Appendix

We collect in this Appendix all the proofs of the results presented in the paper. Section A contains the main proofs, while Section B contains technical results used in Section A. For completeness' sake, we recall existing theoretical results mentioned in the paper in Section C. Finally, reference to a concentration result as well as a quick summary of the properties of conditional expectation that are used in Section A are collected in Section D and E.

A Proofs of the main results

Proof of Lemma 1. In the proof, we first obtain a bias–variance decomposition of the mean squared error, and then proceed to lower bound the variance term for infinitely many n.

Since the diversity condition does not hold, there exists $\delta > 0$ such that, for infinitely many n,

$$\mathbb{E}\left[\sum_{i=1}^{n} W_{n,i}^{2}(X)\right] \ge \delta.$$
(A.6)

Set n as in Eq. (A.6). We define the auxiliary estimator $\overline{\eta}_n$ as

$$\overline{\eta}_n(x) := \sum_{i=1}^n \eta(X_i) W_{n,i}(x) \quad \text{for any} \quad x \in [0,1]^d \,.$$
 (A.7)

According to Lemma 3,

$$\mathbb{E}\left[|\eta(X) - \widehat{\eta}_n(X)|^2\right] = \mathbb{E}\left[|\eta(X) - \overline{\eta}_n(X)|^2\right] + \mathbb{E}\left[|\overline{\eta}_n(X) - \widehat{\eta}_n(X)|^2\right].$$

We now proceed to lower bound the variance term. First, we condition with respect to $X, X_{[n]}$ and Θ to obtain

$$\mathbb{E}\left[\left|\overline{\eta}_{n}(X) - \widehat{\eta}_{n}(X)\right|^{2} \left|X, X_{[n]}, \Theta\right] = \operatorname{Var}\left(\overline{\eta}_{n}(X) - \widehat{\eta}_{n}(X) \left|X, X_{[n]}, \Theta\right)\right.$$

$$(\operatorname{Eq.}(B.12))$$

$$= \operatorname{Var}\left(\sum_{i=1}^{n} \left(Y_{i} - \eta(X_{i})\right) W_{n,i}(X) \left|X, X_{[n]}, \Theta\right)\right.$$

$$(\text{definition of } \overline{\eta}_{n} (\operatorname{Eq.}(A.7)) \text{ and } \widehat{\eta}_{n} (\operatorname{Eq.}(2.4)))$$

$$= \operatorname{Var}\left(\sum_{i=1}^{n} \varepsilon_{i} W_{n,i}(X) \middle| X, X_{[n]}, \Theta\right)$$
(Eq. (2.1))

$$=\sum_{i=1}^{n} W_{n,i}^{2}(X) \operatorname{Var}\left(\varepsilon_{i} \middle| X, X_{[n]}, \Theta\right)$$

(UW-property + independence of the random variables ε_i)

$$=\sum_{i=1}^{n} W_{n,i}^{2}(X) \operatorname{Var}\left(\varepsilon_{i}\right)$$

(each ε_i is independent from $X, X_{[n]}$ and Θ)

$$\mathbb{E}\left[\left|\overline{\eta}_n(X) - \widehat{\eta}_n(X)\right|^2 \Big| X, X_{[n]}, \Theta\right] = \sum_{i=1}^n W_{n,i}^2(X) \sigma^2 \, .$$

By the tower property of the conditional expectation (Prop. 2),

$$\mathbb{E}\left[\left|\overline{\eta}_n(X) - \widehat{\eta}_n(X)\right|^2\right] = \mathbb{E}\left[\mathbb{E}\left[\left|\overline{\eta}_n(X) - \widehat{\eta}_n(X)\right|^2 \left|X, X_{[n]}, \Theta\right]\right] = \sigma^2 \mathbb{E}\left[\sum_{i=1}^n W_{n,i}^2(X)\right] + \sigma^2 \mathbb{E}\left[\sum_{i=1}^n$$

Finally, recall that n was chosen such that $\mathbb{E}\left[\sum_{i=1}^{n} W_{n,i}^{2}(X)\right] \geq \delta$. Thus

$$\mathbb{E}\left[\left|\overline{\eta}_{n}(X) - \widehat{\eta}_{n}(X)\right|^{2}\right] \geq \delta\sigma^{2},$$

and we can conclude.

Proof of Lemma 2. According to the contrapositive of Prop. 6 in Stone (1977), since we assumed that $\hat{\eta}_n$ has non-negative weights and does not satisfy the locality condition, there exists a bounded continuous function $\eta : [0, 1]^d \to \mathbb{R}$ such that the following does not hold:

$$\sum_{i=1}^{n} W_{n,i}(X)\eta(X_i) \longrightarrow 0 \quad \text{in probability} \,.$$

Thus we can choose $\varepsilon>0$ and $\delta>0$ such that

$$\mathbb{P}\left(|\eta(X) - \overline{\eta}_n(X)| \ge \varepsilon\right) \ge \delta\,,\tag{A.8}$$

for infinitely many *n*—recall that we defined $\overline{\eta}_n(x) = \sum_{i=1}^n W_{n,i}(X)\eta(X_i)$. According to Lemma 3, for any *n*,

$$\mathbb{E}\left[\left|\eta(X) - \widehat{\eta}_n(X)\right|^2\right] = \mathbb{E}\left[\left|\eta(X) - \overline{\eta}_n(X)\right|^2\right] + \mathbb{E}\left[\left|\overline{\eta}_n(X) - \widehat{\eta}_n(X)\right|^2\right].$$

