
5 Appendix A: Results for Main Theorem

Notation. Let (·)> denote the real transpose. Let [n] = {1, . . . , n}. Let B(x, r) denote the
Euclidean ball centered at x with radius r. Let k · k denote the `2 norm for vectors and spectral norm
for matrices. For any non-zero x 2 Rn, let x̂ = x/kxk. Let ⇧1

i=dWi = WdWd�1 . . .W1. Let In be
the n⇥ n identity matrix. Let Sk�1 denote the unit sphere in Rk. We write c = ⌦(�) when c > C�

for some positive constant C. Similarly, we write c = O(�) when c 6 C� for some positive constant
C. When we say that a constant depends polynomially on ✏�1, this means that it is at least C✏�k

for some positive C and positive integer k. For notational convenience, we write a = b+O1(✏) if
ka� bk 6 ✏ where k · k denotes | · | for scalars, `2 norm for vectors, and spectral norm for matrices.
Define sgn : R ! R to be sgn(x) = x/|x| for non-zero x 2 R and sgn(x) = 0 otherwise. For a
vector v 2 Rn, diag(sgn(v)) is sgn(vi) in the i-th diagonal entry and diag(v > 0) is 1 in the i-th
diagonal entry if vi > 0 and 0 otherwise. For non-zero x, x0 2 Rk, let ✓0 = \(x, x0). To understand
how the map x 7! relu(Wx) distorts angles in expectation, define g : R ! R by

g(✓) = cos�1

✓
cos ✓(⇡ � ✓) + sin ✓

⇡

◆
.

Then for i > 1, set ✓i = g(✓i�1) where ✓0 = ✓0. Let g�d denote the composition of g with itself d
times. In this section, L is the positive universal constant 3 + 88/⇡.4

5.1 Full proof of Theorem 3

Proof. Set

vx,x0 =

⇢
rf(x) f is differentiable at x 2 Rk

lim�!0+ rf(x+ �w) otherwise,

where f is differentiable at x+ �w for sufficiently small � > 0. Any such direction w can be chosen
arbitrarily. Recall that

rf(x) = (⇧1
i=dWi,+,x)

>
A

>
G(x)AG(x)(⇧

1
i=dWi,+,x)x� (⇧1

i=dWi,+,x)
>
A

>
G(x)AG(x0)(⇧

1
i=dWi,+,x0)x0.

Let

vx,x0 := (⇧1
i=dWi,+,x)

>(⇧1
i=dWi,+,x)x� (⇧1

i=dWi,+,x)
>�G(x),G(x0)(⇧

1
i=dWi,+,x0)x0, (5)

hx,x0 := �kx0k
2d

✓
⇡ � 2✓d

⇡

◆ 
d�1Y

i=0

⇡ � ✓i

⇡

!
x̂0 (6)

+
1

2d

2

4kxk � kx0k

0

@2 sin ✓d
⇡

+

✓
⇡ � 2✓d

⇡

◆ d�1X

i=0

sin ✓i
⇡

0

@
d�1Y

j=i+1

⇡ � ✓j

⇡

1

A

1

A

3

5 x̂, (7)

and

S✏,x0 :=

⇢
x 2 Rk \ {0} : khx,x0k 6 1

2d
✏max(kxk, kx0k)

�
.

First, observe that by the WDC, we have that for all x 6= 0 and i = 1, . . . , d,
����W

>
i,+,xWi,+,x � 1

2
Ini

���� 6 ✏ =) kWi,+,xk2 6 1

2
+ ✏. (8)

Observe that

krf(x)� vx,x0k 6
���(⇧1

i=dWi,+,x)
>(A>

G(x)AG(x) � Ind)(⇧
1
i=dWi,+,x)x

���

+
���(⇧1

i=dWi,+,x)
>(A>

G(x)AG(x0) � �G(x),G(x0))(⇧
1
i=dWi,+,x0)x0

��� .

4This is the precise constant in the upper bound for the RRCP. Please see the proof of Proposition 5 for its
derivation.
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Hence by the RRCP (Proposition 6) and (8), we have that

krf(x)� vx,x0k 6 L✏

 
dY

i=1

kWi,+,xk2 +
dY

i=1

kWi,+,xkkWi,+,x0k
!
max(kxk, kx0k) (9)

6 2L✏

✓
1

2
+ ✏

◆d

max(kxk, kx0k). (10)

Then Lemma 2 guarantees that for all non-zero x, x0 2 Rk,

kvx,x0 � hx,x0k 6 78
d
3

2d
p
✏max(kxk, kx0k). (11)

Then we have that for all non-zero x, x0 2 Rk,

kvx,x0 � hx,x0k = lim
�!0+

krf(x+ �w)� hx+�w,x0k

6 lim
�!0+

(krf(x+ �w)� vx+�w,x0k+ kvx+�w,x0 � hx+�w,x0k)

6
p
✏

✓
2L

(1 + 2✏)d

2d
+ 78

d
3

2d

◆
max(kxk, kx0k)

6
p
✏K

d
3

2d
max(kxk, kx0k)

for some universal constant K where the first equality follows by the definition of vx,x0 and the
continuity of hx,x0 for non-zero x, x0. The second inequality combines (10) and (11) and since
2✏d 6 1 =) (1 + 2✏)d 6 e

2✏d 6 1 + 4✏d. This establishes concentration of vx,x0 to hx,x0 for all
non-zero x, x0 2 Rk:

kvx,x0 � hx,x0k 6
p
✏K

d
3

2d
max(kxk, kx0k) (12)

Now, due to the continuity and piecewise linearity of the function G(x) and | · |, we have that for
any x, y 6= 0 that there exists a sequence {xn} ! x such that f is differentiable at each xn and
Dyf(x) = limn!1 rf(xn) · y. Thus, as rf(xn) = vxn,x0 ,

D�vx,x0
f(x) = � lim

n!1
vxn,x0 · vx,x0 .

Then observe that

vxn,x0 · vx,x0 = hxn,x0 · hx,x0 + (vxn,x0 � hxn,x0) · hx,x0 + hxn,x0 · (vx,x0 � hx,x0)

+ (vxn,x0 � hxn,x0) · (vx,x0 � hx,x0)

> hxn,x0 · hx,x0 � kvxn,x0 � hxn,x0kkhx,x0k � khxn,x0kkvx,x0 � hx,x0k
� kvxn,x0 � hxn,x0kkvx,x0 � hx,x0k

> hxn,x0 · hx,x0 � khx,x0k
p
✏K

d
3

2d
max(kxk, kx0k)

� khxn,x0k
p
✏K

d
3

2d
max(kxk, kx0k)� ✏


K

d
3

2d

�2
max(kxnk, kx0k)max(kxk, kx0k)

where in the last inequality, we used (12). By the continuity of hx,x0 for non-zero x 2 Rk, we have
that for x 2 S

c
4
p
✏Kd3,x0

:

lim
n!1

vxn,x0 · vx,x0 > khx,x0k2 � 2khx,x0k
p
✏K

d
3

2d
max(kxk, kx0k)� ✏


K

d
3

2d

�2
max(kxk, kx0k)2

=
khx,x0k

2

✓
khx,x0k � 4

p
✏K

d
3

2d
max(kxk, kx0k)

◆

+
1

2

 
khx,x0k2 � 2✏


K

d
3

2d

�2
max(kxk, kx0k)2

!

> 0.
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Hence we conclude that for all x 2 S
c
4
p
✏Kd3,x0

, D�vx,x0
f(x) < 0.

We now show that Dxf(0) < 0 for all x 6= 0. Observe that we can write the objective function as

f(x) =
1

2

mX

`=1

�
|ha`, (⇧1

i=dWi,+,x)xi|� |ha`, (⇧1
i=dWi,+,x0)x0i|

�2

where a` is a row of A. Then for any t > 0, we have that by the positive homogeneity of G,

f(tx) =
1

2

mX

`=1

(t2|ha`, (⇧1
i=dWi,+,x)xi|2 + |ha`, (⇧1

i=dWi,+,x0)x0i|2

� 2t|ha`, (⇧1
i=dWi,+,x)xiha`, (⇧1

i=dWi,+,x0)x0i|).
Then since

f(0) =
1

2

mX

`=1

|ha`, (⇧1
i=dWi,+,x0)x0i|2

we have that

Dxf(0) = lim
t!0+

f(tx)� f(0)

t

= �
mX

`=1

|ha`, (⇧1
i=dWi,+,x)xiha`, (⇧1

i=dWi,+,x0)x0i|

= �h(⇧1
i=dWi,+,x)x,A

>
G(x)AG(x0)(⇧

1
i=dWi,+,x0)x0i.

We now focus on bounding this quantity from above by using the angle concentration property derived
in Lemma 4. We use the shorthand notation ⇤x := ⇧1

i=dWi,+,x and ⇤x0 := ⇧1
i=dWi,+,x0 . Observe

that we can write
h⇤xx,A

>
G(x)AG(x0)⇤x0x0i = cos(\(AG(x)⇤xx,AG(x0)⇤x0x0))kAG(x0)⇤xxkkAG(x0)⇤x0x0k.

(13)
However, by Lemma 4, we have that

cos'(✓d)� 4L✏ 6 cos(\(AG(x)⇤xx,AG(x0)⇤x0x0)) 6 cos'(✓d) + 4L✏ (14)

where ' is defined in (24) and ✓d := \(⇤xx,⇤x0x0). Thus combining (14) and (13) gives

h⇤xx,A
>
G(x)AG(x0)⇤x0x0i > (cos'(✓d)� 4L✏)kAG(x)⇤xxkkAG(x0)⇤x0x0k. (15)

However, note that

cos'(✓) =
(⇡ � 2✓) cos ✓ + 2 sin ✓

⇡
> 2

⇡
8 ✓ 2 [0,⇡]. (16)

Hence if ✏ < 1/(4L⇡), we have that by (15), (16), and (13), the following holds:

h⇤xx,A
>
G(x)AG(x0)⇤x0x0i >

1

⇡
kAG(x)⇤xxkkAG(x0)⇤x0x0k. (17)

Finally, Lemma 4 establishes that for all non-zero x, x0 2 Rk,
kAG(x)⇤xxk, kAG(x0)⇤x0x0k 6= 0. (18)

Hence we conclude that
Dxf(0) = �h⇤xx,A

>
G(x)AG(x0)⇤x0x0i

6 � 1

⇡
kAG(x)⇤xxkkAG(x0)⇤x0x0k

< 0

where we used (17) in the first inequality and (18) in the last inequality.

