluate mode
collapse as a function of the number of GAN parameters. The second experiment is described in
Section 4.1 of the main paper.

A.1 Experiment 1: Reproduce Table 1 from [25]

Our first experiment evaluates the number of modes and the number of high-quality samples for the
2D-ring and the 2D-grid. The hyperparameters, network architecture, and loss function for GAN and
ALI are exactly reproduced from ALI’s architecture2. PacGAN is adapted from GAN by changing
the dimension of input layer in discriminator without any further hyper-parameter tuning.

All of the GANs in this experiment use the same generator architecture. There are four hidden layers,
each of which has 400 units with ReLU activation, trained with batch normalization [11]. The input
noise is a two dimensional spherical Gaussian with zero mean and unit variance. GAN, ALI, and
PacGAN in this experiment use the same discriminator, except that the input dimensions are different.
The discriminator has three hidden layers, with 200 units per hidden layer. The hidden layers use
LinearMaxout with 5 maxout pieces, and no batch normalization is used in the discriminator. In
addition to a generator and discriminator, ALI also has a third component, called an encoder; we
only used the encoder to evaluate ALI, but did not include the encoder in our PacGAN. MD’s
discriminator is the same as GAN’s discriminator, except that a minibatch discrimination layer is
added before the output layer. The implementation of minibatch discrimination layer in this and all
following experiments is based on the standard implementation3.

We train each GAN with 100,000 total samples, and a mini-batch size of 100 samples; training is
run for 400 epochs. The discriminator’s loss function is log(1 + exp(−D(real data))) + log(1 +
exp(D(generated data))). The generator’s loss function is log(1 + exp(D(real data))) + log(1 +
exp(−D(generated data))). Adam [14] stochastic gradient descent is applied with the generator
weights and the discriminator weights updated once per mini-batch. At testing, we use 2500 samples
from the learned generator for evaluation.

Figure 5 shows the plots from GAN and PacGAN2 in 2D grid experiment.

2D-ring 2D-grid
Modes high quality reverse KL Modes high quality reverse KL

(Max 8) samples (Max 25) samples
GAN [10] 6.3±0.5 98.2±0.2 % 0.45±0.09 17.3±0.8 94.8±0.7 % 0.70±0.07
ALI [8] 6.6±0.3 97.6±0.4 % 0.36±0.04 24.1±0.4 95.7±0.6 % 0.14±0.03
Minibatch Disc. [24] 4.3±0.8 36.6±8.8 % 1.93±0.11 23.8±0.5 79.9±3.2 % 0.17±0.03
PacGAN2 (ours) 7.9±0.1 95.6±2.0 % 0.07±0.03 23.8±0.7 91.3±0.8 % 0.13±0.04
PacGAN3 (ours) 7.8±0.1 97.7±0.3 % 0.10±0.02 24.6±0.4 94.2±0.4 % 0.06±0.02
PacGAN4 (ours) 7.8±0.1 95.9±1.4 % 0.07±0.02 24.8±0.2 93.6±0.6 % 0.04±0.01

Table 3: Two measures of mode collapse proposed in [25] for two synthetic mixtures of Gaussians:
number of modes captured by the generator and percentage of high quality samples, as well as reverse
KL. Note that 2 trials of MD in 2D-ring dataset cover no mode, which makes reverse KL intractable.
This reverse KL entry is averaged over the other 8 trails. All other results are averaged over 10 trials,
with standard error reported.

Our results (Table 3) show that PacGAN outperforms or matches the baseline schemes. On the
2D-grid, increasing the packing degree m increases the average number of modes recovered, as
expected. On the 2D-ring, PacGAN2 recovers almost all the modes, so further packing provides

2https://github.com/IshmaelBelghazi/ALI
3https://github.com/openai/improved-gan
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little extra benefit. Regardless, packing significantly reduces mode collapse compared to the mother
architecture.

We also observe that in terms of mode coverage MD performs well in 2D-grid dataset but badly in
2D-ring dataset, even with completely the same architecture. This suggests that MD is sensitive to
experiment settings. In terms of high quality samples, MD performs even worse than GAN baseline
in both datasets.

Target distribution GAN PacGAN2

Figure 5: Scatter plot of the 2D samples from the true distribution (left) of 2D-grid and the learned
generators using GAN (middle) and PacGAN2 (right). PacGAN2 captures all of the 25 modes.

A.2 Mode collapse vs. number of parameters (Section 4.1)

In this experiment, we keep the input and output layers identical to our experiment in Appendix
A.1, but alter the number of nodes per hidden layer in the discriminator. For each experimental
setting, each hidden layer of the discriminator has the same number of hidden nodes, drawn from
the set {50, 100, 150, 200, 250}. This hidden layer size determines the total number of parameters in
the architecture, so each GAN variant is evaluated for five different parameters. Each data point is
averaged over 10 trials. The horizontal axis shows the total number of parameters in the discriminator
and encoder (if one exists).

B Stacked MNIST Experiments

We ran two experiments on the stacked MNIST dataset. The first is reproducing an experiment from
VEEGAN paper, as described in Section 4.2. The second is reproducing an experiment from the
Unrolled GANs paper.

B.1 Generated pictures and architecture details from VEEGAN experiment

The generator architecture and discriminator architecture of GAN and PacGAN are shown in Table 4
and Table 5 respectively. MD uses the same architecture as GAN, except that a minibatch discrimina-
tion layer is added before the output layer of discriminator. We train each GAN on 128,000 samples,
with a mini-batch size of 64. The generator’s loss function is − log(D(generated data)), and the
discriminator’s loss function is -log(D(real data))-log(1-D(generated data)). We update the generator
parameters twice and the discriminator parameters once in each mini-batch, and train the networks
over 50 epochs. For testing, we generate 26,000 samples, and evaluate the empirical KL divergence
and number of modes covered. Finally, we average these values over 10 runs of the entire pipeline.

The generated pictures of DCGAN and PacDCGAN2 are shown in Figure 6.