In particular,

$$\mathbb{E}\left[\left|\eta(X) - \widehat{\eta}_n(X)\right|^2\right] \ge \mathbb{E}\left[\left|\eta(X) - \overline{\eta}_n(X)\right|^2\right].$$

Let n be such that Eq. (A.8) holds. Then

$$\mathbb{E}\left[\left|\eta(X) - \widehat{\eta}_n(X)\right|^2\right] \ge \mathbb{E}\left[\left|\eta(X) - \overline{\eta}_n(X)\right|^2\right]$$
$$\ge \mathbb{P}\left(\left|\eta(X) - \overline{\eta}_n(X)\right| \ge \varepsilon\right)\varepsilon^2$$

(Markov's inequality)

$$\mathbb{E}\left[\left|\eta(X) - \widehat{\eta}_n(X)\right|^2\right] \ge \delta \varepsilon^2 \,.$$

(Eq. (A.8))

Since the last display holds for infinitely many n, we can conclude.

Proof of Theorem 1. Note that the first assumption of Lemma 1 is satisfied. The major part of the proof is to show that the second assumption of Lemma 1, namely Eq. (A.6), is also satisfied.

In this proof, we write $W_{n,i}(X)$ short for $W_{n,i}^{\infty}(X)$. Let $n \in \mathbb{N} \setminus \{0\}$ be as in the nearest-neighbor property. By the definition of the asymptotic weights and the deep tree assumption, for any $1 \le i \le n$,

$$W_{n,i}(X) = \mathbb{E}_{\Theta} \left[\frac{\mathbb{1}_{X_i \in A(X)}}{N(A(X))} \right] \ge \mathbb{E}_{\Theta} \left[\frac{\mathbb{1}_{X_i \in A(X)}}{n_0} \right].$$
(A.9)

Let us denote by $W_{n,(1)}(X)$ the asymptotic weight corresponding to the nearest-neighbor of X. Since

$$\sum_{i=1}^{n} W_{n,i}^{2}(X) \ge W_{n,(1)}^{2}(X) \qquad \text{a.s.}\,,$$

we have

$$\mathbb{E}\left[\sum_{i=1}^{n} W_{n,i}^{2}(X)\right] \geq \mathbb{E}\left[W_{n,(1)}^{2}(X)\right]$$
$$\geq \frac{1}{n_{0}^{2}} \mathbb{E}\left[\left(\mathbb{E}_{\Theta}\left[\mathbbm{1}_{X_{(1)}(X)\in A(X)}\right]\right)^{2}\right]$$
$$(Eq. (A.9))$$
$$\geq \frac{1}{n_{0}^{2}} \left(\mathbb{E}\left[\mathbb{E}_{\Theta}\left[\mathbbm{1}_{X_{(1)}(X)\in A(X)}\right]\right]\right)^{2}$$

 $(x \mapsto x^2 \text{ is convex} + \text{Jensen's inequality})$

$$= \frac{1}{n_0^2} \mathbb{P} \left(X_{(1)}(X) \in A(X) \right)^2$$
$$\mathbb{E} \left[\sum_{i=1}^n W_{n,i}^2(X) \right] \ge \frac{\varepsilon^2}{n_0^2} \,.$$

(nearest-neighbor-preserving property)

Since n_0 does not depend on n, the second assumption of Lemma 1 is satisfied for $\delta = \varepsilon^2/n_0^2$ and we can conclude.

Proof of Theorem 2. The proof of this result relies on Theorem 1. For both the randomized spill tree and the random projection tree, the UW-property is satisfied. Moreover, by assumption, they are deep trees with almost surely at most n_0 sample points per leaf. Thus we only have to check that the nearest-neighbor-preserving property is satisfied, which we achieve thanks to Theorem 5 with k = 1.

We first focus on the randomized spill tree case. Let us fix $x \in [0, 1]^d$, $\delta \in (0, 1/3)$, and $\varepsilon \in (0, 1)$. The hypotheses of Theorem 5 are satisfied: provided that $1 \leq \alpha n_0/2$, there is an event E with probability greater than $1 - 3\delta$ such that

$$\mathbb{P}\left(X_{(1)}(x) \notin A(x) \middle| E\right) \le \frac{c_0 d_0}{\alpha} \left(\frac{8 \log 1/\delta}{n_0}\right)^{1/d_0}$$

By definition of n_0 , $1 \le \alpha n_0/2$ holds for any α such that

$$\alpha \le \left(4\log 1/\delta\right)^{d_0 - 1} \left(\frac{c_0 d_0}{1 - \varepsilon}\right)^{\frac{d_0}{d_0 - 1}} =: \alpha_0 \,,$$

and in this case, we have $\mathbb{P}(X_{(1)}(x) \notin A(x)|E) \leq 1 - \varepsilon$. Since the previous statement is true for any $x \in [0, 1]^d$, we have in fact proved that

$$\mathbb{P}\left(X_{(1)}(X) \in A(X) \middle| E\right) \ge \varepsilon.$$

Now, since $\mathbb{P}(A|B)\mathbb{P}(B) \leq \mathbb{P}(A)$ for any events A and B, we obtain

$$\mathbb{P}\left(X_{(1)}(X) \in A(X)\right) \geq \mathbb{P}\left(X_{(1)}(X) \in A(X) \middle| E\right) \mathbb{P}\left(E\right) \geq \varepsilon(1 - 3\delta) > 0\,.$$

In other words, the nearest-neighbor-preserving property of Theorem 1 is satisfied and we can conclude.