We conclude by applying Proposition 1 and 24⇡d6
p

4
p
✏Kd3 6 1 to attain

S4
p
✏Kd3,x0

⇢ B(x0, 89d
q
4
p
✏Kd3kx0k) [ B(⇢dx0, 77422⇡

2
d
12
q

4
p
✏Kd3kx0k).
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We record some results that were used in the above proof. In [20], it was shown that Gaussian Wi

satisfies the WDC with high probability:

Lemma 1 (Lemma 9 in [20]). Fix 0 < ✏ < 1. Let W 2 Rn⇥k have i.i.d. N (0, 1/n) entries. If
n > ck log k then with probability at least 1� 8n exp(��k), W satisfies the WDC with constant ✏.
Here c, �

�1 are constants that depend only polynomially on ✏�1.

The following is a technical result showing concentration of vx,x0 around hx,x0 :

Lemma 2. Fix 0 < ✏ < d
�4(1/16⇡)2 and let d > 2. Let Wi satisfy the WDC with constant ✏ for

i = 1, . . . d. For any non-zero x, y 2 Rk, we have

kvx,y � hx,yk 6 78d3

2d
p
✏max(kxk, kyk).

Proof. Observe that

kvx,y � hx,yk 6
����(⇧

1
i=dWi,+,x)

>(⇧1
i=dWi,+,x)x� 1

2d
x

����
| {z }

=Q1

+

����
⇡ � 2✓d

⇡
(⇧1

i=dWi,+,x)
>(⇧1

i=dWi,+,y)y �
⇡ � 2✓d

⇡
h̃x,y

����
| {z }

=Q2

+

����
2 sin ✓d
⇡

k(⇧1
i=dWi,+,y)yk

k(⇧1
i=dWi,+,x)xk

(⇧1
i=dWi,+,x)

>(⇧1
i=dWi,+,x)x� 2 sin ✓d

⇡

kyk
kxk

1

2d
x

����
| {z }

=Q3

.

We focus on bounding each individual quantity Qi for i = 1, 2, 3. For Q1, we have that by (20) in
Lemma 3,

Q1 =

����(⇧
1
i=dWi,+,x)

>(⇧1
i=dWi,+,x)x� 1

2d
x

���� 6 24
d
3p
✏

2d
kxk. (19)

Then for Q2, observe that by the triangle inequality, we have

Q2 6
����
⇡ � 2✓d

⇡
(⇧1

i=dWi,+,x)
>(⇧1

i=dWi,+,y)y �
⇡ � 2✓d

⇡
h̃x,y

����

+

����
⇡ � 2✓d

⇡
h̃x,y �

⇡ � 2✓d
⇡

h̃x,y

����
(⇤)
6

����
⇡ � 2✓d

⇡

���� 24
d
3p
✏

2d
kyk+

����
2

⇡
(✓d � ✓d)

���� kh̃x,yk

(⇤⇤)
6 24

d
3p
✏

2d
kyk+ 8d

p
✏

⇡

�
1 + d

⇡

�

2d
kyk

where in (⇤) we used (20) and (⇤⇤) used (23) and the fact that kh̃x,yk 6 2�d(1 + d
⇡ )kyk. Hence

Q2 6 1

2d

✓
24d3 +

8d

⇡

✓
1 +

d

⇡

◆◆p
✏kyk.
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To bound Q3, let yd := (⇧1
i=dWi,+,y)y and xd := (⇧1

i=dWi,+,x)x. We use the triangle inequality to
gather the following three quantities to bound:

Q3 6
����
2 sin ✓d
⇡

� 2 sin ✓d
⇡

����
kydk
kxdk

��(⇧1
i=dWi,+,x)

>
xd

��
| {z }

=Q3,1

+

����
2 sin ✓d
⇡

kydk
kxdk

(⇧1
i=dWi,+,x)

>(⇧1
i=dWi,+,x)x� 2 sin ✓d

⇡

kyk
kxk (⇧

1
i=dWi,+,x)

>(⇧1
i=dWi,+,x)x

����
| {z }

=Q3,2

+

����
2 sin ✓d
⇡

kyk
kxk (⇧

1
i=dWi,+,x)

>(⇧1
i=dWi,+,x)x� 2 sin ✓d

⇡

kyk
kxk

1

2d
x

����
| {z }

=Q3,3

.

Using (8) and (23) gives

Q3,1 6 2

⇡
|✓d � ✓d|

✓
1

2
+ ✏

◆d kyk
kxkkxk

6 8d

⇡

✓
1

2
+ ✏

◆d p
✏kyk

=
8d(1 + 2✏)d

⇡2d
p
✏kyk.

Likewise, equations (8) and (22) gives

Q3,2 6
����
kydk
kxdk

� kyk
kxk

����

����
2 sin ✓d
⇡

����

✓
1

2
+ ✏

◆d

kxk

6 8d✏
kyk
kxk

2

⇡

✓
1

2
+ ✏

◆d

kxk

6 16d
p
✏

⇡

✓
1

2
+ ✏

◆d

kyk

=
16d(1 + 2✏)d

⇡2d
p
✏kyk

Lastly, we use (20) to attain

Q3,3 6
����
2 sin ✓d
⇡

����
kyk
kxk

����(⇧
1
i=dWi,+,x)

>(⇧1
i=dWi,+,x)x� 1

2d
x

����

6 2

⇡

kyk
kxk24

d
3p
✏

2d
kxk

6 48d3
p
✏

⇡2d
kyk.

Combining the bounds for Q3,i for i = 1, 2, 3 gives

Q3 6 Q3,1 +Q3,2 +Q3,3

6 8d(1 + 2✏)d

⇡2d
p
✏kyk+ 16d(1 + 2✏)d

⇡2d
p
✏kyk+ 48d3

p
✏

⇡2d
kyk

=
1

2d

✓
24d(1 + 2✏)d + 48d3

⇡

◆p
✏kyk.

Thus we attain

Q1 +Q2 +Q3 6 Kd

2d
p
✏max(kxk, kyk)
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where

Kd = 24d3 + 24d3 +
8d(1 + d/⇡)

⇡
+

24(1 + 2✏)d

⇡
+

48d3

⇡
6 78d3

as long as ✏ 6 min(1/2d, 1/96).

The following result summarizes some useful bounds from [20]:
Lemma 3 (Results from Lemma 5 in [20]). Fix 0 < ✏ < d

�4(1/16⇡)2 and let d > 2. Let Wi satisfy
the WDC with constant ✏ for i = 1, . . . d. Then for any non-zero x, y 2 Rk, the following hold:

���(⇧1
i=dWi,+x)

>(⇧1
i=dWi,+,y)y � h̃x,y

��� 6 24
d
3p
✏

2d
kyk, (20)

⌦
(⇧1

i=dWi,+,x)x, (⇧
1
i=dWi,+,y)y

↵
> 1

4⇡

1

2d
kxkkyk, (21)

����
kydk
kxdk

� kyk
kxk

���� 6 8d✏
kyk
kxk , (22)

|✓d � ✓d| 6 4d
p
✏ (23)

where xd := (⇧1
i=dWi,+x)x, yd := (⇧1

i=dWi,+y)y, ✓d := \(xd, yd), ✓d := g
�d(\(x, y)), and the

vector h̃x,y is defined as

h̃x,y :=
1

2d

2

4
 

d�1Y

i=0

⇡ � ✓i

⇡

!
y +

d�1X

i=0

sin ✓i
⇡

0

@
d�1Y

j=i+1

⇡ � ✓j

⇡

1

A kyk
kxkx

3

5 .

.

5.2 Angle Concentration Property of AG(x)

We need to understand how the operator z 7! Azz distorts angles. Observe that for z, w 2 Sn�1 for
which the RRCP holds, we have that

hz,A>
z Awwi ⇡ hz,�z,wwi =

⌧
z,

✓
⇡ � 2✓z,w

⇡
I +

2 sin ✓z,w
⇡

Mz$w

◆
w

�

=
⇡ � 2✓z,w

⇡
hz, wi+ 2 sin ✓z,w

⇡
kzk2

=
(⇡ � 2✓z,w) cos ✓z,w + 2 sin ✓z,w

⇡

:= cos'(✓z,w)

where ' : R ! R is defined by

'(✓) := cos�1

✓
(⇡ � 2✓) cos ✓ + 2 sin ✓

⇡

◆
. (24)

The following lemma establishes that the angle \(AG(x)G(x), AG(y)G(y)) concentrates around
'(\(G(x), G(y))).
Lemma 4. Fix 0 < ✏ < 1/4L. Suppose A 2 Rm⇥nd satisfies the RRCP with constant ✏. Suppose
G is such that each Wi 2 Rni⇥ni�1 satisfy the WDC with constant ✏ for all i 2 [d]. Then for all
x, y 2 Rk \ {0}, the angle ✓1 := \(AG(x)G(x), AG(y)G(y)) is well-defined and

| cos ✓1 � cos'(✓0)| 6 4L✏

where ✓0 = \(G(x), G(y)), ' is defined in (24), and L is a positive universal constant.

Proof. Fix x, y 2 Rk \ {0}. We use the shorthand notation ⇤x := ⇧1
i=dWi,+,x and ⇤y :=

⇧1
i=dWi,+,y. Note that the WDC implies that for sufficiently small ✏, we have that ⇤xx,⇤yy 6= 0.
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Hence we may assume, without loss of generality, that k⇤xxk = k⇤yyk = 1. Now define the
following quantities:

�1 := h⇤xx, (A
>
G(x)AG(y) � �G(x),G(y))⇤yyi,

�2 := h⇤xx, (A
>
G(x)AG(x) � I)⇤xxi

�3 := h⇤yy, (A
>
G(y)AG(y) � I)⇤yyi.