B.2 Unrolled GAN experiment

Unrolled GANs exploit the observation that iteratively updating discriminator and generator model
parameters can contribute to training instability. To mitigate this, they update model parameters by
computing the loss function’s gradient with respect to k ≥ 1 sequential discriminator updates, where
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layer number of outputs kernel size stride BN activation function
Input: z ∼ U(−1, 1)100 100
Fully connected 2*2*512 Yes ReLU
Transposed Convolution 4*4*256 5*5 2 Yes ReLU
Transposed Convolution 7*7*128 5*5 2 Yes ReLU
Transposed Convolution 14*14*64 5*5 2 Yes ReLU
Transposed Convolution 28*28*3 5*5 2 Tanh

Table 4: Generator architecture in VEEGAN experiment

layer number of outputs kernel size stride BN activation function
Input: x ∼ pmdata or Gm 28*28*(3*m)
Convolution 14*14*64 5*5 2 LeakyReLU
Convolution 7*7*128 5*5 2 Yes LeakyReLU
Convolution 4*4*256 5*5 2 Yes LeakyReLU
Convolution 2*2*512 5*5 2 Yes LeakyReLU
Fully connected 1 Sigmoid

Table 5: Discriminator architecture in VEEGAN experiment (m stands for the degree of packing)

Target distribution DCGAN PacDCGAN2

Figure 6: True distribution (left), DCGAN generated samples (middle), and PacDCGAN2 generated
samples (right) from the stacked-MNIST dataset show PacDCGAN2 captures more diversity while
producing sharper images.

k is called the unrolling parameter. [20] reports that unrolling improves mode collapse as k increases,
at the expense of greater training complexity.

Unlike Section 4.2, this experiment studies the effect of the discriminator size on the number of
modes learned by a generator. The key differences between these trials and the unrolled GAN row in
Table 1 are four: (1) the unrolling parameters are different, (2) the discriminator sizes are different,
(3) the generator and discriminator architectures are chosen according to Appendix E in [20], and
(4) the total training time was 5 times longer than the one used in [20]. PacDCGAN uses the same
generators and discriminators (except for input layer) as unrolled GAN in each experiment. MD uses
the same architecture, except that a minibatch discrimination layer is added before the output layer of
discriminator.

Our results are reported in Table 6. The first four rows are copied from [20]. As before, we find
that packing seems to increase the number of modes covered. Additionally, in both experiments,
PacDCGAN finds more modes on average than Unrolled GANs with k = 10, with lower reverse KL
divergences between the mode distributions. This suggests that packing has a more pronounced effect
than unrolling.

We see that compared with PacGAN, MD has worse metrics in D=1/4G setting but has similar metrics
in D=1/2G setting. In addition, we should note that MD requires much more discriminator parameters:
747 for PacGAN4 and 1,226,317 for MD in D=1/4G setting; 2,213 for PacGAN4 and 2,458,533 for
MD in D=1/2G setting.
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D is 1/4 size of G D is 1/2 size of G
Modes (Max 1000) KL Modes (Max 1000) KL

DCGAN [22] 30.6±20.73 5.99±0.42 628.0±140.9 2.58±0.75
Unrolled GAN, 1 step [20] 65.4±34.75 5.91±0.14 523.6±55.77 2.44±0.26
Unrolled GAN, 5 steps [20] 236.4±63.30 4.67±0.43 732.0±44.98 1.66±0.09
Unrolled GAN, 10 steps [20] 327.2±74.67 4.66±0.46 817.4±37.91 1.43±0.12
Minibatch Discrimination [24] 264.1±59.02 3.32±0.30 837.1±67.46 0.84±0.25
DCGAN (our implementation) 78.5±17.56 5.21±0.19 487.7±34.59 2.24±0.15
PacDCGAN2 (ours) 484.5±32.99 2.61±0.22 840.7±15.92 1.00±0.05
PacDCGAN3 (ours) 601.3±32.18 2.00±0.17 866.6±12.10 0.90±0.04
PacDCGAN4 (ours) 667.4±29.00 1.81±0.15 820.2±25.50 1.15±0.14

Table 6: Modes covered and KL divergence for unrolled GANs and MD as compared to PacDCGAN
for various unrolling parameters, discriminator sizes, and the degree of packing. The DCGAN and
PacDCGAN results are averaged over 50 trials, with standard error reported. The MD results are
averaged over 10 trials, with standard error reported.

B.3 Comparisons to WGAN

To verify that our packing idea can also work on Wasserstein loss, we compare WGAN with
PacWGAN on stacked MNIST dataset. The experiment setting follows Appendix B.1, except: (1)
remove all batch normalization layers in discriminator, and remove the sigmoid activation in the
output layer of discriminator, (2) use WGAN-GP loss instead of JSD loss, (3) to showcase the
difference between WGAN and PacGAN, we use smaller generators and discriminators. Specifically,
the number of feature maps in each layer of discriminator and generator is a quarter of what used in
Appendix B.1.

Table 7 shows the results. We find that PacWGANs discover more modes and achieves smaller KL
than WGAN. This suggests that packing can also work on Wasserstein loss.

Stacked MNIST
Modes KL

WGAN [1] 314.3±38.54 2.44±0.170
PacWGAN2 (ours) 927.6±22.19 0.59±0.108
PacWGAN3 (ours) 948.7±21.43 0.50±0.089
PacWGAN4 (ours) 965.7±19.07 0.42±0.094

Table 7: Two measures of mode collapse proposed in [25] for the stacked MNIST dataset: number of
modes captured by the generator and reverse KL divergence over the generated mode distribution.
All results are averaged over 10 trials, with standard error reported.

C Generated pictures in CelebA experiment

To detect collisions in a batch of images, [3] selects the 20 closest generated sample pairs (measured
in Euclidean distance over pixel space), and then manually determine if any of the pairs would
be considered duplicates by humans. We estimate the probability of collision by repeating the
experiment 10 times and averaging over three human reviewers on each sample batch. We use
DCGAN- unconditional, with JSD objective as described in [22] as the base architecture. We perform
the experiment for different sizes of the discriminator while fixing the other hyper-parameters. It
has 4 CNN layers in the discriminator with the number of output channels of each layer being
dim× 1, 2, 4, 8. Thus the discriminator size is proportional to dim2. Table 2 shows probability of
collision in a batch of size 1024 for DCGAN and PacDCGAN2 for dim ∈ {16, 32, 64, 80}.
Figure 7 shows samples generated from DCGAN and PacDCGAN2 for dim = 16. We note
that DCGAN and PacDCGAN2 use approximately same number of parameters, 273K and 274K
respectively.
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DCGAN PacDCGAN2

Figure 7: CelebA samples generated from DCGAN (left) and PacDCGAN2 (right) show PacDCGAN2
generates more diverse and sharper images.