The proof for random projection trees is similar, with the difference that we have to check whether $1 \le c_0 3^{d_0} \log 1/\delta$. This is true since $d_0 \ge 2$, $\delta \in (0, 1/3)$ and one can take $c_0 \ge 1$ in the statement of Theorem 5. Then, with *E* defined as before, according to Theorem 5,

$$\mathbb{P}\left(X_{(1)}(x) \notin A(x) | E\right) \le c_0 d_0 (d_0 + \log n_0) \left(\frac{8 \log 1/\delta}{n_0}\right)^{1/d_0}$$

Now, $n_0 \ge 8 \log 1/\delta \left(\frac{2c_0 d_0^2}{1-\varepsilon} \right)^{d_0}$, therefore

$$c_0 d_0^2 \left(\frac{8\log 1/\delta}{n_0}\right)^{1/d_0} \le \frac{1-\varepsilon}{2} \,.$$

Moreover, it also holds that $n_0 \ge \exp\left(\frac{2c_0 d_0^3 (8\log 1/\delta)^{1/d_0}}{1-\varepsilon}\right)$. Thus

$$c_0 d_0 \log n_0 \left(\frac{8\log 1/\delta}{n_0}\right)^{1/d_0} = c_0 d_0^2 \frac{\log n_0^{1/d_0}}{n_0^{1/d_0}} \left(8\log 1/\delta\right)^{1/d_0}$$
$$\leq c_0 d_0^2 \frac{1}{\log n_0^{1/d_0}} \left(8\log 1/\delta\right)^{1/d_0}$$

 $(\log x/x \le 1/\log x \text{ for any } x > 1)$

$$\leq c_0 d_0^2 \frac{1-\varepsilon}{2c_0 d_0^2 \left(8\log 1/\delta\right)^{1/d_0}} \left(8\log 1/\delta\right)^{1/d_0}$$
$$c_0 d_0 \log n_0 \left(\frac{8\log 1/\delta}{n_0}\right)^{1/d_0} \leq \frac{1-\varepsilon}{2} \,.$$

We deduce

$$\mathbb{P}\left(X_{(1)}(x) \notin A(x) \middle| E\right) \leq \frac{1-\varepsilon}{2} + \frac{1-\varepsilon}{2} = 1-\varepsilon.$$

We conclude the proof with the same argument used in the randomized spill trees case.

Proof of Prop. 1. In this proof we write $W_{n,i}(X)$ short for $W_{n,i}^{\infty}(X)$. We are going to use Lemma 1 to show that $\hat{\eta}_{n,\mathbb{V}_{\infty}}$ is inconsistent.

For any $n \in \mathbb{N} \setminus \{0\}$, it holds that $\sum_{i=1}^{n} W_{n,i}(X) = 1$ almost surely since each cell contains exactly one sample point. Let $(a_n)_{n \ge 1}$ be a deterministic sequence such that $\operatorname{diam} (A(X)) \le a_n$ holds with probability greater than $\eta \in (0, 1)$. Set $\delta = \eta/2$ and define N as in Lemma 4. Let $n \ge N$. We have

$$\mathbb{E}\left[\sum_{i=1}^{n} W_{n,i}(X) \mathbb{1}_{\operatorname{diam}(A(X)) \leq a_n}\right] = \mathbb{P}\left(\operatorname{diam}\left(A(X)\right) \leq a_n\right) \geq \eta$$

On the event $\{ \operatorname{diam} (A(X)) \leq a_n \}$, for any $1 \leq i \leq n$, then $||X_i - X|| > a_n$ implies $||X_i - X|| > \operatorname{diam} (A(X))$. In turn it holds that $X_i \notin A(X)$, i.e, $W_{n,i}(X) = 0$. Therefore,

$$\mathbb{E}\left[\sum_{i=1}^{n} W_{n,i}(X) \mathbb{1}_{\operatorname{diam}(A(X)) \leq a_n}\right] = \mathbb{E}\left[\sum_{i=1}^{n} W_{n,i}(X) \mathbb{1}_{\operatorname{diam}(A(X)) \leq a_n} \mathbb{1}_{\|X_i - X\| \leq a_n}\right]$$
$$\leq \mathbb{E}\left[\sum_{i=1}^{n} W_{n,i}(X) \mathbb{1}_{\|X_i - X\| \leq a_n}\right].$$

Thus we have obtained

$$\mathbb{E}\left[\sum_{i=1}^{n} W_{n,i}(X) \mathbb{1}_{\|X_i - X\| \le a_n}\right] \ge \eta.$$

Define E as the event $\left\{\sum_{i=1}^{n} \mathbb{1}_{\|X_i - X\| \le a_n} \le N\right\}$. According to the law of total expectation,

$$\mathbb{E}\left[\sum_{i=1}^{n} W_{n,i}(X) \mathbb{1}_{\|X_i - X\| \le a_n}\right] = \mathbb{E}\left[\sum_{i=1}^{n} W_{n,i}(X) \mathbb{1}_{\|X_i - X\| \le a_n} \middle| E\right] \mathbb{P}(E) + \mathbb{E}\left[\sum_{i=1}^{n} W_{n,i}(X) \mathbb{1}_{\|X_i - X\| \le a_n} \middle| E^{\mathsf{c}}\right] \mathbb{P}(E^{\mathsf{c}}).$$

Thus

$$\mathbb{E}\left[\sum_{i=1}^{n} W_{n,i}(X) \,\mathbb{1}_{\|X_i - X\| \le a_n} \middle| E\right] \mathbb{P}(E) = \mathbb{E}\left[\sum_{i=1}^{n} W_{n,i}(X) \,\mathbb{1}_{\|X_i - X\| \le a_n}\right] \\ - \mathbb{E}\left[\sum_{i=1}^{n} W_{n,i}(X) \,\mathbb{1}_{\|X_i - X\| \le a_n} \middle| E^{\mathsf{c}}\right] \mathbb{P}(E^{\mathsf{c}}) \\ \ge \eta - \mathbb{P}(E^{\mathsf{c}}) \ . \\ (\sum_{i=1}^{n} W_{n,i}(X) \,\mathbb{1}_{\|X_i - X\| \le a_n} \le 1 \text{ almost surely})$$