Observe that by the RRCP, we have that maxi=1,2,3 |�i| 6 L✏. Hence if 0 < ✏ < 1/L,

0 < 1� L✏ 6 kAG(x)⇤xxk2

so kAG(x)⇤xxk, kAG(y)⇤yyk 6= 0. Furthermore, note that

cos ✓1 =
h⇤xx,A

>
G(x)AG(y)⇤yyi

kAG(x)⇤xxkkAG(y)⇤yyk

=
h⇤xx,A

>
G(x)AG(y)⇤yyi

p
hAG(x)⇤xx,AG(x)⇤xxihAG(y)⇤yy,AG(y)⇤yyi

=
h⇤xx,�G(x),G(y)⇤yyi+ �1p

(h⇤xx,⇤xxi+ �2) (h⇤yy,⇤yyi+ �3)

=
h⇤xx,�G(x),G(y)⇤yyi+ �1p

(1 + �2) (1 + �3)
.

Thus if ✏ < 1/4L, we attain

��cos ✓1 � h⇤xx,�G(x),G(y)⇤yyi
�� 6

�����
h⇤xx,�G(x),G(y)⇤yyi+ �1p

(1 + �2) (1 + �3)
� h⇤xx,�G(x),G(y)⇤yyi

�����

6
��h⇤xx,�G(x),G(y)⇤yyi

��
�����1�

1p
(1 + �2) (1 + �3)

�����

+
|�1|p

(1 + �2) (1 + �3)

6 2

����1�
1

1� L✏

����+
L✏

1� L✏

6 3L✏

1� L✏
6 4L✏

where we used k�G(x),G(y)k 6 2 in the third inequality.

5.3 Determining where hx,x0 vanishes

Before proving Proposition 1, we outline how the concentrated gradient hx,x0 was derived. Recall
that at points of differentiability, our descent direction is of the following form:

vx,x0 = (⇧1
i=dWi,+,x)

>
A

>
G(x)AG(x)(⇧

1
i=dWi,+,x)x� (⇧1

i=dWi,+,x)
>
A

>
G(x)AG(x0)(⇧

1
i=dWi,+,x0)x0.

The concentration of the first term follows by the RRCP and Lemma 3:

(⇧1
i=dWi,+,x)

>
A

>
G(x)AG(x)(⇧

1
i=dWi,+,x)x ⇡ (⇧1

i=dWi,+,x)
>(⇧1

i=dWi,+,x)x ⇡ 1

2d
x.

For the second term, note that the RRCP gives

(⇧1
i=dWi,+,x)

>
A

>
G(x)AG(x0)(⇧

1
i=dWi,+,x0)x0 ⇡ (⇧1

i=dWi,+,x)
>�G(x),G(x0)(⇧

1
i=dWi,+,x0)x0.

Letting xd = (⇧1
i=dWi,+,x)x and x0,d = (⇧1

i=dWi,+,x0)x0, note that

�xd,x0,d =
⇡ � 2✓d

⇡
Ind +

2 sin ✓d
⇡

Mx̂d$x̂0,d
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where ✓d = \(xd, x0,d). By Lemma 5 in [20], this angle is well-defined and kxdk, kx0,dk 6= 0 as
long as each Wi satisfies the WDC. Finally, note that the definition of Mx̂$ŷ gives

Mx̂d$x̂0,dx0,d = kx0,dkMx̂d$x̂0,d x̂0,d = kx0,dkx̂d =
kx0,dk
kxdk

xd.

Thus we see that

(⇧1
i=dWi,+,x)

>�xd,x0,d(⇧
1
i=dWi,+,x0)x0

=
⇡ � 2✓d

⇡
(⇧1

i=dWi,+,x)
>(⇧1

i=dWi,+,x0)x0 +
2 sin ✓d
⇡

kx0,dk
kxdk

(⇧1
i=dWi,+,x)

>(⇧1
i=dWi,+,x)x

⇡ ⇡ � 2✓d
⇡

h̃x,x0 +
2 sin ✓d
⇡

kx0k
kxk

1

2d
x

where ✓d = g
�d(\(x, x0)) and the definition of h̃x,x0 is given in Lemma 3. We recall its definition

here for convenience:

h̃x,x0 :=
1

2d

2

4
 

d�1Y

i=0

⇡ � ✓i

⇡

!
x0 +

d�1X

i=0

sin ✓i
⇡

0

@
d�1Y

j=i+1

⇡ � ✓j

⇡

1

A kx0k
kxk x

3

5 .

The concentration of the angle ✓d and norm kx0,dk/kxdk are given in Lemma 3. Thus, combining
the concentrations of the two terms in vx,x0 gives

hx,x0 =
1

2d
x� ⇡ � 2✓d

⇡
h̃x,x0 �

2 sin ✓d
⇡

kx0k
kxk

1

2d
x

=
1

2d
kxkx̂� kx0k

2d
2 sin ✓d
⇡

x̂

� 1

2d

✓
⇡ � 2✓d

⇡

◆2

4
 

d�1Y

i=0

⇡ � ✓i

⇡

!
kx0kx̂0 +

d�1X

i=0

sin ✓i
⇡

0

@
Y

j=i+1

⇡ � ✓j

⇡

1

A kx0kx̂

3

5

= �kx0k
2d

✓
⇡ � 2✓d

⇡

◆ 
d�1Y

i=0

⇡ � ✓i

⇡

!
x̂0

+
1

2d

2

4kxk � kx0k

0

@2 sin ✓d
⇡

+

✓
⇡ � 2✓d

⇡

◆ d�1X

i=0

sin ✓i
⇡

0

@
d�1Y

j=i+1

⇡ � ✓j

⇡

1

A

1

A

3

5 x̂

Now, we establish that the set of all x such that khx,x0k ⇡ 0, denoted by S✏,x0 , is contained in two
neighborhoods centered at x0 and a negative multiple �⇢dx0.
Proposition 1. Suppose 24⇡d6

p
✏ 6 1. Let

S✏,x0 =

⇢
x 2 Rk \ {0} : khx,x0k 6 1

2d
✏max(kxk, kx0k)

�

where d > 2 and let

hx,x0 = �kx0k
2d

✓
⇡ � 2✓d

⇡

◆ 
d�1Y

i=0

⇡ � ✓i

⇡

!
x̂0

+
1

2d

2

4kxk � kx0k

0

@2 sin ✓d
⇡

+

✓
⇡ � 2✓d

⇡

◆ d�1X

i=0

sin ✓i
⇡

0

@
d�1Y

j=i+1

⇡ � ✓j

⇡

1

A

1

A

3

5 x̂.

where ✓0 = \(x, x0) and ✓i = g(✓i�1). Define

⇢d :=
2 sin ✓̆d
⇡

+

 
⇡ � 2✓̆d

⇡

!
d�1X

i=0

sin ✓̆i
⇡

0

@
d�1Y

j=i+1

⇡ � ✓̆j

⇡

1

A
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where ✓̆0 = ⇡ and ✓̆i = g(✓̆i�1). If x 2 S✏,x0 , then either

|✓0| 6 2
p
✏ and |kxk � kx0k| 6 29d

p
✏kx0k

or
|✓0 � ⇡| 6 24⇡2

d
4p
✏ and |kxk � ⇢dkx0k| 6 3517d8

p
✏kx0k.

In particular, we have
S✏,x0 ⇢ B(x0, 89d

p
✏kx0k) [ B(�⇢dx0, 77422⇡

2
d
12p

✏kx0k).
Additionally, ⇢d ! 1 as d ! 1.

Proof. Without loss of generality, let x0 = e1 and kx0k = 1 where e1 is the first standard basis
vector in Rk. We also set x = kxk

�
cos ✓0e1 + sin ✓0e2

�
where ✓0 = \(x, x0). Then

hx,x0 = � 1

2d

✓
⇡ � 2✓d

⇡

◆ 
d�1Y

i=0

⇡ � ✓i

⇡

!
x̂0

+
1

2d

2

4kxk �

0

@2 sin ✓d
⇡

+

✓
⇡ � 2✓d

⇡

◆ d�1X

i=0

sin ✓i
⇡

0

@
d�1Y

j=i+1

⇡ � ✓j

⇡

1

A

1

A

3

5 x̂.

Set

� =

✓
⇡ � 2✓d

⇡

◆ 
d�1Y

i=0

⇡ � ✓i

⇡

!
and ↵ =

2 sin ✓d
⇡

+

✓
⇡ � 2✓d

⇡

◆ d�1X

i=0

sin ✓i
⇡

0

@
d�1Y

j=i+1

⇡ � ✓j

⇡

1

A

with r = kxk and M = max(r, 1). Note that we can write

hx,x0 =
1

2d
(��x̂0 + (r � ↵)x̂)

Then if x 2 S✏,x0 , we have that

|� � + cos ✓0(r � ↵)| 6 ✏M (25)

| sin ✓0(r � ↵)| 6 ✏M. (26)
We now tabulate some useful bounds from Lemma 8 in [20]:

✓i 2 [0,⇡/2] for i > 1 (27)

✓i 6 ✓i�1 for i > 1 (28)
�����

d�1Y

i=0

⇡ � ✓i

⇡

����� 6 1 (29)

d�1Y

i=0

⇡ � ✓i

⇡
> ⇡ � ✓0

⇡d3
(30)

������

d�1X

i=0

sin ✓i
⇡

0

@
d�1Y

j=i+1

⇡ � ✓j

⇡

1

A

������
6 d

⇡
sin ✓0 (31)

✓0 = ⇡ +O1(�) =) ✓i = ✓̆i +O1(i�) (32)

✓0 = ⇡ +O1(�) =)

�����

d�1Y

i=0

⇡ � ✓i

⇡

����� 6
�

⇡
(33)

����
⇡ � 2✓i
⇡

���� 6 1 8 i > 1 (34)

✓d 6 cos�1

✓
1

⇡

◆
8 d > 2 (35)

✓̆i 6
3⇡

i+ 3
8 i > 0. (36)
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To prove the Proposition, we first show that it is sufficient to only consider the small and large angle
case. Then, we show that in the small and large angle case, x ⇡ x0 and x ⇡ �⇢dx0, respectively. We
begin by proving that max(kxk, kx0k) 6 6d for any x 2 S✏,x0 .
Bound on maximal norm in S✏,x0 : It suffices to show that r 6 6d. Suppose r > 1 since if r 6 1,
the result is immediate. Then either | sin ✓0| > 1/

p
2 or | cos ✓0| > 1/

p
2. If | sin ✓0| > 1/

p
2 then

(26) gives

|r � ↵| 6
p
2✏r =) (1�

p
2✏)r 6 |↵|.