D Theoretical understanding of mode collapse and product distributions

D.1 Evolution of the region under product distributions

The toy example generatorsQ1 andQ2 from Figure 2 could not be distinguished using only their total
variation distances from P , despite exhibiting very different mode collapse properties. This suggests
that the original GAN (with 0-1 loss) may be vulnerable to mode collapse. We prove in Theorem
2 that a discriminator that packs multiple samples together can better distinguish mode-collapsing
generators. Intuitively, m packed samples are equivalent to a single sample drawn from the product
distributions Pm andQm. We show in this section that there is a fundamental connection between the
strength of mode collapse of (P,Q) and the loss as seen by the packed discriminator dTV(P

m, Qm).

Intuition via toy examples. Concretely, consider the example from the previous section and recall
that Pm denote the product distribution resulting from packing together m independent samples from
P . Figure 8 illustrates how the mode collapse region evolves over m, the degree of packing. This
evolution highlights a key insight: the regionR(Pm, Qm1 ) of a mode-collapsing generator expands
much faster as m increases compared to the regionR(Pm, Qm2 ) of a non-mode-collapsing generator.
This implies that the total variation distance of (P,Q1) increases more rapidly as we pack more
samples, compared to (P,Q2). This follows from the fact that the total variation distance between P
and the generator can be determined directly from the upper boundary of the mode collapse region
(see Section E.2 for the precise relation). In particular, a larger mode collapse region implies a larger
total variation distance between P and the generator, which is made precise in Section E.2. The total
variation distances dTV(P

m, Qm1 ) and dTV(P
m, Qm2 ), which were explicitly chosen to be equal at

m = 1 in our example, grow farther apart with increasing m, as illustrated in the right figure below.
This implies that if we use a packed discriminator, the mode-collapsing generator Q1 will be heavily
penalized for having a larger loss, compared to the non-mode-collapsing Q2.
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Figure 8: Evolution of the mode collapse region over the degree of packing m for the two toy
examples from Figure 2. The region of the mode-collapsing generator Q1 expands faster than the
non-mode-collapsing generator Q2 when discriminator inputs are packed (at m = 1 these examples
have the same TV distances). This causes a discriminator to penalize mode collapse as desired.
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D.2 Evolution of total variation distances

In order to generalize the intuition from the above toy examples, we first analyze how the total
variation evolves for the set of all pairs (P,Q) that have the same total variation distance τ when
unpacked (i.e., when m = 1). The solutions to the following optimization problems give the desired
upper and lower bounds, respectively, on total variation distance for any distribution pair in this set
with a packing degree of m:

min
P,Q

dTV(P
m, Qm) max

P,Q
dTV(P

m, Qm) (4)

subject to dTV(P,Q) = τ subject to dTV(P,Q) = τ ,

where the maximization and minimization are over all probability measures P and Q. We give the
exact solution in Theorem 4, which is illustrated pictorially in Figure 3 (left).
Theorem 4. For all 0 ≤ τ ≤ 1 and a positive integer m, the solution to the maximization in (4) is
1− (1− τ)m, and the solution to the minimization in (4) is

L(τ,m) , min
0≤α≤1−τ

dTV

(
Pinner(α)

m, Qinner(α, τ)
m
)
, (5)

where Pinner(α)
m and Qinner(α, τ)

m are the m-th order product distributions of binary random
variables distributed as

Pinner(α) = [1− α, α] , (6)
Qinner(α, τ) = [1− α− τ, α+ τ ] . (7)

Although this is a simple statement that can be proved in several different ways, we introduce in
Section F a novel geometric proof technique that critically relies on the proposed mode collapse
region. This particular technique will allow us to generalize the proof to more complex problems
involving mode collapse in Theorem 2, for which other techniques do not generalize. Note that the
claim in Theorem 4 has nothing to do with mode collapse. Still, the mode collapse region definition
(used here purely as a proof technique) provides a novel technique that seamlessly generalizes to
prove more complex statements in the following.

For any given value of τ and m, the bounds in Theorem 4 are easy to evaluate numerically, as shown
below in the left panel of Figure 3. Within this achievable range, some subset of pairs (P,Q) have
rapidly increasing total variation, occupying the upper part of the region (shown in red, middle
panel of Figure 3), and some subset of pairs (P,Q) have slowly increasing total variation, occupying
the lower part as shown in blue in the right panel in Figure 3. In particular, the evolution of the
mode-collapse region of a pair of m-th power distributionsR(Pm, Qm) is fundamentally connected
to the strength of mode collapse in the original pair (P,Q). This means that for a mode-collapsed
pair (P,Q1), the mth-power distribution will exhibit a different total variation distance evolution
than a non-mode-collapsed pair (P,Q2). As such, these two pairs can be distinguished by a packed
discriminator. Making such a claim precise for a broad class of mode-collapsing and non-mode-
collapsing generators is challenging, as it depends on the target P and the generator Q, each of
which can be a complex high dimensional distribution, like natural images. The proposed region
interpretation, endowed with the hypothesis testing interpretation and the data processing inequalities
that come with it, is critical: it enables the abstraction of technical details and provides a simple and
tight proof based on geometric techniques on two-dimensional regions.

D.3 Evolution of total variation distances with mode collapse

We plot the region defined by the upper and lower bounds in Theorem 2 for various values of ε and δ.

We repeat the main theorem here for completeness.
Theorem 5. For all 0 ≤ ε < δ ≤ 1 and a positive integer m, if 1 ≥ τ ≥ δ − ε then the solution to
the maximization in (2) is 1− (1− τ)m, and the solution to the minimization in (2) is

L1(ε, δ, τ,m) , min
{

min
0≤α≤1− τδ

δ−ε

dTV

(
Pinner1(δ, α)

m, Qinner1(ε, α, τ)
m
)
,

min
1− τδ

δ−ε≤α≤1−τ
dTV

(
Pinner2(α)

m, Qinner2(α, τ)
m
)}

, (8)
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where Pinner1(δ, α)
m, Qinner1(ε, α, τ)

m, Pinner2(α)
m, and Qinner2(α, τ)

m are the m-th order prod-
uct distributions of discrete random variables distributed as

Pinner1(δ, α) = [δ, 1− α− δ, α] , (9)
Qinner1(ε, α, τ) = [ε, 1− α− τ − ε, α+ τ ] , (10)

Pinner2(α) = [1− α, α] , (11)
Qinner2(α, τ) = [1− α− τ, α+ τ ] . (12)

If τ < δ − ε, then the optimization in (2) has no solution and the feasible set is an empty set.