According to Lemma 4, we have $\mathbb{P}(E^{c}) \leq \delta$ and thus

$$\mathbb{E}\left[\sum_{i=1}^{n} W_{n,i}(X) \,\mathbb{1}_{\|X_i - X\| \le a_n} \middle| E\right] \ge \frac{\eta}{2} \,. \tag{A.10}$$

Now, according to the Cauchy-Schwarz inequality for discrete sequences, conditionally to E,

$$\left(\sum_{i=1}^{n} W_{n,i}(X) \,\mathbb{1}_{\|X_i - X\| \le a_n}\right)^2 \le \sum_{i=1}^{n} W_{n,i}^2(X) \cdot \sum_{i=1}^{n} \mathbb{1}_{\|X_i - X\| \le a_n} \le N \cdot \sum_{i=1}^{n} W_{n,i}(X)^2 \,.$$
(A.11)

We write

$$\mathbb{E}\left[\sum_{i=1}^{n} W_{n,i}^{2}(X)\right] \ge \mathbb{E}\left[\sum_{i=1}^{n} W_{n,i}^{2}(X) \middle| E\right] \mathbb{P}(E)$$
(law of tot:

(law of total expectation + monotony)

$$\geq \frac{1}{N} \mathbb{E} \left[\left(\sum_{i=1}^{n} W_{n,i}(X) \mathbb{1}_{X_i - X} \leq a_n \right)^2 \middle| E \right] \mathbb{P} (E)$$

$$(\text{Eq. (A.11)})$$

$$\geq \frac{1}{N} \left(\mathbb{E} \left[\sum_{i=1}^{n} W_{n,i}(X) \mathbb{1}_{\|X_i - X\| \leq a_n} \middle| E \right] \right)^2 \mathbb{P} (E)$$

$$(t \mapsto t^2 \text{ convex } \neq \text{ conditional lensen's inequality})$$

.

 $(t \mapsto t^2 \text{ convex} + \text{ conditional Jensen's inequality})$

$$\mathbb{E}\left[\sum_{i=1}^{n} W_{n,i}^2(X)\right] \ge \frac{1}{N} \cdot \frac{\eta^2}{4} \cdot (1 - \eta/2).$$

(Eq. (B.12))

Since N only depends on quantities that are fixed with respect to n, we can conclude thanks to Lemma 1. \square

Proof of Theorem 3. The sketch of the proof is the following. First, we use Lemma 5 to find a radius ρ that violates the locality condition for any subsample of the original data. This radius depends on m, the size of this subsample. But since m is constant by assumption, ρ violates the locality condition for any n. Finally we conclude with Lemma 2.

Let $\varepsilon \in (0, 1)$. Set

$$\rho := \frac{1}{2} \left[\frac{(1-\varepsilon)\Gamma\left(\frac{d}{2}+1\right)}{m f_{\max} \pi^{d/2}} \right]^{1/d}$$

Note that ρ does not depend on n. To any subset $S \subseteq \{1, \ldots, n\}$ corresponds the local average estimator $\hat{\eta}_m^S$ build upon $(X_i)_{i \in S}$. We denote by $W_{m,i}^S$ its weights. We extend this notation to $W_{n,i}^S = W_{m,i}^S$ if $i \in S$ and $W_{n,i}^S = 0$ otherwise. According to Lemma 5, it holds that

$$\mathbb{E}\left[\sum_{i=1}^{n} W_{n,i}^{S}(X) \,\mathbb{1}_{\|X_{i}-X\| \ge \rho}\right] \ge \varepsilon \,.$$

Then, since the weights corresponding to $\hat{\eta}_n$ satisfy $W_{n,i} = \mathbb{E}\left[W_{n,i}^S\right]$ (where the expectation is with respect to the subsampling), it holds that

$$\mathbb{E}\left[\sum_{i=1}^{n} W_{n,i}(X) \,\mathbb{1}_{\|X_i - X\| \ge \rho}\right] \ge \varepsilon \,.$$

We conclude with Lemma 2.

Auxiliary results B

In this section, we collect some auxiliary results used in the proofs throughout this paper.

Our first result is a standard bias-variance decomposition used in the proof of Lemma 1 and Lemma 2.

Lemma 3 (Bias-variance decomposition). Suppose that the observations satisfy Eq. (2.1). Then, for any local average estimator $\hat{\eta}_n$ satisfying the UW-property,

$$\mathbb{E}\left[\left|\eta(X) - \widehat{\eta}_n(X)\right|^2\right] = \mathbb{E}\left[\left|\eta(X) - \overline{\eta}_n(X)\right|^2\right] + \mathbb{E}\left[\left|\overline{\eta}_n(X) - \widehat{\eta}_n(X)\right|^2\right].$$

Proof. Let n be an integer. We first decompose the mean squared error as

$$\mathbb{E}\left[\left|\eta(X) - \widehat{\eta}_n(X)\right|^2\right] = \mathbb{E}\left[\left|\eta(X) - \overline{\eta}_n(X) + \overline{\eta}_n(X) - \widehat{\eta}_n(X)\right|^2\right]$$
$$= \mathbb{E}\left[\left|\eta(X) - \overline{\eta}_n(X)\right|^2\right] + \mathbb{E}\left[\left|\overline{\eta}_n(X) - \widehat{\eta}_n(X)\right|^2\right]$$
$$+ 2 \mathbb{E}\left[\left(\eta(X) - \overline{\eta}_n(X)\right)\left(\overline{\eta}_n(X) - \widehat{\eta}_n(X)\right)\right].$$

