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A Proof of Lemma 6.2

We prove here the Lemma 6.2 which is an easy adaptation of [17, Lemma 3.1]. We first recall it.
Lemma A.1. Let H ∈ Rd×d, (ui)

d
i=1 and (ũi)

d
i=1 the corresponding right and left eigenvectors of

B−1A and w ∈ Rd chosen uniformly on the sphere, then with probability 1− δ (over the randomness
in the initial iterate)

sin2
B(ui, Hw) ≤ C log(1/δ)

δ

Tr(HH>
∑
j 6=i ũj ũ

>
j )

ũ>i HH
>ũi

,

for some universal constant C > 0.

Proof. We follow the proof of [17]. Given a B-normalized right eigenvector ui of B−1A and
w = g

‖g‖2 for g ∼ N (0, I), we consider:

sin2
B(ui, Hw) = 1− (u>i BHw)2)

w>H>BHw
=
g>H>B1/2

[
I −B1/2uiu

>
i B

1/2
]
B1/2Hg

g>H>BHg
.

Moreover following Lemma G.3 and denoting by ûi the corresponding orthonormal family of
eigenvectors of the symmetric matrix B−1/2AB−1/2, we have that ui = B−1/2ûi. This yields:[

I −B1/2uiu
>
i B

1/2
]

=
[
I − ûiû>i

]
=
∑
j 6=i

ûj û
>
j

Using now that the left eigenvectors of B−1A are given by ũi = Bui, we get

sin2
B(ui, Hw) =

g>H>B1/2
[∑

j 6=i ûj û
>
j

]
B1/2Hg

g>H>BHg
=
g>H>

[∑
j 6=i ũj ũ

>
j

]
Hg

g>H>BHg
.

We may bound the denominator by

g>H>BHg ≥ g>H>B1/2ûiû
>
i B

1/2Hg = g>H>ũiũ
>
i Hg = (ũ>i Hg)2 ≥ δ

C1
ũ>i HH

>ũi,

where the last inequality follows as ũ>i Hg is a Gaussian random vector with variance ‖H>ũi‖22. We
can also bound the numerator as

g>H>

∑
j 6=i

ũj ũ
>
j

Hg ≤ C2 log(1/δ) Tr[H>
∑
j 6=i

ũj ũ
>
j H],

since w>H>
[∑

j 6=i ũj ũ
>
j

]
Hw is a χ2 random variable with Tr[H>

∑
j 6=i ũj ũ

>
j H] degrees of

freedom. Therefore it exists a universal constant C > 0 such that

sin2
B(ui, Hw) ≤ C log(1/δ)

δ

Tr[H>
∑
j 6=i ũj ũ

>
j H]

ũ>i HH
>ũi

,

with probability 1− δ.

B Deviation bounds for fast-mixing Markov Chain

In this section, we prove an upper bound on ‖E[εt+k|Ft]‖2, where εt = (wt −B−1Awt−1)v>t−1 and
Ft = σ(w0, · · · , wt) denotes the σ-algebra generated by w0, · · · , wt. For the purpose of this section,
we denote the pointwise upperbound on ‖wt‖2 by Wt. To begin with, we consider bounding the error
term considering a fixed step-size αt = α in order to keep the analysis cleaner. In Lemma B.4, we
bound the deviation of chains with step-size αt = O(c/ log(d2β+ t)) and fixed step size over a short
horizon of length O(log2(1/βt))

In order to prove the requisite bound, consider the following Markov chain given by,

θk+1 = θk − η[f ′(θ(k)) + εk+1], (15)

where f : Rd → R is some strongly convex function. We make use of the following proposition
highlighting the fast-mixing property of constant step-size stochastic gradient descent from [11].
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Proposition B.1. For any step size α ∈ (0, 2/Lθ), the markov chain given by (θk)k≥0 defined by
recursion (15), admits a unique stationary distribution π ∈ P(Rd). In addition, for all θ ∈ Rd, k ∈ N,
we have,

W 2
2 (Rk(θ, ·), π) ≤ (1− 2µθη(1− ηLθ/2))k

∫
Rd
‖θ − θ′‖22dπ(θ′), (16)

where Lθ and µθ are the smoothness and the strong convexity parameters of f respectively.