But

|↵| 6 2

⇡
| sin ✓d|+

������

✓
⇡ � 2✓d

⇡

◆ d�1X

i=0

sin ✓i
⇡

0

@
d�1Y

j=i+1

⇡ � ✓i

⇡

1

A

������

6 1 +
d

⇡

where the second inequality used equations (31) and (34). Thus

r 6 1 + d
⇡

1�
p
2✏

6 2

✓
1 +

d

⇡

◆
6 2 + d 6 2d

provided ✏ < 1/4 and d > 2. If | cos ✓0| > 1/
p
2, then (25) gives

|r � ↵| 6
p
2(✏r + |�|) =) (1�

p
2✏)r 6

p
2|�|+ ↵.

But by (29),

|�| =

�����

✓
⇡ � 2✓d

⇡

◆ 
d�1Y

i=0

⇡ � ✓i

⇡

!����� 6 1 since ✓i 2 [0,⇡/2] 8 i > 1.

Hence if ✏ < 1/4,

r 6
p
2 + 2d

1�
p
2✏

6 2
p
2 + 4d 6

p
2d+ 4d 6 6d.

Thus in any case, r 6 6d =) M 6 6d.

We now show that it is sufficient to only consider the small angle case ✓0 ⇡ 0 and the large angle
case ✓0 ⇡ ⇡.
Sufficiency: We have two possible situations:

• |r � ↵| > p
✏M : Then (26) implies

| sin ✓0| 6
p
✏ =) ✓0 = O1(2

p
✏) or ⇡ +O1(2

p
✏).

• |r � ↵| 6 p
✏M : Then (25) implies

|�| 6 2
p
✏M.

But note that by (30),

� =

✓
⇡ � 2✓d

⇡

◆ 
d�1Y

i=0

⇡ � ✓i

⇡

!
> (⇡ � 2✓d)(⇡ � ✓0)

d3⇡2
.

In addition, (35) implies

|⇡ � 2✓d| >
����⇡ � 2 cos�1

✓
1

⇡

◆���� >
1

2
.

Thus

|�| > |(⇡ � 2✓d)(⇡ � ✓0)|
d3⇡2

> |⇡ � ✓0|
2d3⇡2

which implies

|⇡ � ✓0| 6 4d3⇡2p
✏M 6 24d4⇡2p

✏.

Thus ✓0 = ⇡ +O1(24d4⇡2p
✏).
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Lastly, we show that in the small angle case, x ⇡ x0, while in the large angle case, x ⇡ �⇢dx0.

Small Angle Case: Assume ✓0 = O1(2
p
✏). Note that since ✓i 6 ✓0 6 2

p
✏ for each i, we have that

d�1Y

i=0

⇡ � ✓i

⇡
>
✓
1� 2

p
✏

⇡

◆d

= 1 +O1

✓
4d

p
✏

⇡

◆

provided 2d
p
✏ 6 1/2. Hence

� =

✓
⇡ � 2✓d

⇡

◆ 
d�1Y

i=0

⇡ � ✓i

⇡

!

>
✓
1 +O1

✓
4
p
✏

⇡

◆◆✓
1 +O1

✓
4d

p
✏

⇡

◆◆

where we used (32) in the second inequality. In addition, | sin ✓d| 6 |✓d| 6 2
p
✏ and (31) imply that

������

d�1X

i=0

sin ✓i
⇡

0

@
d�1Y

j=i+1

⇡ � ✓j

⇡

1

A

������
6 d

⇡
| sin ✓d| 6 d

p
✏.

Hence

↵ =
2 sin ✓d
⇡

+

✓
⇡ � 2✓d

⇡

◆ d�1X

i=0

sin ✓i
⇡

0

@
d�1Y

j=i+1

⇡ � ✓j

⇡

1

A

= O1

✓
4
p
✏

3⇡

◆
+

✓
1 +O1

✓
4
p
✏

⇡

◆◆
O1(d

p
✏)

= O1

✓
4
p
✏

3⇡

◆
+O1(d

p
✏) +O1

✓
4d✏

⇡

◆

= O1

✓
(4 + 3d⇡ + 12d)

p
✏

3⇡

◆

Thus since |� � + cos ✓0(r � ↵)| 6 ✏M and M 6 6d, we attain

�
✓
1 +O1

✓
4
p
✏

⇡

◆◆✓
1 +O1

✓
4d

p
✏

⇡

◆◆
+ (1 +O1(2✏))

✓
r +O1

✓
(4 + 3d⇡ + 12d)

p
✏

3⇡

◆◆

= O1(6d✏).

Rearranging, this gives

r � 1 = O1

✓
4d

p
✏

⇡
+

4
p
✏

⇡
+

16d✏

⇡
+ (2✏+ 1)

(4 + 3d⇡ + 12d)
p
✏

3⇡

◆
+O1(12d✏) +O1(6d✏)

= O1

✓
(12d+ 12 + 48d)

p
✏+ (2✏+ 1)(4 + 3⇡d+ 12d)

p
✏

3⇡
+ 18d

p
✏

◆

= O1(29d
p
✏)

where we used ✏ < 1/2 in the final equality.

Large Angle Case: Assume ✓0 = ⇡ +O1(�) where � := 24d4⇡2p
✏. We first prove that ↵ is close

to ⇢d. Recall that ✓d = ✓̆d +O1(d�). Then by the mean value theorem:

| sin ✓d � sin ✓̆d| 6 |✓d � ✓̆d| 6 d�

so sin ✓d = sin ✓̆d +O1(d�). Let

�d :=
d�1X

i=0

sin ✓̆i
⇡

0

@
d�1Y

j=i+1

⇡ � ✓̆j

⇡

1

A .
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Then note that

⇢d =
2 sin ✓̆d
⇡

+

 
⇡ � 2✓̆d

⇡

!
�d.

In [20], it was shown that if d2�/⇡ 6 1, then |�d| 6 d and

d�1X

i=0

sin ✓i
⇡

0

@
d�1Y

j=i+1

⇡ � ✓j

⇡

1

A = �d +O1(3d
3
�).

By the condition, d2�/⇡ 6 1, we require
p
✏ 6 1

24⇡d6
.

Thus for sufficiently small ✏, we have

↵ =
2 sin ✓d
⇡

+

✓
⇡ � 2✓d

⇡

◆ d�1X

i=0

sin ✓i
⇡

0

@
d�1Y

j=i+1

⇡ � ✓j

⇡

1

A

=
2 sin ✓̆d
⇡

+O1

✓
2d�

⇡

◆
+

 
⇡ � 2✓̆d

⇡
+O1

✓
2d�

⇡

◆!�
�d +O1(3d

3
�)
�

= ⇢d +O1

✓
2d�

⇡

◆
+ �dO1

✓
2d�

⇡

◆
+

 
⇡ � 2✓̆d

⇡

!
O1

�
3d3�

�
+O1

✓
6d4�2

⇡

◆

= ⇢d +O1

✓
2d�

⇡

◆
+O1

✓
2d2�

⇡

◆
+O1

�
3d3�

�
+O1

✓
6d4�2

⇡

◆

= ⇢d +O1

✓✓
4�

⇡
+ 3� +

6�2

⇡

◆
d
4

◆

= ⇢d +O1(7d
4
�).

We now prove r is close to ⇢d. Since x 2 S✏,x0 ,

|� � + cos ✓0(r � ↵)| 6 ✏M.

Also note that |�| 6 �/⇡ by 33. Since cos ✓0 = 1 +O1(✓
2
0/2), we have that

O1(�/⇡) + (1 +O1(�
2
/2))(r � ⇢d +O1(7d

4
�)) = O1(✏M).

Using r 6 6d, ⇢d 6 2d, and � = 24d4⇡2p
✏ 6 1, we get

r � ⇢d +O1

✓
�
2

2

◆
(r � ⇢d) +O1(7d

4
�) +O1

✓
7d4�3

2

◆
= O1(✏M) +O1

✓
�

⇡

◆

=) r � ⇢d = O1

✓
4d�2 + 7d4� +

7d4�3

2
+ 6d✏+

�

⇡

◆

= O1

✓
6d✏+ �

✓
4d+ 7d4 +

7d4

2
+

1

⇡

◆◆

= O1

✓✓
6d+ 24d4⇡2

✓
4d+

21d4

2
+

1

⇡

◆◆p
✏

◆

= O1(3517d
8p
✏).

Finally, to complete the proof we use the inequality

kx� x0k 6 |kxk � kx0k|+ (kx0k+ |kxk � kx0k|) ✓0.
This inequality states that if a two dimensional point is known to be within �r of magnitude r and an
angle �✓ away from 0, then it is at most a Euclidean distance of �r + (r +�r)�✓ away from the
point (r, 0) in polar coordinates. Thus for ✓0 = O1(2

p
✏), we have r = 1 +O1(29d

p
✏) so

kx� x0k 6 29d
p
✏+ (1 + 29d

p
✏)2

p
✏ 6 89d

p
✏.
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Then if ✓0 = ⇡ + O1(24d4⇡2p
✏), note that \(x,�⇢dx0) = O1(24d4⇡2p

✏) and r = ⇢d +
O1(3517d8

p
✏) so that

kx+ ⇢dx0k 6 3517d8
p
✏+ (⇢d + 3517d8

p
✏)24d4⇡2p

✏

6 3517d8
p
✏+ (2d+ 3517d8

p
✏)24d4⇡2p

✏

6 77422⇡2
d
12p

✏.

Hence we attain

S✏,x0 ⇢ B(x0, 89d
p
✏) [ B(�⇢dx0, 77422⇡

2
d
12p

✏).