Further inspection of the double-product term shows that

 $\mathbb{E}\left[\left(\eta(X) - \overline{\eta}_n(X)\right)\left(\overline{\eta}_n(X) - \widehat{\eta}_n(X)\right)\right] = \mathbb{E}\left[\mathbb{E}\left[\left(\eta(X) - \overline{\eta}_n(X)\right)\left(\overline{\eta}_n(X) - \widehat{\eta}_n(X)\right)\left|X, X_{[n]}, \Theta\right]\right]$ (tower property) $- \mathbb{E}\left[\left(\eta(X) - \overline{\eta}_n(X)\right)\mathbb{E}\left[\overline{\eta}_n(X) - \widehat{\eta}_n(X)\right]X, X_{[n]}, \Theta\right]\right]$

$$= \mathbb{E}\left[(\eta(X) - \overline{\eta}_n(X)) \mathbb{E}\left[\overline{\eta}_n(X) - \widehat{\eta}_n(X) | X, X_{[n]}, \Theta \right] \right] .$$

($\eta(X)$ and $\overline{\eta}_n(X)$ are $\sigma(X, X_{[n]}, \Theta)$ -measurable by the UW-property)

Additionally,

 $\mathbb{E}\left[\overline{\eta}_{n}(X) - \widehat{\eta}_{n}(X) \middle| X, X_{[n]}, \Theta\right] = \overline{\eta}_{n}(X) - \mathbb{E}\left[\widehat{\eta}_{n}(X) \middle| X, X_{[n]}, \Theta\right]$ ($\overline{\eta}_{n}(X)$ is $\sigma(X, X_{[n]}, \Theta)$ -measurable by the UW-property)

$$=\sum_{i=1}^{n} \eta(X_i) W_{n,i}(X) - \mathbb{E} \left[\sum_{i=1}^{n} W_{n,i}(X) Y_i \middle| X, X_{[n]}, \Theta \right]$$

(definition of $\overline{\eta}_n$ (Eq. (A.7)) and $\widehat{\eta}_n$ (Eq. (2.4)))

$$=\sum_{i=1}^{n}\eta(X_i)W_{n,i}(X)-\sum_{i=1}^{n}\mathbb{E}\left[W_{n,i}(X)Y_i\big|X,X_{[n]},\Theta\right]$$

(linearity)

$$\begin{split} \mathbb{E}\left[\overline{\eta}_{n}(X) - \widehat{\eta}_{n}(X) \Big| X, X_{[n]}, \Theta\right] &= \sum_{i=1}^{n} W_{n,i}(X) \bigg\{ \eta(X_{i}) - \mathbb{E}\left[Y_{i} \Big| X, X_{[n]}, \Theta\right] \bigg\}. \\ &\quad (W_{n,i}(X) \text{ is } \sigma(X, X_{[n]}, \Theta) \text{-measurable by the UW-property}) \end{split}$$

By irrelevance of independent information (Prop. 2),

$$\mathbb{E}\left[Y_i \middle| X, X_{[n]}, \Theta\right] = \mathbb{E}\left[Y_i \middle| X_i\right]$$

and by Eq. (2.1), $\mathbb{E}[Y_i|X_i] = \eta(X_i)$. We conclude that

$$\mathbb{E}\left[\overline{\eta}_n(X) - \widehat{\eta}_n(X) \middle| X, X_{[n]}, \Theta\right] = 0, \qquad (B.12)$$

and therefore the double-product term vanishes. We have obtained the following decomposition for the mean squared error:

$$\mathbb{E}\left[\left|\eta(X) - \widehat{\eta}_n(X)\right|^2\right] = \mathbb{E}\left[\left|\eta(X) - \overline{\eta}_n(X)\right|^2\right] + \mathbb{E}\left[\left|\overline{\eta}_n(X) - \widehat{\eta}_n(X)\right|^2\right].$$

The following result is used in the proof of Prop. 1 to control the number of sample points falling in a certain ball around X.

Lemma 4 (Controlling the number of sample points near X). Let $\delta \in (0, 1/2)$. Under the assumptions of Lemma 1, we can choose constants $0 < m < M < +\infty$ such that, for any $n \in \mathbb{N} \setminus \{0\}$, $m \leq a_n n^{1/d} \leq M$. Set

$$C \coloneqq \frac{\Gamma\left(\frac{d}{2}+1\right)\log\frac{4}{\delta}}{mf_{\min}}\left(1+\sqrt{1+2mf_{\min}}\right)\,,$$

$$N_0 := \frac{(C+1)Mf_{\max}\pi^{d/2}}{\Gamma\left(\frac{d}{2}+1\right)} \quad and \quad N_1 := \left(\frac{8Mf_{\max}d}{\delta}\right)^d$$

Then, for any $n \ge N := \max(N_0, N_1)$ *,*

$$\mathbb{P}\left(\sum_{i=1}^{n} \mathbb{1}_{\|X_i - X\| \le a_n} > N\right) \le \delta.$$

Proof. Set ∂ the boundary of $[0,1]^d$. We first show that for any fixed $x \in [0,1]^d$ far away from the boundary, that is, x such that $d(x,\partial) \ge a_n$, then

$$\mathbb{P}\left(\sum_{i=1}^n \mathbb{1}_{\|X_i - x\| \le a_n} > N\right) \le \delta/2.$$