A proof of this theorem is provided in Section F.2, which critically relies on the proposed mode
collapse region representation of the pair (P,Q), and the celebrated result by Blackwell from [4].
The solutions in Theorem 2 can be numerically evaluated for any given choices of (ε, δ, τ) as we
show in Figure 9.
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Figure 9: The evolution of total variation distance over the packing degreem for mode collapsing pairs
is shown as a red band. The upper and lower boundaries of the red band is defined by the optimization
2 and computed using Theorem 2. For a fixed dTV(P,Q) = τ = 0.11 and (ε, δ = 0.1)-mode
collapse, we show the evolution with different choices of ε ∈ {0.00, 0.01, 0.02, 0.03, 0.04, 0.05}.
The black solid lines show the maximum/minimum total variation in the optimization problem (4) as
a reference. The family of pairs (P,Q) with stronger mode collapse (i.e. smaller ε in the constraint),
occupy a smaller region at the top with higher total variation under packing, and hence is more
penalized when training the generator.

D.4 Evolution of total variation distances without mode collapse

For the optimization in (3), it is not possible to have dTV(P,Q) > (δ−ε)/(δ+ε) and δ+ε ≤ 1, and
satisfy the mode collapse and mode augmentation constraints (see Section F.3 for a proof). Similarly,
it is not possible to have dTV(P,Q) > (δ− ε)/(2− δ− ε) and δ+ ε ≥ 1, and satisfy the constraints.
Hence, the feasible set is empty when τ > max{(δ− ε)/(δ+ ε), (δ− ε)/(2− δ− ε)}. On the other
hand, when τ ≤ δ − ε, no pairs with total variation distance τ can have (ε, δ)-mode collapse. In this
case, the optimization reduces to the simpler one in (4) with no mode collapse constraints. Non-trivial
solution exists in the middle regime, i.e. δ − ε ≤ τ ≤ max{(δ − ε)/(δ + ε), (δ − ε)/(2− δ − ε)}.
The lower bound for this regime, given in equation (16), is the same as the lower bound in (5), except
it optimizes over a different range of α values. For a wide range of parameters ε, δ, and τ , those
lower bounds will be the same, and even if they differ for some parameters, they differ slightly. This
implies that the pairs (P,Q) with weak mode collapse will occupy the bottom part of the evolution of
the total variation distances (see Figure 3 right panel), and also will be penalized less under packing.
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Hence a generator minimizing (approximate) dTV(P
m, Qm) is likely to generate distributions with

weak mode collapse.
Theorem 6. For all 0 ≤ ε < δ ≤ 1 and a positive integer m, if 0 ≤ τ < δ − ε, then the maximum
and the minimum of (3) are the same as those of the optimization (4) provided in Theorem 4.

If δ + ε ≤ 1 and δ − ε ≤ τ ≤ (δ − ε)/(δ + ε) then the solution to the maximization in (3) is

U1(ε, δ, τ,m) , max
α+β≤1−τ, ετδ−ε≤α,β

dTV

(
Pouter1(ε, δ, α, β, τ)

m, Qouter1(ε, δ, α, β, τ)
m
)
,(13)

where Pouter1(ε, δ, α, β, τ)
m and Qouter1(ε, δ, α, β, τ)

m are the m-th order product distributions of
discrete random variables distributed as

Pouter1(ε, δ, α, β, τ) =
[
α(δ−ε)−ετ

α−ε , α(α+τ−δ)
α−ε , 1− τ − α− β, β, 0

]
, and (14)

Qouter1(ε, δ, α, β, τ) =
[
0, α, 1− τ − α− β, β(β+τ−δ)

β−ε , β(δ−ε)−ετ
β−ε

]
. (15)

The solution to the minimization in (3) is

L2(τ,m) , min
ετ
δ−ε≤α≤1− δτ

δ−ε

dTV

(
Pinner(α)

m, Qinner(α, τ)
m
)
, (16)

where Pinner(α) and Qinner(α, τ) are defined as in Theorem 4.

If δ + ε > 1 and δ − ε ≤ τ ≤ (δ − ε)/(2− δ − ε) then the solution to the maximization in (3) is

U2(ε, δ, τ,m) , max
α+β≤1−τ, (1−δ)τδ−ε ≤α,β

dTV

(
Pouter2(ε, δ, α, β, τ)

m, Qouter2(ε, δ, α, β, τ)
m
)
,(17)

where Pouter2(ε, δ, α, β, τ)
m and Qouter2(ε, δ, α, β, τ)

m are the m-th order product distributions of
discrete random variables distributed as

Pouter2(ε, δ, α, β, τ) =
[
α(δ−ε)−(1−δ)τ

α−(1−δ) , α(α+τ−(1−ε))
α−(1−δ) , 1− τ − α− β, β, 0

]
, and(18)

Qouter2(ε, δ, α, β, τ) =
[
0, α, 1− τ − α− β, β(β+τ−(1−ε))

β−(1−δ) , β(δ−ε)−(1−δ)τ
β−(1−δ)

]
. (19)

The solution to the minimization in (3) is

L3(τ,m) , min
(1−δ)τ
δ−ε ≤α≤1−

(1−ε)τ
δ−ε

dTV

(
Pinner(α)

m, Qinner(α, τ)
m
)
, (20)

where Pinner(α) and Qinner(α, τ) are defined as in Theorem 4.

If τ > max{(δ − ε)/(δ + ε), (δ − ε)/(2− δ − ε)}, then the optimization in (3) has no solution and
the feasible set is an empty set.

A proof of this theorem is provided in Section F.3, which also critically relies on the proposed mode
collapse region representation of the pair (P,Q) and the celebrated result by Blackwell from [4]. The
solutions in Theorem 6 can be numerically evaluated for any given choices of (ε, δ, τ) as we show in
Figure 10.