The result that ⇢d ! 1 as d ! 1 follows from the following facts: by (36), we have that

✓̆d 6 3⇡

d+ 3
8 d > 0 =) ✓̆d ! 0 as d ! 1.

Thus

2 sin ✓̆d
⇡

! 0 as d ! 1 since ✓̆d ! 0 as d ! 1

and in [20], it was shown that

d�1X

i=0

sin ✓̆i
⇡

0

@
d�1Y

j=i+1

⇡ � ✓̆j

⇡

1

A ! 1 as d ! 1.

Hence
 
⇡ � 2✓̆d

⇡

!
d�1X

i=0

sin ✓̆i
⇡

0

@
d�1Y

j=i+1

⇡ � ✓̆j

⇡

1

A ! 1 as d ! 1

so ⇢d ! 1 as d ! 1.

6 Appendix B: Gaussian Matrices Satisfy the RRCP

We set out to prove the following:
Proposition 2. Fix 0 < ✏ < 1. Let A 2 Rm⇥nd have i.i.d. N (0, 1/m) entries. Then if m >

C̃✏dk log(n1n2 . . . nd), then with probability at least 1� �̃m
4k+1 exp(�c̃✏m), A satisfies the RRCP

with constant ✏. Here �̃ is a positive universal constant, c̃✏ depends on ✏, and C̃✏ depends polynomially
on ✏�1.

To show that Gaussian A satisfies the RRCP, we first establish that for any fixed non-zero z, w 2 Rn,
the inner product hA>

z Awx, yi concentrates around its expectation h�z,wx, yi for all x and y in a fixed
k-dimensional subspace of Rn. As we will see by the end of this section, this fixed k-dimensional
subspace will represent the range of our generative model. We first require a simple technical result
that is proven in the subsequent section:
Proposition 3. Fix z, w 2 Rn \ {0} and 0 < ✏ < 1. Let T be a subspace of Rn. If

��hA>
z Awx, xi � h�z,wx, xi

�� 6 ✏kxk2 8 x 2 T (37)

then
��hA>

z Awx, yi � h�z,wx, yi
�� 6 3✏kxkkyk 8 x, y 2 T.

We now require a variation of the Restricted Isometry Property typically proven for Gaussian matrices.
In our situation, the matrix A

>
z Aw concentrates around �z,w 6= In for z 6= w, so we must prove a

generalization which we call the Restricted Concentration Property (RCP). First, recall that for any
z, w 2 Rn, E[A>

z Aw] = �z,w. In addition, we have that for any x 2 Rn,

��hA>
z Awx, xi � h�z,wx, xi

�� = 1

m

�����

mX

i=1

Yi

�����
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where

Yi = Xi � E[Xi] and Xi = sgn(hai, zihai, wi)hai, xi2.
Here each ai denotes an unnormalized row of A in which ai ⇠ N (0, In). Hence Yi are indepen-
dent, centered, subexponential random variables5. Thus they satisfy the following large deviation
inequality:
Lemma 5 (Corollary 5.17 in [32]). Let Y1, . . . , Ym be independent, centered, subexponential random
variables. Let K = maxi2[m] kYik 1 . Then for all ✏ > 0,

P
 

1

m

�����

mX

i=1

Yi

����� > ✏

!
6 2 exp


�cmin

✓
✏
2

K2
,
✏

K

◆
m

�

where c > 0 is an absolute constant. Here k · k 1 is the subexponential norm: kXk 1 :=

supp>1 p
�1 (E |X|p)1/p.

Fix x 2 Sn�1. Recall that the subexponential norm satisfies

kYik 1 = kXi � E[Xi]k 1 6 2kXik 1 .

Let Zi := hai, xi ⇠ N (0, 1). Recall that kZik 2 6 K1 for some absolute constant K1 where k · k 2

is the sub-gaussian norm. Observe that E |Xi|p 6 E |Z2
i |p. Thus by Lemma 5.14 in [32], we have

kYik 1 6 2kXik 1 6 2kZ2
i k 1 6 4kZik2 2

6 4K2
1 .

Thus K = maxi2[m] kYik 1 6 4K2
1 for an absolute constant K1. Defining K2 := 4K2

1 , Lemma 5
guarantees that for any fixed z, w 2 Rn \ {0} and ✏ > 0,

P
�
|hA>

z Awx, xi � h�z,wx, xi| > ✏
�
6 2 exp(�c0(✏)m) (38)

where c0(✏) = cmin(✏2/K2
2 , ✏/K2). We are now equipped to proceed with the proof of the RCP.

Proposition 4 (Variant of Lemma 5.1 in [3]: RCP). Fix 0 < ✏ < 1 and k < m. Let A 2 Rm⇥n have
i.i.d. N (0, 1/m) entries and fix z, w 2 Rn \ {0}. Let T ⇢ Rn be a k-dimensional subspace. Then if
m > c̃k, we have that with probability exceeding 1� 2 exp(�c1m),

|hA>
z Awx, xi � h�z,wx, xi| 6 ✏kxk2 8 x 2 T (39)

and

|hA>
z Awx, yi � h�z,wx, yi| 6 3✏kxkkyk 8 x, y 2 T. (40)

Furthermore, let U =
SM

i=1 Ui and V =
SN

j=1 Vj where Ui and Vj are subspaces of Rn of dimension
at most k for all i 2 [M ] and j 2 [N ]. Then if m > c̃k

��hA>
z Awu, vi � h�z,wu, vi

�� 6 3✏kukkvk 8 u 2 U, v 2 V, (41)

with probability exceeding 1 � 2MN exp(�c1m). Here c1 only depends on ✏ and c̃ =
⌦(✏�1 log ✏�1).

Proof. Fix 0 < ✏ < 1 and k < m. Since A is Gaussian, we may take T to be in the span of the
first k standard basis vectors. In addition, assume kxk = 1 for any x 2 T . For notational simplicity,
set ⌃z,w := A

>
z Aw � �z,w. Choose a finite set of points QT ⇢ T each with unit norm such that

|QT | 6 (42/✏)k and for any x 2 T ,

min
q2QT

kx� qk 6 ✏

14
. (42)

See [11] for a proof of such a construction. Then we may apply a union bound to (38) for this set of
points to attain

P
⇣
|h⌃z,wq, qi| >

✏

8
8 q 2 QT

⌘
6 2

✓
42

✏

◆k

exp
⇣
�c0

⇣
✏

8

⌘
m

⌘
. (43)

5Recall that if a ⇠ N (0, In), ha, xi ⇠ N (0, kxk2). Since any Gaussian random variable is sub-gaussian
and any squared sub-gaussian random variable is subexponential, ha, xi2 is subexponential. The terms involving
sgn(·) do not effect the tail of ha, xi2.
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Now, define
↵
⇤ := inf

�
↵ > 0 : |h⌃z,wx, xi| 6 ↵kxk2 8 x 2 T

 
. (44)

We want to show that ↵⇤ 6 ✏. Fix x 2 T with unity norm. Then there exists a q 2 QT with kqk = 1
such that kx� qk 6 ✏/14. In addition, observe that x� q 2 T since q 2 QT ⇢ T so by (44),

|h⌃z,w(x� q), x� qi| 6 ↵
⇤kx� qk2 6 ↵

⇤ ✏
2

196
. (45)

Now, note that by the definition of ↵⇤,
|h⌃z,wx, xi| 6 ↵

⇤ 8 x 2 T.

Thus Proposition 3 gives
|h⌃z,wx, yi| 6 3↵⇤ 8 x, y 2 T.

Applying this result to x� q and q gives

|h⌃z,w(x� q), qi| 6 3↵⇤kx� qk 6 ↵
⇤ 3✏

14
. (46)

Using h⌃z,wx, xi = h⌃z,w(x� q), x� qi+2h⌃z,wx, qi� h⌃z,wq, qi and h⌃z,wx, qi = h⌃z,w(x�
q), qi+ h⌃z,wq, qi, we see that

|h⌃z,wx, xi| 6 |h⌃z,w(x� q), x� qi|+ 2|h⌃z,wx, qi|+ |h⌃z,wq, qi|
6 |h⌃z,w(x� q), x� qi|+ 2|h⌃z,w(x� q), qi|+ 3|h⌃z,wq, qi|

6 ↵
⇤ ✏

2

196
+ ↵

⇤ 3✏

7
+

3✏

8

= ↵
⇤
✓
✏
2

196
+

3✏

7

◆
+

3✏

8

where we used (45), (46), and (43) in the second inequality. Note that this bound can be derived for
any x 2 T because we can always find a q 2 QT with kqk = 1 such that kx� qk 6 ✏/14. Thus

|h⌃z,wx, xi| 6 ↵
⇤
✓
✏
2

196
+

3✏

7

◆
+

3✏

8
8 x 2 T. (47)

However, recall that ↵⇤ was defined to be the smallest number such that
|h⌃z,wx, xi| 6 ↵

⇤ 8 x 2 T.

Hence ↵⇤ must be smaller than the right hand side of (47), i.e.

↵
⇤ 6 ↵

⇤
✓
✏
2

196
+

3✏

7

◆
+

3✏

8
=) ↵

⇤ 6 3✏

8

 
1

1� ✏2

196 � 3✏
7

!
6 ✏

since 0 < ✏ < 1. Hence we conclude that with probability exceeding 1� 2(42/✏)k exp(�c0(✏/8)m),
|h⌃z,wx, xi| 6 ✏kxk2 8 x 2 T

i.e.
|hA>

z Awx, xi � h�z,wx, xi| 6 ✏kxk2 8 x 2 T.

The probability bound in the proposition can be shown by noting that

1� 2(42/✏)k exp(�c0(✏/8)m) = 1� 2 exp

✓
�c0(✏/8)m+ k log

✓
42

✏

◆◆
.