Set $x \in [0,1]^d$ such that $d(x,\partial) \ge a_n$ and $p := \mu(\mathcal{B}(x,a_n))$. We write

$$\mathbb{P}\left(\sum_{i=1}^{n} \mathbb{1}_{\|X_i - x\| \le a_n} > N\right) \le \mathbb{P}\left(\sum_{i=1}^{n} \mathbb{1}_{\|X_i - x\| \le a_n} > N_0\right)$$
$$= \mathbb{P}\left(\frac{1}{n}\sum_{i=1}^{n} \mathbb{1}_{\|X_i - x\| \le a_n} - p > \frac{N_0}{n} - p\right)$$
$$\le \mathbb{P}\left(\left|\frac{1}{n}\sum_{i=1}^{n} \mathbb{1}_{\|X_i - x\| \le a_n} - p\right| > \frac{N_0}{n} - p\right)$$

We notice that

$$p = \mu(\mathcal{B}(x, a_n))$$

$$\geq f_{\min}\mu_{\text{Leb}}\left(\mathcal{B}(x, a_n) \cap [0, 1]^d\right)$$

$$= f_{\min}\mu_{\text{Leb}}(\mathcal{B}(x, a_n))$$

$$(\mu \text{ has bounded density on } [0, 1]^d)$$

(we assumed
$$d(x, \partial) \ge a_n$$
)

$$=\frac{f_{\min}\pi^{d/2}a_n^d}{\Gamma\left(\frac{d}{2}+1\right)}$$

(volume of the hypersphere in dimension d)

$$p \ge \frac{m f_{\min} \pi^{d/2}}{n \Gamma\left(\frac{d}{2} + 1\right)} \,,$$

 $(a_n \ge m/n^{1/d})$

where μ_{Leb} is the Lebesgue measure on \mathbb{R}^d . The converse direction is similar, and we write

$$\frac{mf_{\min}\pi^{d/2}}{n\Gamma\left(\frac{d}{2}+1\right)} \le p \le \frac{Mf_{\max}\pi^{d/2}}{n\Gamma\left(\frac{d}{2}+1\right)}.$$
(B.13)

Therefore,

$$\frac{N_0}{(C+1)n} = \frac{M f_{\max} \pi^{d/2}}{\Gamma\left(\frac{d}{2}+1\right)n} \ge p \,,$$

and we deduce that $N_0/n - p > pC$. As a consequence,

$$\mathbb{P}\left(\sum_{i=1}^{n} \mathbb{1}_{\|X_i - x\| \le a_n} > N\right) \le \mathbb{P}\left(\left|\frac{1}{n}\sum_{i=1}^{n} \mathbb{1}_{\|X_i - x\| \le a_n} - p\right| > pC\right).$$

Set

$$Z_n := \frac{1}{n} \sum_{i=1}^n \mathbb{1}_{\|X_i - x\| \le a_n} \, .$$

The random variable Z_n is a normalized sum of independent 0–1-valued Bernoulli random variables taking value 1 with probability p. Note that $\sum_i \mathbb{E} \left[\mathbb{1}_{\|X_i - x\| \le a_n}^2 \right] = np$. According to the Bernstein's inequality (Lemma 6), our choice of C and the lower bound on p,

$$\mathbb{P}\left(|Z_n - p| > pC\right) \le 2\exp\left(-\frac{nC^2p}{2 + 2C/3}\right) \le \frac{\delta}{2}.$$

We have proved that, for any fixed x such that $d(x, \partial) \ge a_n$,

$$\mathbb{P}\left(\sum_{i=1}^{n} \mathbb{1}_{\|X_i - x\| \le a_n} > N\right) \le \delta/2.$$

We now focus on the points that are near the boundary of $[0,1]^d$. Since we assumed that X has bounded density on $[0,1]^d$, it holds that

$$\mathbb{P}\left(d\left(X,\partial\right) \le a_{n}\right) \le f_{\max}\mu_{\text{Leb}}\left(\left\{x \in [0,1]^{d} \text{ s.t. } d\left(x,\partial\left([0,1]^{d}\right) \le a_{n}\right)\right\}\right)$$
$$\le f_{\max} \cdot 4d \cdot a_{n}$$

 $4M f_{\rm max} d$

(the unit cube has 2d (d-1)-dimensional faces)

$$\leq \frac{1}{n^{1/d}} \qquad (a_n \leq M/n^{1/d})$$

$$\mathbb{P}\left(d\left(X,\partial\right) \leq a_n\right) \leq \frac{\delta}{2}, \qquad (n \geq N_1)$$

and we can conclude.

Lemma 5 (Relation between locality and sample size). Suppose that the data satisfy Eq. (2.1) and that X has bounded density. Consider an infinite random forest estimator $\hat{\eta}_n$ whose base trees satisfy the two properties listed in Theorem 3. Let $\varepsilon \in (0, 1)$. Then, for any

$$\rho < \left[\frac{(1-\varepsilon)\Gamma\left(\frac{d}{2}+1\right)}{nf_{\max}\pi^{d/2}}\right]^{1/d},$$
$$\mathbb{E}\left[\sum_{i=1}^{n} W_{ni}(X) \mathbb{1}_{\|X_i-X\| \ge \rho}\right] \ge \varepsilon.$$

Proof. The intuition behind the proof is very simple: if ρ is small enough with respect to the size of the cells, since X has bounded density on $[0, 1]^d$, then it is very unlikely that X falls into balls of radius ρ centered in the sample points—see the Right panel of Fig. 1.