D.5 The benefit of packing degree m

We give a practitioner the choice of the degree m of packing, namely how many samples to jointly
pack together. There is a natural trade-off between computational complexity (which increases
gracefully with m) and the additional distinguishability, which we illustrate via an example. Consider
the goal of differentiating two families of target-generator pairs, one with mode collapse and one
without:

H0(ε, δ, τ) , {(P,Q)|(P,Q) without (ε, δ)-mode collapse or augmentation, and dTV(P,Q) = τ} ,
H1(ε, δ, τ) , {(P,Q)|(P,Q) with (ε, δ)-mode collapse and dTV(P,Q) = τ} . (21)

As both families have the same total variation distances, they cannot be distinguished by an unpacked
discriminator. However, a packed discriminator that uses m samples jointly can differentiate those
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Figure 10: The evolution of total variation distance over the packing degree m for pairs with
no mode collapse/augmentation is shown as a blue band, as defined by the optimization (3) and
computed using Theorem 6. For a fixed dTV(P,Q) = τ = 0.11 and the lack of (ε, δ = 0.1)-
mode collapse/augmentation constraints, we show the evolution with different choices of ε ∈
{0.03, 0.04, 0.05, 0.06, 0.07, 0.08}. The black solid lines show the maximum/minimum total varia-
tion in the optimization (4) as a reference. The family of pairs (P,Q) with weaker mode collapse
(i.e. larger ε in the constraint), occupies a smaller region at the bottom with smaller total variation
under packing, and hence is less penalized when training the generator.

two classes and even separate them entirely for a certain choices of parameters, as illustrated in
Figure 11. In red, we show the achievable dTV(P

m, Qm) for H1(ε = 0.02, δ = 0.1, τ = 0.11) (the
bounds in Theorem (2)). In blue is shown a similar region for H0(ε = 0.05, δ = 0.1, τ = 0.11) (the
bounds in Theorem (6)). Although the two families are strictly separated (one with ε = 0.02 and
another with ε = 0.05), a non-packed discriminator cannot differentiate those two families as the
total variation is the same for both. However, as you pack mode samples, the packed discriminator
becomes more powerful in differentiating the two hypothesized families. For instance, for m ≥ 5,
the total variation distance completely separates the two families.

In general, the overlap between those regions depends on the specific choice of parameters, but
the overall trend is universal: packing separates generators with mode collapse from those without.
Further, as the degree of packing increases, a packed discriminator increasingly penalizes generators
with mode collapse and rewards generators that exhibit less mode collapse. Even if we consider
complementary sets H0 and H1 with the same ε and δ (such that the union covers the whole space of
pairs of (P,Q) with the same total variation distance), the least penalized pairs will be those with
least mode collapse, which fall within the blue region of the bottom right panel in Figure 10. This is
consistent with our empirical observations in Section 4.

D.6 Jensen-Shannon divergence

Our theoretical analysis focused on 0-1 loss, as our current analysis technique gives exact solutions
to the optimization problems (4), (2), and (3) if the metric is total variation distance. This follows
from the fact that we can provide tight inner and outer regions to the family of mode collapse regions
R(P,Q) that have the same total variation distances as dTV(P,Q) as shown in Section F.

In practice, 0-1 loss is never used, as it is not differentiable. A popular choice of a loss function is
the cross entropy loss, which gives a metric of Jensen-Shannon (JS) divergence, as shown in the
beginning of Section 3. However, the same proof techniques used to show Theorems 2 and 6 give
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Figure 11: Evolution of achievable total variation distances dTV(P
m, Qm) over packing size m for

two families of the target-generator pairs H0(0.05, 0.1, 0.11) and H1(0.02, 0.1, 0.11). The mode-
collapsing H1 is penalized significantly by the discriminator (only with m > 1) and the two families
can be strictly separated with packing for m > 5.

loose bounds on JS divergence. In particular, this gap prevents us from sharply characterizing the
full effect of packing degree m on the JS divergence of a pair of distributions. Nonetheless, we find
that empirically, packing seems to reduce mode collapse even under a cross entropy loss. It is an
interesting open question to find solutions to the optimization problems (4), (2), and (3), when the
metric is the (more common) Jensen-Shannon divergence.

Although our proposed analysis technique does not provide a tight analysis for JS divergence, we
can still analyze a toy example similar to the one in Section D.1. Consider a toy example with a
uniform target distribution P = U([0, 1]) over [0, 1], a mode collapsing generator Q1 = U([0.4, 1]),
and a non mode collapsing generator Q2 = 0.285U([0, 0.77815]) + 3.479U([0.77815, 1]). They
are designed to have the same Jensen-Shannon divergence, i.e. dJS(P,Q1) = dJS(P,Q2) = 0.1639,
but Q1 exhibits an extreme mode collapse as the whole probability mass in [0, 0.4] is lost, whereas
Q2 captures a more balanced deviation from P . Figure 12 shows that the mode collapsing Q1 have
large JS divergence (and hence penalized more) under packing, compared to non-mode-collapsed Q2.

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 1  2  3  4  5  6

 

 

degree of packing m

Jensen-Shannon divergence
dJS(P

m, Qm1 )
dJS(P
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Figure 12: Jensen-Shannon divergence increases faster as a function of packing degree m for a mode
collapsing generator Q1, compared to a non mode collapsing generator Q2.

E Operational interpretation of mode collapse via hypothesis testing region

So far, all the definitions and theoretical results have been explained without explicitly using the
mode collapse region. The main contribution of introducing the region definition is that it provides a
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new proof technique based on the geometric properties of these two-dimensional regions. Concretely,
we show that the proposed mode collapse region is equivalent to a similar notion in binary hypothesis
testing. This allows us to bring powerful mathematical tools from this mature area in statistics and
information theory—in particular, the data processing inequalities originating from the seminal work
of Blackwell [4]. We make this connection precise, which gives insights on how to interpret the mode
collapse region, and list the properties and techniques which dramatically simplify the proof, while
providing the tight results in Section F.

E.1 Equivalence between the mode collapse region and the ROC curve

There is a simple one-to-one correspondence between mode collapse region as we define it in
Definition 1 (e.g. Figure 2) and the ROC curve studied in binary hypothesis testing. In the classical
testing context, there are two hypotheses, h = 0 or h = 1, and we make observations via some
stochastic experiment in which our observations depend on the hypothesis. Let X denote this
observation. One way to visualize such an experiment is using a two-dimensional region defined by
the corresponding type I and type II errors. Concretely, an ROC curve of a binary hypothesis testing
is obtained by plotting the largest achievable true positive rate (TPR), i.e. 1−probability of missed
detection, or equivalently 1− type II error, on the vertical axis against the false positive rate (FPR),
i.e probability of false alarm or equivalently type I error, on the horizontal axis.