Thus if
2

c0(✏/8)
log

✓
42

✏

◆
k 6 c̃k 6 m

where c̃ = ⌦(✏�1 log ✏�1), we have that the result holds with probability exceeding

1� 2 exp

✓
�c0(✏/8)m+ k log

✓
42

✏

◆◆
> 1� 2 exp(�c1m)

where c1 = c0(✏/8)/2. Applying Proposition 3 to our result gives (41) with the same probability. The
extension to the union of subspaces follows by applying (41) to all subspaces of the form span(Ui, Vj)
and using a union bound.
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Now, this result establishes the concentration of hA>
z Awx, yi around h�z,wx, yi for x and y in a

fixed k-dimensional subspace for fixed z, w 2 Rn \ {0}. However, in reality, we are interested in
showing that this concentration holds for all z and w in the range of our generative model. Hence
we require an extension of the RCP, which holds uniformly for all z and w in (possibly) different
k-dimensional subspaces. We will refer to this result as the Uniform RCP. The proof of this result
uses an interesting fact from 1-bit compressed sensing which establishes that if a sufficient number of
random hyperplanes cut the unit sphere, the diameter of each tesselation is small with high probability
[30]. We state the theorem here for convenience:

Theorem 4 (Theorem 2.1 in [30]). Let n,m, s > 0 and set � = C1

�
s
m log(2n/s)

�1/5. Let ai 2 Rn

have i.i.d. N (0, 1) entries for i 2 [m]. Then with probability at least 1 � C2 exp(�c�m), the
following holds uniformly for all x, x̃ 2 Rn that satisfy kxk2 = kx̃k2 = 1, kxk1 6 p

s, and
kx̃k1 6 p

s for s 6 n:

hai, x̃ihai, xi > 0, i 2 [m] =) kx̃� xk2 6 �. (48)

Here C1, C2, c are positive universal constants.

We will use this result to prove the following: given a sufficient number of random hyperplanes and
a k-dimensional subspace Z, there exists a finite set of points Z0 such that any point in Z can be
closely approximated by a point in Z0 with high probability.
Lemma 6. Fix 0 < ✏ < 1. Let A 2 Rm⇥n have i.i.d. N (0, 1/m) entries with rows {a`}m`=1. Let
Z ⇢ Rn be a k-dimensional subspace. Then if m > c✏k, there exists a set of points

Z0 :=
�
zi 2 Z : kzik = 1 and a

>
` zi 6= 0 8 ` 2 [m], i 2 I

 
(49)

where I is a finite index set such that the following event holds with probability exceeding 1 �
C2 exp(�c✏m):

EZ,A :=
�
|I| 6 10m2k and 8 z 2 Z s.t. kzk = 1, 9 zi 2 Z0 s.t. kz � zik 6 ✏

 
. (50)

Here C2 and c are positive absolute constants and c✏ depends polynomially on ✏�1
.

Proof of Lemma 6. By the rotational invariance of the Gaussian distribution, we may take Z to be
in the span of the first k standard basis vectors. We may further without loss of generality assume
A 2 Rm⇥k. Define Z0 and EZ,A as in (49) and (50). We will evoke the following lemma which
establishes that the unit sphere of Z is partitioned into at most 10m2k regions by the rows {a`}m`=1 of
A with probability 1:

Lemma 7. Let V be a subspace of Rn. Let A 2 Rm⇥n have i.i.d. N (0, 1/m) entries. With
probability 1,

|{diag(sgn(Av))A : v 2 V }| 6 10m2 dimV
.

Now, choose {zi}i2I as a set of representative points in the interior of each region partitioned by
the rows {a`}m`=1 of A. By Lemma 7, the number of such points is bounded with probability 1:
|I| 6 10m2k. Then, to use Theorem 4, observe that we can set n = s = k since A 2 Rm⇥k and Z is
in the span of the first k standard basis vectors. Then if m >

�
C

5
1 log(2)/✏

5
�
k := c✏k, we have that

the quantity � in the theorem is bounded by ✏:

� := C1

✓
k

m
log(2)

◆1/5

6 ✏

so P(EZ,A) > 1�C2 exp(�c✏m) for some positive universal constants c, C1, and C2 and c✏ depends
polynomially on ✏�1.

We now proceed with the proof of the Uniform RCP.
Proposition 5 (Uniform RCP). Fix 0 < ✏ < 1 and k < m. Let A 2 Rm⇥n have i.i.d. N (0, 1/m)
entries. Let Z,W , and T be fixed k-dimensional subspaces of Rn. Then if m > 2C✏k, then with
probability at least 1� 3�m4k+1 exp(�c̃✏m), we have

��hA>
z Awx, yi � h�z,wx, yi

�� 6 L✏kxkkyk 8 x, y 2 T, z 2 Z, w 2 W (51)

27



where � is a positive universal constant, c̃✏ depends on ✏ and C✏ depends polynomially on ✏�1.
Furthermore, let U =

SM
i=1 Ui and V =

SN
j=1 Vj where Ui and Vj are subspaces of Rn of dimension

at most k for all i 2 [M ] and j 2 [N ]. Then if m > 2C✏k,
��hA>

z Awu, vi � h�z,wu, vi
�� 6 L✏kukkvk 8 u 2 U, v 2 V, z 2 Z, w 2 W (52)

with probability exceeding 1� 3MN�m
4k+1 exp(�c̃✏m). Here L is a positive universal constant.

Proof. Define Z0 and EZ,A as in (49) and (50). One can define the analogous set

W0 :=
�
wj 2 W : kwjk = 1 and a

>
` wj 6= 0 8 ` 2 [m], j 2 J

 
(53)

for some finite index set J , choosing the points in W0 in precisely the same way as in Z0. We also
define the analogous event

EW,A :=
�
|J | 6 10m2k and 8 w 2 W s.t. kwk = 1, 9 wj 2 W0 s.t. kw � wjk 6 ✏

 
. (54)

By Lemma 6, we have that if m > c✏k, P(EZ,A) > 1�C2 exp(�c✏m). The event EW,A holds with
the same probability so we have that if m > c✏k,

P(EZ,A \ EW,A) > 1� 2C2 exp(�c✏m)

For the remainder of this proof, we work on the event EZ,A \ EW,A. Fix z 2 Z and w 2 W . Define
the following set:

⌦z,w :=
�
` 2 [m] : a>` z = 0 or a>` w = 0

 
.

Note that since Z and W are k-dimensional and any subset of k rows of A are linearly independent
with probability 1, at most k entries of either Az or Aw are zero.6 Hence |⌦z,w| 6 2k. Furthermore,
observe that

A
>
z Aw =

mX

`=1

sgn(ha`, ziha`, wi)a`a>`

=
X

`2⌦z,w

sgn(ha`, ziha`, wi)a`a>` +
X

`2⌦c
z,w

sgn(ha`, ziha`, wi)a`a>`

=
X

`2⌦c
z,w

sgn(ha`, ziha`, wi)a`a>`

by the definition of ⌦z,w. However, on the event EZ,A \ EW,A, there exists a zi 2 Z0 and wj 2 W0

for some i 2 I and j 2 J such that for all ` 2 ⌦c
z,w,

sgn(ha`, ziha`, wi) = sgn(ha`, ziiha`, wji)
i.e. z and zi (likewise w and wj) lie on the same side and interior of each hyperplane for which z (or
w) is not orthogonal to. Hence we have

A
>
z Aw =

X

`2⌦c
z,w

sgn(ha`, ziha`, wi)a`a>` =
X

`2⌦c
z,w

sgn(ha`, ziiha`, wji)a`a>` := Ã
>
ziÃwj .

We now use the following lemma which says that if |⌦z,w| 6 2k total rows of Azi and Awj are
deleted, we can still establish the RCP:

Lemma 8. Fix 0 < ✏ < 1 and k < m. Suppose that A 2 Rm⇥n has i.i.d. N (0, 1/m) entries.
Let T ⇢ Rn be a k-dimensional subspace and define Z0 and W0 as in (49) and (53). Then if
m > 2��1

✏ c̃k, the following holds simultaneously for all ⌦ ⇢ [m] satisfying |⌦| 6 2k 6 �✏m with
probability at least 1� �m

4k+1 exp
�
� c1m

4

�
:

���
D
Ã

>
ziÃwjx, y

E
� h�zi,wjx, yi

��� 6 3✏kxkkyk 8 x, y 2 T, 8 i 2 I, j 2 J (55)

where
Ã

>
ziÃwj :=

X

`2⌦c

sgn(ha`, ziiha`, wji)a`a>` .

Here � is a positive absolute constant, c1 depends on ✏, c̃ = ⌦(✏�1 log ✏�1), and ��1
✏ depends

polynomially on ✏�1
.

6This is shown in the proof of Lemma 7.
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Proof of Lemma 8. Fix ⌦ ⇢ [m] satisfying |⌦| 6 2k. For �✏ < 1/2, observe that the assumption
m > 2c̃k implies that |⌦c| > m/2 > c̃k. Thus the RCP guarantees that with probability exceeding

1� 2 exp (�c1|⌦c|) > 1� 2 exp
⇣
�c1m

2

⌘

we have that the following holds for fixed zi 2 Z0 and wj 2 W0:
���
D
Ã

>
ziÃwjx, y

E
� h�zi,wjx, yi

��� 6 3✏kxkkyk 8 x, y 2 T.

Furthermore, a union bound over all {zi}i2I and {wj}j2J gives
���
D
Ã

>
ziÃwjx, y

E
� h�zi,wjx, yi

��� 6 3✏kxkkyk 8 x, y 2 T, i 2 I, j 2 J (56)

with probability at least

1� 2|I||J | exp
⇣
�c1m

2

⌘
> 1� �m

4k exp
⇣
�c1m

2

⌘

where � is a positive absolute constant and c1 depends on ✏. The number of subsets of [m] of size
b�✏mc is

✓
m

b�✏mc

◆
6
✓

em

�✏m

◆�✏m
=

"✓
e

�✏

◆�✏#m

We now determine a sufficiently small �✏ such that
✓

e

�✏

◆�✏
6 exp

⇣
c1

4

⌘
(57)

where c1 = c0(✏/8)/2 = (c/2)min
�
(✏/8)2/K2

2 , (✏/8)/K2

�
for absolute constants c and K2. Since

0 < ✏ < 1, we have that

c1

4
> c

8
min

✓
1

(8K2)2
,

1

8K2

◆
✏
2 := R✏

2
.