First, we notice that

we have

$$\mathbb{E}\left[\sum_{i=1}^{n} W_{ni}(X) \,\mathbb{1}_{\|X_i - X\| \ge \rho}\right] = \mathbb{E}\left[\sum_{i=1}^{n} \mathbb{E}_{\Theta}\left[\frac{\mathbb{1}_{X_i \in A(X)}}{N(A(X))}\right] \,\mathbb{1}_{\|X_i - X\| \ge \rho}\right].$$

Since the leaves of the tree contain exactly one data point, the leaves are non-empty, Therefore,

$$\mathbb{E}\left[\sum_{i=1}^{n} W_{ni}(X) \, \mathbb{1}_{\|X_i - X\| \ge \rho}\right] = \mathbb{E}\left[\sum_{i=1}^{n} \mathbb{1}_{X_i \in A(X)} \, \mathbb{1}_{\|X_i - X\| \ge \rho}\right] \,.$$

Again, since N(A(X)) = 1 almost surely, we can set unambiguously A_i the cell containing data point X_i , and $X_i \in A(X)$ is equivalent to $X \in A_i$. We write

$$\mathbb{P}\left(X_i \in A(X) \text{ and } \|X - X_i\| \ge \rho |X_{[n]}, \Theta\right) = \mathbb{P}\left(X \in A_i \text{ and } \|X - X_i\| \ge \rho |X_{[n]}, \Theta\right)$$
$$= \mathbb{P}\left(X \in A_i \setminus \mathcal{B}\left(X_i, \rho\right) | X_{[n]}, \Theta\right).$$

By the union bound,

$$\sum_{i=1}^{n} \mathbb{P}\left(X_{i} \in A(X) \text{ and } \|X - X_{i}\| \geq \rho \Big| X_{[n]}, \Theta\right) \geq \mathbb{P}\left(X \in \bigcup_{i=1}^{n} A_{i} \setminus \mathcal{B}\left(X_{i}, \rho\right) \Big| X_{[n]}, \Theta\right)$$
$$\geq \mathbb{P}\left(X \in [0, 1]^{d} \setminus \bigcup_{i=1}^{n} \mathcal{B}\left(X_{i}, \rho\right) \Big| X_{[n]}, \Theta\right)$$
$$(\bigcup_{i} A_{i} = [0, 1]^{d})$$
$$\geq 1 - \mathbb{P}\left(X \in \bigcup_{i=1}^{n} \mathcal{B}\left(X_{i}, \rho\right) \Big| X_{[n]}, \Theta\right)$$
$$(union bound)$$

$$\geq 1 - n \cdot \mathbb{P}\left(X \in \mathcal{B}\left(X_{i}, \rho\right) \middle| X_{[n]}, \Theta\right)$$

(satisfies the bounded density assumption)

$$\geq 1 - n \cdot f_{\max} \cdot \operatorname{Vol}\left(\mathcal{B}\left(X_{1},\rho\right)\right)$$
$$\sum_{i=1}^{n} \mathbb{P}\left(X_{i} \in A(X) \text{ and } \|X - X_{i}\| \geq \rho \left|X_{[n]},\Theta\right| \geq 1 - \frac{n f_{\max} \pi^{d/2} \rho^{d}}{\Gamma\left(\frac{d}{2} + 1\right)}.$$

We deduce that

$$\sum_{i=1}^{n} \mathbb{P}\left(X_i \in A(X) \text{ and } \|X - X_i\| \ge \rho\right) \ge 1 - \frac{n f_{\max} \pi^{d/2} \rho^d}{\Gamma\left(\frac{d}{2} + 1\right)},$$

and we can conclude.

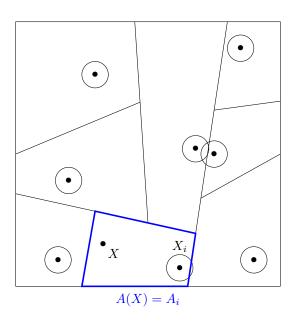


Figure 2: Proof of Lemma 5. The black dots correspond to sample points, the circles around them are of radius ρ . The cells form a partition of $[0, 1]^2$. Here X belong to the same cell as X_i (in blue).

C Previous results

Theorem 4 (Consistence of local average estimators Stone, 1977, Theorem 1). Consider the local average estimator $\hat{\eta}_n$ defined in Eq. (2.4) and suppose that the following conditions are satisfied.

1. There is a $C \ge 1$ such that, for every nonnegative Borel function f on \mathbb{R}^d , and for any $n \ge 1$,

$$\mathbb{E}\left[\sum_{i=1}^{n} |W_{n,i}(X)| f(X_i)\right] \le C \mathbb{E}\left[f(X)\right].$$

- 2. There exists $D \ge 1$ such that $\mathbb{P}\left(\sum_{i} |W_{n,i}(X)| \le D\right) = 1$, for all $n \ge 1$;
- 3. $\sum_{i} |W_{n,i}(X)| \mathbb{1}_{||X_i-X||>a} \to 0$ in probability for all a > 0;
- 4. $\sum_{i} W_{n,i}(X) \to 1$ in probability;
- 5. $\max_i |W_{n,i}(X)| \to 0$ in probability.

Then the local average estimator $\hat{\eta}_n$ is consistent.