We can map this binary hypothesis testing setup directly to the GAN context. Suppose the null
hypothesis h = 0 denotes observations being drawn from the generated distribution Q, and the
alternate hypothesis h = 1 denotes observations being drawn from the true distribution P . Given
a sample X from this experiment, suppose we make a decision on whether the sample came from
P or Q based on a rejection region Sreject, such that we reject the null hypothesis if X ∈ Sreject.
FPR (i.e. Type I error) is when the null hypothesis is true but rejected, which happens with P(X ∈
Sreject|h = 0), and TPR (i.e. 1-type II error) is when the null hypothesis is false but accepted, which
happens with P(X ∈ Sreject|h = 1). Sweeping through the achievable pairs (P(X ∈ Sreject|h =
1),P(X ∈ Sreject|h = 0)) for all rejection sets, this defines a two-dimensional convex region that we
call hypothesis testing region. The upper boundary of this convex set is the ROC curve. An example
of ROC curves for the two toy examples (P,Q1) and (P,Q2) from Figure 2 are shown in Figure 13.
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Figure 13: The hypothesis testing region of (P,Q) (bottom row) is the same as the mode collapse
region (top row). We omit the region above y = x axis in the hypothesis testing region as it is
symmetric. The regions for mode collapsing toy example in Figure 2 (P,Q1) are shown on the left
and the regions for the non mode collapsing example (P,Q2) are shown on the right.
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In defining the region, we allow stochastic decisions, such that if a point (x, y) and another point
(x′, y′) are achievable TPR and FPR, then any convex combination of those points are also achievable
by randomly choosing between those two rejection sets. Hence, the resulting hypothesis testing
region is always a convex set by definition. We also show only the region below the 45-degree line
passing through (0, 0) and (1, 1), as the other region is symmetric and redundant. For a given pair
(P,Q), there is a very simple relation between its mode collapse region and hypothesis testing region.
Remark 7 (Equivalence). For a pair of target P and generator Q, the hypothesis testing region is
the same as the mode collapse region.

This follows immediately from the definition of mode collapse region in Definition 1. If there exists a
set S such that P (S) ≥ δ and Q(S) ≤ ε, then for the choice of Sreject = S in the binary hypothesis
testing, there the point (P(X ∈ Sreject|h = 0) = ε,P(X ∈ Sreject|h = 1) = δ) in the hypothesis
testing region is achievable. The converse is also true, in the case we make deterministic decisions on
Sreject. As the mode collapse region is defined as a convex hull of all achievable points, the points in
the hypothesis testing region that require randomized decisions can also be covered.

For example, the hypothesis testing regions of the toy examples from Figure 2 are shown below in
Figure 13. This simple relation allows us to tap into the rich analysis tools known for hypothesis
testing regions and ROC curves. We list such properties of mode collapse regions derived from
this relation in the next section. The proof of all the remarks follow from the equivalence to binary
hypothesis testing and corresponding existing results from [4] and [12].

E.2 Properties of the mode collapse region

Given the equivalence between the mode collapse region and the binary hypothesis testing region,
several important properties follow as corollaries. First, the hypothesis testing region is a sufficient
statistic for the purpose of binary hypothesis testing from a pair of distributions (P,Q). This implies,
among other things, that all f -divergences can be derived from the region. In particular, for the
purpose of GAN with 0-1 loss, we can define total variation as a geometric property of the region,
which is crucial to proving our main results.
Remark 8 (Total variation distance). The total variation distance between P andQ is the intersection
between the vertical axis and the tangent line to the upper boundary ofR(P,Q) that has a slope of
one, as shown in Figure 14.
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Figure 14: Total variation distance is one among many properties of (P,Q2) that can be directly read
off of the regionR(P,Q).

This follows from the equivalence of the mode collapse region (Remark 7) and the hypothesis testing
region. This geometric definition of total variation allows us to enumerate over all pairs (P,Q) that
have the same total variation τ in our proof, via enumerating over all regions that touch the line that
has a unit slope and a shift τ (see Figure 15).

The major strength of the region perspective, as originally studied by Blackwell [4], is in providing a
comparison of stochastic experiments. In our GAN context, consider comparing two pairs of target
distributions and generators (P,Q) and (P ′, Q′) as follows. First, a hypothesis h is drawn, choosing
whether to produce samples from the true distribution, in which case we say h = 1, or to produce
samples from the generator, in which case we say h = 0. Conditioned on this hypothesis h, we use
X to denote a random variable that is drawn from the first pair (P,Q) such that fX|h(x|1) = P (x)
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and fX|h(x|0) = Q(x). Similarly, we use X ′ to denote a random sample from the second pair,
where fX′|h(x|1) = P ′(x) and fX′|h(x|0) = Q′(x). Note that the conditional distributions are
well-defined for both X and X ′, but there is no coupling defined between them. Suppose h is
independently drawn from the uniform distribution.

Definition 9. For a given coupling betweenX andX ′, we sayX dominatesX ′ if they form a Markov
chain h–X–X ′.

The data processing inequality in the following remark shows that if we further process the output
samples from the pair (P,Q) then the further processed samples can only have less mode collapse.
Processing output of stochastic experiments has the effect of smoothing out the distributions, and
mode collapse, which corresponds to a peak in the pair of distributions, are smoothed out in the
processing down the Markov chain.

Remark 10 (Data processing inequality). The following data processing inequality holds for the
mode collapse region. For two coupled target-generator pairs (P,Q) and (P ′, Q′), if X dominates
another pair X ′, then

R(P ′, Q′) ⊆ R(P,Q) .

This is expected, and follows directly from the equivalence of the mode collapse region (Remark 7)
and the hypothesis testing region, and corresponding data processing inequality of hypothesis testing
region in [12]. What is perhaps surprising is that the reverse is also true.

Remark 11 (Reverse data processing inequality). The following reverse data processing inequality
holds for the mode collapse region. For two paired marginal distributions X and X ′, if

R(P ′, Q′) ⊆ R(P,Q) ,

then there exists a coupling of the random samples from X and X ′ such that X dominates X ′,
i.e. they form a Markov chain h–X–X ′.

This follows from the equivalence between the mode collapse region and the hypothesis testing region
(Remark 7) and Blackwell’s celebrated result on comparisons of stochastic experiments [4] (see [12]
for a simpler version of the statement). This region interpretation, and the accompanying (reverse)
data processing inequality, abstracts away all the details about P and Q, enabling us to use geometric
analysis tools to prove our results. In proving our main results, we will mainly rely on the following
remark, which is the corollary of the Remarks 10 and 11.

Remark 12. For all positive integers m, the dominance of regions are preserved under taking m-th
order product distributions, i.e. ifR(P ′, Q′) ⊆ R(P,Q), thenR((P ′)m, (Q′)m) ⊆ R(Pm, Qm).

F Proofs of the main results

In this section, we showcase how the region interpretation provides a new proof technique that is
simple and tight. This transforms the measure-theoretic problem into a geometric one in a simple 2D
compact plane, facilitating the proof of otherwise-challenging results.