Then if �✏ satisfies

0 6 exp
�
R✏

2 � �✏

�
� 1

�
�✏
✏

=)
✓

e

�✏

◆�✏
6 exp

�
R✏

2
�
6 exp

⇣
c1

4

⌘
.

However, note that the function

 (t) := exp(t� (t/2)2)� 1

(t/2)2(t/2)2
> 0 8 t > 0.

A plot of this function is given in Figure 5. Thus  (R✏2) > 0 so if we take �✏ := (R✏2/2)2, we have
that (57) holds.
Defining �✏ in this way we have that

✓
m

b�✏mc

◆
6 exp

⇣
c1m

4

⌘
. (58)

Thus, provided m > 2��1
✏ c̃k and applying a union bound, the result holds for all subsets ⌦ ⇢ [m]

satisfying |⌦| 6 2k 6 b�✏mc with probability

1�
b�✏mcX

`=1

✓
m

`

◆
�m

4k exp
⇣
�c1m

2

⌘
> 1� b�✏mc

✓
m

b�✏mc

◆
�m

4k exp
⇣
�c1m

2

⌘

> 1� �b�✏mcm4k exp
⇣
�c1m

2
+

c1m

4

⌘

> 1� �m
4k+1 exp

⇣
�c1m

4

⌘

where we used (58) in the second inequality.
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Figure 5: Plot of the function  (t) = exp(t� (t/2)2)� 1
(t/2)2(t/2)2

.

We return to the proof of Proposition 5. Let C✏ := �
�1
✏ max{c✏, c̃}. Then if m > 2C✏k > 2c̃k,

Lemma 8 and the event EZ,A \ EW,A holds with probability exceeding

P (Lemma 8 \ (EZ,A \ EW,A)) > 1� 2C2 exp (�c✏m)� �m
4k+1 exp

⇣
�c1m

4

⌘

> 1� 3�m4k+1 exp (�c̃✏m)

where � is a positive absolute constant and c̃✏ depends on ✏. On this event, we have that for all z 2 Z

and w 2 W with kzk = kwk = 1, there exists a zi 2 Z0 and wj 2 W0 for some i 2 I and j 2 J

with kzik = kwjk = 1 such that for any x, y 2 T ,
��hA>

z Awx, yi � h�z,wx, yi
�� =

���hÃ>
ziÃwjx, yi � h�z,wx, yi

���

6
���hÃ>

ziÃwjx, yi � h�zi,wjx, yi
���+

��h�zi,wjx, yi � h�z,wx, yi
��

6 3✏kxkkyk+ 88

⇡
✏kxkkyk

:= L✏kxkkyk

where we used (55) and the continuity of �z,w from Lemma 9 in the second inequality. The extension
to the union of subspaces follows by applying (51) to all subspaces of the form span(Ui, Vj) and
using a union bound.

With the Uniform RCP, we may now prove the RRCP:
Proposition 6 (Range Restricted Concentration Property (RRCP)). Fix 0 < ✏ < 1. Let Wi 2
Rni⇥ni�1 have i.i.d. N (0, 1/ni) entries for i = 1, . . . , d. Let A 2 Rm⇥nd have i.i.d. N (0, 1/m)
entries independent from {Wi}. Then if m > C̃✏dk log(n1n2 . . . nd), then with probability at least
1� �̃m

4k+1 exp
�
� c̃✏

2 m
�
, we have that for all x, y 2 Rk,

k(⇧1
i=dWi,+,x)

>(A>
xd
Ayd � �xd,yd)(⇧

1
i=dWi,+,y)k 6 L✏

dY

i=1

kWi,+,xkkWi,+,yk

where

xd := (⇧1
i=dWi,+,x)x and yd := (⇧1

i=dWi,+,y)y.

Here �̃ and L are positive universal constants, c̃✏ depends on ✏, and C̃✏ depends polynomially on ✏�1.
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Proof. It suffices to show that for all x, y, w, v 2 Sk�1,

��h(A>
xd
Ayd � �xd,yd)(⇧

1
i=dWi,+,x)w, (⇧

1
i=dWi,+,y)vi

�� 6 L✏

dY

i=1

kWi,+,xkkWi,+,yk. (59)

We will use (52) from Proposition 5. We first consider the d = 2 layer case for simplicity. Fix
W1 2 Rn1⇥k and W2 2 Rn2⇥n2 . It has been shown in Lemma 15 of [20] that there exists an event
E over (W1,W2) with P(E) = 1 such that

| {W1,+,x : x 6= 0} | 6 10nk
1 and | {W2,+,x : x 6= 0} | 6 102nk

2n
k
1 .

Thus on the event E, we have that the following holds with probability 1:

| {W2,+,xW1,+,x : x 6= 0} | 6 103(n2
1n2)

k
.

Note that dim (range(W2,+,xW1,+,x)) 6 k for all x 6= 0. Hence it follows that

�
W2,+,xW1,+,xw : x,w 2 Sk�1

 
✓ U =

M[

i=1

Ui

where M 6 103(n2
1n2)k. By the same logic, we see that

�
W2,+,yW1,+,yv : y, v 2 Sk�1

 
✓ V =

N[

j=1

Vj

where N 6 103(n2
1n2)k. Thus by applying (52) to Z = range(W2,+,xW1,+,x), W =

range(W2,+,yW1,+,y), U and V , we see that if m > 2C✏k, the d = 2 layer variant of (59) holds for
fixed W1 and W2 with probability exceeding

1� 3MN�m
4k+1 exp(�c̃✏m) > 1� 3(103)2(n2

1n2)
2k
�m

4k+1 exp(�c̃✏m).

Let �̃ = 3(103)2�. Observe that if m > 2ĈC✏c̃
�1
✏ k log(n1n2) := C̃✏k log(n1n2) for some positive

absolute constant Ĉ, then

1� 3(103)2(n2
1n2)

2k
�m

4k+1 exp(�c̃✏m) = 1� �̃m
4k+1 exp

�
�c̃✏m+ 2k log(n2

1n2)
�

> 1� �̃m
4k+1 exp

✓
� c̃✏

2
m

◆
.

Here �̃ and Ĉ are positive absolute constants, c̃✏ depends on ✏, and C̃✏ := 2ĈC✏c̃
�1
✏ depends

polynomially on ✏�1. Then, for random (W1,W2), we have that by the independence of A and
(W1,W2), the d = 2 layer variant of the RRCP holds with the same probability.
The d layer case is shown with precisely the same argument. It has been shown in Lemma 15 of [20]
that

|{⇧1
i=dWi,+,x : x 6= 0}| 6 10d

2

(nd
1n

d�1
2 . . . n

2
d�1nd)

k
.

Hence it follows that {(⇧1
i=dWi,+,x)w : x,w 2 Sk�1} ✓ U where U is the union of at most

10d
2

(nd
1n

d�1
2 . . . n

2
d�1nd)k subspaces of dimensionality at most k. We can similarly conclude

{(⇧1
i=dWi,+,y)v : y, v 2 Sk�1} ✓ V where V is the union of at most 10d

2

(nd
1n

d�1
2 . . . n

2
d�1nd)k

subspaces of dimensionality at most k. Hence applying (52) from Proposition 5 to Z =
range(⇧1

i=dWi,+,x), W = range(⇧1
i=dWi,+,y), U , and V gives (2) with probability at least

1� �m
4k+1(10d

2

)2(nd
1n

d�1
2 . . . n

2
d�1nd)

2k exp(�c̃✏m) > 1� �̃m
4k+1 exp

✓
� c̃✏

2
m

◆

provided m > 2ĈC✏c̃
�1
✏ dk log(n1n2 . . . nd) := C̃✏dk log(n1n2 . . . nd).

31



6.1 RRCP Supplementary Results

Proof of Proposition 3. Fix 0 < ✏ < 1. Suppose (37) holds and fix x, y 2 T . Without loss of
generality, assume x and y are unit normed. We will use the shorthand notation � = �z,w. Since T

is a subspace, x� y 2 T so by (37),
��hA>

z Aw(x� y), x� yi � h�(x� y), x� yi
�� 6 ✏kx� yk2

or equivalently

h�(x� y), x� yi � ✏kx� yk2 6 hA>
z Aw(x� y), x� yi 6 h�(x� y), x� yi+ ✏kx� yk2.

(60)

Note that

kx� yk2 = 2� 2hx, yi,

h�(x� y), x� yi = h�x, xi+ h�y, yi � 2h�x, yi,

and

hA>
z Aw(x� y), x� yi = hA>

z Awx, xi+ hA>
z Awy, yi � 2hA>

z Awx, yi

where we used the fact that � and A
>
z Aw are symmetric. Rearranging (60) yields

2
�
h�x, yi � hA>

z Awx, yi
�
6
�
h�x, xi � hA>

z Awx, xi
�
+
�
h�y, yi � hA>

z Awy, yi
�
+ (2� 2hx, yi)✏.

By assumption, the first two terms are bounded from above by ✏. Thus

2
�
h�x, yi � hA>

z Awx, yi
�
6 2✏+ (2� 2hx, yi)✏
= 2(2� hx, yi)✏
6 6✏

so

h�x, yi � hA>
z Awx, yi 6 3✏.

The lower bound is identical. Hence
��h�x, yi � hA>

z Awx, yi
�� 6 3✏.