Theorem 5 (Nearest-neighbor search guarantees Dasgupta and Sinha, 2015, Theorem 7). There is an absolute constant c_0 for which the following holds. Suppose μ is a doubling measure on \mathbb{R}^d of intrinsic dimension $d_0 \ge 2$, i.e.,

$$\forall x \in [0,1], \quad \forall r > 0, \quad \forall a \ge 1, \qquad 0 < \mu(\mathcal{B}\left(x,ar\right)) < a^{d_0}\mu(\mathcal{B}\left(x,r\right)).$$

Pick any query $x \in [0,1]^d$ and draw X_1, \ldots, X_n independently from μ . Let n_0 be as before the maximal number of sample points in a leaf. For any $\delta \in (0,1/3)$, with probability at least $1 - 3\delta$ over the choice of data:

• For the randomized spill tree, if $k \leq \alpha n_0/2$,

$$\mathbb{P}\left(\text{tree fails to return the }k\text{-nearest neighbors of }x\right) \leq \frac{c_0 d_0 k}{\alpha} \left(\frac{8 \max(k, \log 1/\delta)}{n_0}\right)^{1/d_0}$$

• For the random projection tree, if $k \le c_0(3k)^{d_0} \max(k, \log 1/\delta)$,

 $\mathbb{P}\left(\text{tree fails to return the }k\text{-nearest neighbors of }x\right) \leq c_0 d_0 k (d_0 + \log n_0) \left(\frac{8 \max(k, \log 1/\delta)}{n_0}\right)^{1/d_0}.$

Theorem 6 (Convergence w.r.t. number of trees (Scornet, 2016, Theorem 3.1)). Define $K_n(\cdot, \cdot) : [0, 1]^d \times [0, 1]^d \rightarrow [0, 1]$ the random forest connection function as

$$K_n(x,y) = \mathbb{P}(x \text{ and } y \text{ in the same } cell | \mathcal{D}_n)$$
.

Consider a continuous or discrete random forest, that is, assume K_n piecewise-constant or continuous for any fixed \mathcal{D}_n . Then, conditionally on the data \mathcal{D}_n , for almost every query points $x \in [0, 1]^d$, we have

$$\widehat{\eta}_{n,\mathbb{V}_T}(x) \xrightarrow[T \to +\infty]{} \widehat{\eta}_{n,\mathbb{V}_\infty}(x).$$

Theorem 7 (Infinite forests have smaller risks (Scornet, 2016, Theorem 3.3)). Suppose that

$$Y = \eta(X) + \varepsilon$$

where ε is a centered Gaussian random variable with finite variance σ^2 , independent of X. Assume also that $\|\eta\|_{\infty} < \infty$. Then, for all $T, n \in \mathbb{N} \setminus \{0\}$,

$$\mathbb{E}\left[\left|\widehat{\eta}_{n,\mathbb{V}_{T}}(X)-\eta(X)\right|^{2}\right] = \mathbb{E}\left[\left|\widehat{\eta}_{n,\mathbb{V}_{\infty}}(X)-\eta(X)\right|^{2}\right] + \frac{1}{T}\mathbb{E}_{X,\mathcal{D}_{n}}\left[\operatorname{Var}_{\Theta}\left(\widehat{\eta}_{n,A}(X)\right)\right].$$

D A concentration inequality

The following result is known as the Bernstein's inequality.

Lemma 6 (Bernstein's inequality (Boucheron et al., 2013, Eq. (2.10))). Let Z_1, \ldots, Z_n be independent random variables. Assume that there exist positive numbers b and v such that

$$\forall 1 \leq i \leq n, |Z_i| \leq b \quad a.s., \quad and \quad \sum_i \mathbb{E}\left[Z_i^2\right] \leq v.$$

Then, for any t > 0,

$$\mathbb{P}\left(\sum_{i} Z_{i} - \mathbb{E}\left[Z_{i}\right] > t\right) \leq \exp\left(-\frac{t^{2}}{2(v + bt/3)}\right)$$

E Conditional expectation

In this section, we recall the basic properties of the conditional expectation that are used throughout this paper. We refer to Billingsley (2008, Chapter 6, Section 34) for a proof of the following facts.

Proposition 2 (Basic properties of conditional expectation). Let X and Y be integrable random variables, let \mathcal{G} and \mathcal{H} be subalgebras of \mathcal{F} . Then the following hold:

1. (linearity) For any real numbers α , β ,

$$\mathbb{E}\left[\alpha X + \beta Y | \mathcal{G}\right] = \alpha \mathbb{E}\left[X | \mathcal{G}\right] + \beta \mathbb{E}\left[Y | \mathcal{G}\right] \quad a.s.$$

- 2. (monotonicity) If $X \leq Y$ a.s., then $\mathbb{E}[X|\mathcal{G}] \leq \mathbb{E}[Y|\mathcal{G}]$ a.s.
- 3. (conditional Jensen) If f is a convex function such that f(X) is integrable, then

 $\mathbb{E}\left[f(X)|\mathcal{G}\right] \leq f\left(\mathbb{E}\left[X|\mathcal{G}\right]\right) \quad a.s.$

4. (measurability) If Y is \mathcal{G} -measurable and XY is integrable, then

$$\mathbb{E}\left[XY|\mathcal{G}\right] = Y\mathbb{E}\left[X|\mathcal{G}\right] \quad a.s$$

5. (tower property) If $\mathcal{H} \subseteq \mathcal{G}$, then

$$\mathbb{E}\left[\mathbb{E}\left[X|\mathcal{G}\right]|H\right] = \mathbb{E}\left[X|\mathcal{H}\right] \quad a.s.$$

6. (irrelevance of independent information) If \mathcal{H} is independent of $\sigma(\mathcal{G}, X)$, then

$$\mathbb{E}\left[X|\sigma\left(\mathcal{G},\mathcal{H}\right)\right] = \mathbb{E}\left[X|\mathcal{G}\right] \quad a.s.$$

In particular, if X is independent of H, then $\mathbb{E}[X|\mathcal{H}] = \mathbb{E}[X]$ a.s.