F.1 Proof of Theorem 4

Note that although the original optimization (4) has nothing to do with mode collapse, we use the
mode collapse region to represent the pairs (P,Q) to be optimized over. This allows us to use simple
geometric techniques to enumerate over all possible pairs (P,Q) that have the same total variation
distance τ .

By Remark 8, all pairs (P,Q) that have total variation τ must have a mode collapse regionR(P,Q)
that is tangent to the blue line in Figure 15. Let us denote a point whereR(P,Q) meets the blue line
by the point (1− α− τ, 1− α) in the 2D plane, parametrized by α ∈ [0, 1− τ ]. Then, for any such
(P,Q), we can sandwich the regionR(P,Q) between two regionsRinner andRouter:

Rinner(α, τ) ⊆ R(P,Q) ⊆ Router(τ) , (22)

which are illustrated in Figure 16. Now, we wish to understand how these inner and outer regions
evolve under product distributions. This endeavor is complicated by the fact that there can be
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Figure 15: For any pair (P,Q) with total variation distance τ , there exists an α such that the
corresponding regionR(P,Q) is sandwiched betweenRinner(α, τ) andRouter(τ).

infinite pairs of distributions that have the same region R(P,Q). However, note that if two pairs
of distributions have the same region R(P,Q) = R(P ′, Q′), then their product distributions will
also have the same regionR(Pm, Qm) = R((P ′)m, (Q′)m). As such, we can focus on the simplest,
canonical pair of distributions, whose support set has the minimum cardinality over all pairs of
distributions with regionR(P,Q).

For a given α, we denote the pairs of canonical distributions achieving these exact inner and
outer regions as in Figure 16: let (Pinner(α), Qinner(α, τ)) be as defined in (6) and (7), and let
(Pouter(τ), Qouter(τ)) be defined as below. Since the outer region has three sides (except for the
universal 45-degree line), we only need alphabet size of three to find the canonical probability
distributions corresponding to the outer region. By the same reasoning, the inner region requires
only a binary alphabet. Precise probability mass functions on these discrete alphabets can be found
easily from the shape of the regions and the equivalence to the hypothesis testing region explained in
Section E.
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Figure 16: Canonical pairs of distributions corresponding toRinner(α, τ) andRouter(τ).

By the preservation of dominance under product distributions in Remark 12, it follows from the
dominance in (22) that for any (P,Q) there exists an α such that

R(Pinner(α)
m, Qinner(α, τ)

m) ⊆ R(Pm, Qm) ⊆ R(Pouter(τ)
m, Qouter(τ)

m) . (23)

Due to the data processing inequality of mode collapse region in Remark 11, it follows that dominance
of region implies dominance of total variation distances:

min
0≤α≤1−τ

dTV(Pinner(α)
m, Qinner(α, τ)

m) ≤ dTV(P
m, Qm) ≤ dTV(Pouter(τ)

m, Qouter(τ)
m) .(24)

The RHS and LHS of the above inequalities can be completely characterized by taking the m-th
power of those canonical pairs of distributions. For the upper bound, all mass except for (1− τ)m is
nonzero only on one of the pairs, which gives dTV(P

m
outer, Q

m
outer) = 1− (1− τ)m. For the lower

bound, writing out the total variation gives L(τ,m) in (5). This finishes the proof of Theorem 4.
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F.2 Proof of Theorem 2

In optimization (2), we consider only those pairs with (ε, δ)-mode collapse. It is simple to see that the
outer bound does not change. We only need a new inner bound. Let us denote a point whereR(P,Q)
meets the blue line by the point (1− α− τ, 1− α) in the 2D plane, parametrized by α ∈ [0, 1− τ ].
We consider the case where α < 1 − (τδ/(δ − ε)) for now, and treat the case when α is larger
separately, as the analyses are similar but require a different canonical pair of distributions (P,Q)
for the inner bound. The additional constraint that (P,Q) has (ε, δ)-mode collapse translates into a
geometric constraint that we need to consider all regionsR(P,Q) that include the orange solid circle
at point (ε, δ). Then, for any such (P,Q), we can sandwich the regionR(P,Q) between two regions
Rinner1 andRouter:

Rinner1(ε, δ, α, τ) ⊆ R(P,Q) ⊆ Router(τ) , (25)
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Figure 17: For any pair (P,Q) with (ε, δ)-mode collapse, the corresponding region R(P,Q) is
sandwiched betweenRinner1(ε, δ, α, τ) andRouter(τ).

Let (Pinner1(δ, α), Qinner1(ε, α, τ)) defined in (9) and (10), and (Pouter(τ), Qouter(τ)) defined in
Section F.1 denote the pairs of canonical distributions achieving the inner and outer regions exactly
as shown in Figure 18. By the preservation of dominance under product distributions in Remark 12,
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Figure 18: Canonical pairs of distributions corresponding toRinner(ε, δ, τ, α) andRouter(τ).

it follows from the dominance in (25) that for any (P,Q) there exists an α such that

R(Pinner1(δ, α)
m, Qinner1(ε, δ, α, τ)

m) ⊆ R(Pm, Qm) ⊆ R(Pouter(τ)
m, Qouter(τ)

m) . (26)

Due to the data processing inequality of mode collapse region in Remark 11, it follows that dominance
of region implies dominance of total variation distances:

min
0≤α≤1− τδ

δ−ε

dTV(Pinner1(δ, α)
m, Qinner1(ε, δ, α, τ)

m) ≤ dTV(P
m, Qm) ≤ dTV(Pouter(τ)

m, Qouter(τ)
m) .

(27)

The RHS and LHS of the above inequalities can be completely characterized by taking the m-th
power of those canonical pairs of distributions. For the upper bound, all mass except for (1− τ)m is
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nonzero only on one of the pairs, which gives dTV(P
m
outer, Q

m
outer) = 1− (1− τ)m. For the lower

bound, writing out the total variation gives L1(ε, δ, τ,m) in (8).

For α > 1 − (τδ/(δ − ε)), we need to consider a different class of canonical distributions for the
inner region, shown below. The inner regionRinner2(α, τ) and corresponding canonical distributions
Pinner2(α) and Qinner2(α, τ) defined in (11) and (12) are shown below. We take the smaller one
between the total variation distance resulting from these two cases. Note that α ≤ 1− τ by definition.
This finishes the proof of Theorem 2.
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Figure 19: When α > 1− (τδ/(δ − ε)), this shows a canonical pair of distributions corresponding
toRinner(ε, δ, τ, α) for the mode-collapsing scenario H1(ε, δ, τ).