Proof of Lemma 7. It suffices to prove the same upperbound for |{sgn(Av) : v 2 V }|. Let ` =
dimV . By rotational invariance of Gaussians, we may take V = span(e1, . . . , e`) without loss of
generality. Without loss of generality, we may let A have dimensions m⇥ ` and take V = R`.7

We will appeal to a classical result from sphere covering [36]. If m hyperplanes in R` contain the
origin and are such that the normal vectors to any subset of ` of those hyperplanes are independent,
then the complement of the union of these hyperplanes is partitioned into at most

2
`�1X

i=0

✓
m� 1

i

◆

disjoint regions. Each region uniquely corresponds to a constant value of sgn(Av) that has all
non-zero entries. With probability 1, any subset of ` rows of A are linearly independent, and thus,

|{sgn(Av) : v 2 R`, (Av)i 6= 0 8 i}| 6 2
`�1X

i=0

✓
m� 1

i

◆
6 2`

⇣
em

`

⌘`
6 10m`

7This without loss of generality statement can be deduced by noting the following: if v 2 V ⇢ Rn where V
is an `-dimensional subspace, then v = Bq where B 2 Rn⇥n is orthogonal and q 2 span(e1, . . . , e`, 0, . . . , 0).
Hence Av = Ãq where Ã = AB also has i.i.d. Gaussian entries by the rotational invariance of A. Hence it
suffices to consider V = R` and A 2 Rm⇥k.
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where the first inequality uses the fact that
�m
`

�
6 (em/`)` and the second inequality uses that

2`(e/`)` 6 10 for all ` > 1.
For arbitrary v, at most ` entries of Av can be zero by linear independence of the rows of A. At
each v, there exists a direction ṽ such that (A(v + �ṽ))i 6= 0 for all i and for all � sufficiently small.
Hence, sgn(Av) differs from one of {sgn(Av) : v 2 R`, (Av)i 6= 0 8 i} by at most ` entries. Thus,

|{sgn(Av) : v 2 R`}| 6
✓
m

`

◆
|{sgn(Av) : v 2 R`, (Av)i 6= 0 8 i}| 6 m

`10m` = 10m2`
.

We now prove the continuity of �z,w for non-zero z, w 2 Rn. Recall that

�z,w :=
⇡ � 2✓z,w

⇡
In +

2 sin ✓z,w
⇡

Mẑ$ŵ

where ✓z,w := \(z, w) and Mz$w is the matrix that sends ẑ 7! e1, ŵ 7! cos ✓z,we1 + sin ✓z,we2,
and h 7! 0 for all h 2 span({z, w}?).
Lemma 9 (Continuity of �z,w). Fix 0 < ✏ < 1 and z, w 2 Sn�1. Then if kz̃ � zk 6 ✏ and
kw̃ � wk 6 ✏ for some z̃, w̃ 2 Sn�1, we have

k�z̃,w̃ � �z,wk 6 88

⇡
✏.

Proof of Lemma 9. In this proof, we will utilize the following three inequalities:

|✓x1,y � ✓x2,y| 6 |✓x1,x2 |, 8 x1, x2, y 2 Sn�1 (61)

2 sin(✓x,y/2) 6 kx� yk, 8 x, y 2 Sn�1 (62)
✓/4 6 sin(✓/2), 8 ✓ 2 [0,⇡]. (63)

Observe that

k�z̃,w̃ � �z,wk 6 2|✓z̃,w̃ � ✓z,w|
⇡

kInk+
����
2 sin ✓z̃,w̃

⇡
Mz̃$w̃ � 2 sin ✓z,w

⇡
Mz$w

���� .

First, observe that by (61), we have that

|✓z̃,w̃ � ✓z,w| 6 |✓z̃,w̃ � ✓z,w̃|+ |✓z,w̃ � ✓z,w|
6 |✓z̃,z|+ |✓w̃,w|.

Then, by (62) and (63), we have that

|✓z̃,z| 6 4 sin(✓z̃,z/2) 6 2kz̃ � zk 6 2✏.

The same upper bound holds for |✓w̃,w|. Thus we attain

|✓z̃,w̃ � ✓z,w| 6 |✓z̃,z|+ |✓w̃,w| 6 4✏. (64)

Let R be a rotation matrix that maps z 7! e1 and w 7! cos ✓z,we1 + sin ✓z,we2. Let R̃ de-
note the matrix that applies the same rotatation to the system z̃ and w̃. Recall that Mz$w :=
R

>
DR and Mz̃$w̃ := R̃

>
D̃R̃ where

D :=

"
cos ✓z,w sin ✓z,w 0
sin ✓z,w � cos ✓z,w 0

0 0 0k�2

#
and D̃ :=

"
cos ✓z̃,w̃ sin ✓z̃,w̃ 0
sin ✓z̃,w̃ � cos ✓z̃,w̃ 0

0 0 0k�2

#
.

An elementary calculation shows that D has 2 pairs of non-zero eigenvalues and eigenvectors (�1, d1)
and (�2, d2) where

�1 = �1 and d1 = (cos ✓z,w � 1)e1 + sin ✓z,we2

while

�2 = 1 and d2 = (cos ✓z,w + 1)e1 + sin ✓z,we2.
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Let D = �d1d
>
1 + d2d

>
2 be the eigenvalue decomposition for D. Then by the definition of Mz$w,

Mz$w = R
>
DR

= R
> �

�d1d
>
1 + d2d

>
2

�
R

= �R
>
d1d

>
1 R+R

>
d2d

>
2 R

:= �v1v
>
1 + v2v

>
2

so v1 = R
>
d1 and v2 = R

>
d2 are the eigenvectors of Mz$w with corresponding eigenvalues

�1 and 1, respectively. Then, recall that Rz = e1 while Rw = cos ✓z,we1 + sin ✓z,we2. Thus the
eigenvectors d1 and d2 can be written as

d1 = Rw �Rz and d2 = Rw +Rz.

Thus the eigenvectors of Mz$w are precisely

v1 = w � z and v2 = w + z.

By the same argument, the eigenvectors of Mz̃$w̃ are

ṽ1 = w̃ � z̃ and ṽ2 = w̃ + z̃

with corresponding eigenvalues �1 and 1, respectively. Hence, we have that
2 sin ✓z,w

⇡
Mz$w =

2 sin ✓z,w
⇡

�
�v1v

>
1 + v2v

>
2

�

=
2 sin ✓z,w

⇡

�
�(w � z)(w � z)> + (w + z)(w + z)>

�

and likewise
2 sin ✓z̃,w̃

⇡
Mz̃$w̃ =

2 sin ✓z̃,w̃
⇡

�
�(w̃ � z̃)(w̃ � z̃)> + (w̃ + z̃)(w̃ + z̃)>

�
.

For simplicity of notation, let h = w � z, h̃ = w̃ � z̃, g = w + z, and g̃ = w̃ + z̃. Then
����
2 sin ✓z,w

⇡
Mz$w � 2 sin ✓z̃,w̃

⇡
Mz̃$w̃

���� =
2

⇡

���sin ✓z,w
�
�hh

> + gg
>�+ sin ✓z̃,w̃

⇣
h̃h̃

> � g̃g̃
>
⌘���

6 2

⇡

⇣
k sin ✓z,whh> � sin ✓z̃,w̃h̃h̃

>k+ k sin ✓z,wgg> � sin ✓z̃,w̃g̃g̃
>k

⌘
.

Note that since z, w, z̃, w̃ 2 Sn�1, khk, kh̃k, kgk, kg̃k 6 2. In addition,

kh� h̃k 6 kz � z̃k+ kw � w̃k 6 2✏

and (64) implies

| sin ✓z,w � sin ✓z̃,w̃| 6 |✓z,w � ✓z̃,w̃| 6 4✏.

Hence

k sin ✓z,whh> � sin ✓z̃,w̃h̃h̃
>k 6 k sin ✓z,whh> � sin ✓z,whh̃

>k+ k sin ✓z,whh̃> � sin ✓z,wh̃h̃
>k

+ k sin ✓z,wh̃h̃> � sin ✓z̃,w̃h̃h̃
>k

6 | sin ✓z,w|khkkh� h̃k+ | sin ✓z,w|kh̃kkh� h̃k+ kh̃h̃>k| sin ✓z,w � sin ✓z̃,w̃|
6 20✏.

The same bound holds for k sin ✓z,wgg> � sin ✓z̃,w̃g̃g̃>k. Hence we attain
����
2 sin ✓z,w

⇡
Mz$w � 2 sin ✓z̃,w̃

⇡
Mz̃$w̃

���� 6 80

⇡
✏. (65)

Combining (64) and (65), we see that

k�z̃,w̃ � �z,wk 6 2|✓z̃,w̃ � ✓z,w|
⇡

kInk+
����
2 sin ✓z̃,w̃

⇡
Mz̃$w̃ � 2 sin ✓z,w

⇡
Mz$w

���� 6 88

⇡
✏.
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We prove the inequalities used in the above proof:

Proof of equations (61), (62), and (63). For (61), we proceed similarly to the proof on page 12 of
[12]. Observe that we can write

x1 = cos ✓x1,yy + sin ✓x1,yy
?
1

and

x2 = cos ✓x2,yy + sin ✓x2,yy
?
2

where y
?
1 and y

?
2 are unit vectors that are orthogonal to y. Then observe that

hx1, x2i = hcos ✓x1,yy + sin ✓x1,yy
?
1 , cos ✓x2,yy + sin ✓x2,yy

?
2 i

= cos ✓x1,y cos ✓x2,y + sin ✓x1,y sin ✓x2,yhy?1 , y?2 i.

Since ✓x1,y, ✓x2,y 2 [0,⇡], we have that sin ✓x1,y sin ✓x2,y > 0. In addition, hy?1 , y?2 i 6
ky?1 kky?2 k = 1 so we attain

hx1, x2i 6 cos ✓x1,y cos ✓x2,y + sin ✓x1,y sin ✓x2,y = cos(✓x1,y � ✓x2,y)

by the trigonometric identity cos(↵⌥ �) = cos↵ cos� ± sin↵ sin�. Since the function cos�1(·) is
decreasing on [�1, 1], we see that

✓x1,y � ✓x2,y 6 cos�1(hx1, x2i) = ✓x1,x2 .

Similarly, ✓x2,y � ✓x1,y 6 ✓x1,x2 so we attain |✓x1,y � ✓x2,y| 6 |✓x1,x2 |.
For (62), observe that

kx� yk2 = kxk2 + kyk2 � 2hx, yi
= kxk2 + kyk2 � 2kxkkyk cos ✓x,y
= 2(1� cos ✓x,y).

Thus, using the half angle formula

sin
✓

2
= sgn

✓
2⇡ � ✓ + 4⇡

�
✓

4⇡

⌫◆r
1� cos ✓

2

we see that

kx� yk =
q
2(1� cos ✓x,y) = 2

r
1� cos ✓x,y

2
> 2 sin

✓x,y

2
.

For (63), one can note that the function  (✓) := 4 sin ✓
2 � ✓ is positive for all ✓ 2 [0,⇡].
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