F.3 Proof of Theorem 6

When τ < δ − ε, all pairs (P,Q) with dTV(P,Q) = τ cannot have (ε, δ)-mode collapse, and the
optimization of (3) reduces to that of (4) without any mode collapse constraints.

When δ + ε ≤ 1 and τ > (δ − ε)/(δ + ε), no convex regionR(P,Q) can touch the 45-degree line
at τ as shown below, and the feasible set is empty. This follows from the fact that a triangle region
passing through both (ε, δ) and (1− δ, 1− ε) will have a total variation distance of (δ − ε)/(δ + ε).
Note that no (ε, δ)-mode augmentation constraint translates into the region not including the point
(1 − δ, 1 − ε). We can see easily from Figure 20 that any total variation beyond that will require
violating either the no-mode-collapse constraint or the no-mode-augmentation constraint. Similarly,
when δ+ ε > 1 and τ > (δ− ε)/(2− δ− ε), the feasible set is also empty. These two can be unified
as τ > max{(δ − ε)/(δ + ε), (δ − ε)/(2− δ − ε)}.
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Figure 20: When δ + ε ≤ 1 and τ = (δ − ε)/(δ + ε) (i.e. (1 − τ)/2 : (1 + τ)/2 = ε : δ), a
triangle mode collapse region that touches both points (ε, δ) and (1− δ, 1− ε) at two of its edges
also touches the 45-degree line with a τ shift at a vertex (left). When δ + ε > 1, the same happens
when τ = (δ − ε)/(2 − δ − ε) (i.e. (1 − τ)/2 : (1 + τ)/2 = (1 − δ) : (1 − ε)). Hence, if
τ > max{(δ − ε)/(δ + ε), (δ − ε)/(2− δ − ε)}, then the triangle region that does not include both
orange points cannot touch the blue 45-degree line.

Suppose δ + ε ≤ 1, and consider the intermediate regime when δ − ε ≤ τ ≤ (δ − ε)/(δ + ε).
In optimization (3), we consider only those pairs with no (ε, δ)-mode collapse or (ε, δ)-mode
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augmentation. It is simple to see that the inner bound does not change from optimization in (4). Let
us denote a point where R(P,Q) meets the blue line by the point (1 − α′ − τ, 1 − α′) in the 2D
plane, parametrized by α′ ∈ [0, 1 − τ ]. The R(α′, τ) defined in Figure 16 works in this case also.
We only need a new outer bound.

We construct an outer bound region, according to the following rule. We fit a hexagon where one
edge is the 45-degree line passing through the origin, one edge is the vertical axis, one edge is the
horizontal line passing through (1, 1), one edge is the 45-degree line with shift τ shown in blue in
Figure 21, and the remaining two edges include the two orange points, respectively, at (ε, δ) and
(1− δ, 1−ε). For anyR(P,Q) satisfying the constraints in (3), there exists at least one such hexagon
that includes R(P,Q). We parametrize the hexagon by α and β, where (α, τ + α) denotes the
left-most point where the hexagon meets the blue line, and (1− τ − β, 1− β) denotes the right-most
point where the hexagon meets the blue line.

The additional constraint that (P,Q) has no (ε, δ)-mode collapse or (ε, δ)-mode augmentation
translates into a geometric constraint that we need to consider all regions R(P,Q) that does not
include the orange solid circle at point (ε, δ) and (1− δ, 1− ε). Then, for any such (P,Q), we can
sandwich the regionR(P,Q) between two regionsRinner andRouter1:

Rinner(α
′, τ) ⊆ R(P,Q) ⊆ Routrer1(ε, δ, α, β, τ) , (28)

whereRinner(α, τ) is defined as in Figure 16.
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Figure 21: For any pair (P,Q) with no (ε, δ)-mode collapse or no (ε, δ)-mode augmentation, the
corresponding regionR(P,Q) is sandwiched betweenRinner(α

′, τ) andRouter1(ε, δ, α, β, τ) (left).
A canonical pair of distributions corresponding toRouter1(ε, δ, α, β, τ) (middle and right).

Let (Pinner(α
′), Qinner(α

′, τ)) defined in (6) and (7), and
(Pouter1(ε, δ, α, β, τ), Qouter1(ε, δ, α, β, τ)) denote the pairs of canonical distributions achieving the
inner and outer regions exactly as shown in Figure 21.

By the preservation of dominance under product distributions in Remark 12, it follows from the
dominance in (28) that for any (P,Q) there exist α′, α, and β such that

R(Pinner(α
′)m, Qinner(α

′, τ)m) ⊆ R(Pm, Qm) ⊆ R(Pouter1(ε, δ, α, β, τ)
m, Qouter1(ε, δ, α, β, τ)

m) .
(29)

Due to the data processing inequality of mode collapse region in Remark 11, it follows that dominance
of region implies dominance of total variation distances:

min
ετ
δ−ε≤α′≤1− τδ

δ−ε

dTV(Pinner(α
′)m, Qinner(α

′, τ)m) ≤ dTV(P
m, Qm)

≤ max
α,β≥ ετ

δ−ε ,α+β≤1−τ
dTV(Pouter1(ε, δ, α, β, τ)

m, Qouter1(ε, δ, α, β, τ)
m) .

(30)

The RHS and LHS of the above inequalities can be completely characterized by taking the m-th
power of those canonical pairs of distributions, and then taking the respective minimum over α′ and
maximum over α and β. For the upper bound, this gives U1(ε, δ, τ,m) in (13), and for the lower
bound this gives L2(τ,m) in (16).
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Now, suppose δ+ε > 1, and consider the intermediate regime when δ−ε ≤ τ ≤ (δ−ε)/(2−δ−ε).
We have a different outer bound Router2(ε, δ, α, δ, τ) as the role of (ε, δ) and (1 − δ, 1 − ε) have
switched. A similar analysis gives

dTV(P
m, Qm) ≤ max

α,β≥ (1−δ)τ
δ−ε ,α+β≤1−τ

dTV(Pouter2(ε, δ, α, β, τ)
m, Qouter2(ε, δ, α, β, τ)

m) ,

(31)

where the canonical distributions are shown in Figure 22 and defined in (18) and (19). This gives
U2(ε, δ, τ,m) in (17). For the lower bound we only need to change the range of α we minimize over,
which gives L3(τ,m) in (20).
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Figure 22: A canonical pair of distributions corresponding toRouter2(ε, δ, α, β, τ).
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