Now, consider the Markov chain given by

wk+1
t = wkt − α(Bkw

k
t −Akvt), (17)

where E[Bk] = B,E[Ak] = A,w0
t = wt where wt is as given by Algorithm 1. Equation (17)

represents the update step for the kth step of a Markov chain starting at wt and performing stochastic
gradient updates on ft(w) = 1/2w>Bw − w>Avt.
For this function ft, the smoothness constant L = λB . Further, proposition B.1 guarantees the
existence of a unique stationary distribution π and we have that under the stationary distribution,

Eπ[wkt ] = B−1Avt. (18)

Lemma B.2. For the Markov chain given by (17) with any step size α ∈ (0, 2/λB), for any

k >
log(

λ1
ε )

µα
(

1−αλB2
) , we have

‖E[wkt −B−1Avt]|Ft‖22 ≤ ε

Proof. We know from (18),B−1Avt = Eπ[wkt ]. Now, we consider the term ‖E[wkt −B−1Avt]|Ft‖22,

‖E[wkt −B−1Avt]|Ft‖22 = ‖E[wkt ]− Eπ[w]|Ft‖22
= ‖EΓ(Rk(wt,·),π)[w

k
t − w]|‖22

ζ1
≤ EΓ(Rk(wt,·),π)[‖wkt − w‖22]

ζ2
= W 2

2 (Rk(wt, ·), π)

ζ3
≤ (1− 2µα(1− αλB/2))kλ2

1,

where Rk(wt, ·) denotes the k-step transition kernel of the Markov chain beginning from wt,
Γ(Rk(wt, ·), π) denotes any coupling of the distributions Rk(wt, ·) and π and EΓ(·,·) denotes the
expectation under the joint distribution, conditioned on Ft. Now, ζ1 follows from Jenson’s inequality,
ζ2 follows by setting Γ(Rk(wt, ·), π) to the coupling attaining the infimum in the wasserstein bound

and ζ3 follows by using proposition (B.1). The lemma now follows by setting k > log(
λ1
ε )

µα
(

1−αλB2
) . [see,

e.g., 30, for more properties of W2]

Deviation bound for ‖vt − vt+k‖2: We now bound the deviation of vt+k from vt if we execute k
steps of the algorithm sarting from vt,

‖vt − vt+k‖2 ≤
k−1∑
i=0

‖vt+i − vt+i+1‖2. (19)

Now, for a single step of the algorithm, using the contractivity of the projection

‖vi − vi+1‖2 ≤ ‖vi −
v′i+1

‖v′i+1‖
‖2 ≤ ‖vi − v′i+1‖2 ≤Wi+1βi+1.

Using the above bound in (19), we obtain,

‖vt − vt+k‖2 ≤Wt+k

k−1∑
i=0

βt+i+1 ≤Wt+kkβt, (20)

by using the fact that βt is a decreasing sequence.

13



Deviation bound for Coupled Chains: Consider the sequence (wt+i)
k
i=0 as generated by Algorithm

1, assuming a constant step-size α, and the sequence (wit)
k
i=1 generated by the recurrence (17) in the

case when both have the same randomness with respect to the sampling of the matrices At+i, Bt+i.
We now obtain a bound on ‖E[wkt − wt+k]|Ft‖2.

‖E[wkt − wt+k]|Ft‖2 = ‖E
[
E[(I − αBt+k)(wk−1

t − wt+k−1)− αAt+k(vt − vt+k−1)
]
|Ft+k−1]|Ft‖2

= ‖E
[
(I − αB)(wk−1

t − wt+k−1)− αA(vt − vt+k−1)
]
|Ft‖2

...

= α

∥∥∥∥∥E
[
k−1∑
i=0

(I − αB)iA(vt − vt+k−1−i)|Ft

]∥∥∥∥∥
2

≤ αE

[
k−1∑
i=0

∥∥(I − αB)iA(vt − vt+k−1−i)
∥∥

2
|Ft

]

≤ αλAWt+kk

k−1∑
i=0

(1− αµ)
i
βt+k−1−i

≤ λAWt+kkβt
µ

,

(21)

where we expand the terms using the recursion and bound the geometric series by using that αµ ≤ 1.

Lemma B.3. For any choice of k >
log( 1

βt
)

2µα
(

1−αλB2
) , we have that

‖E[εt+k|Ft]‖2 ≤
(
λAWt+kk

µ
+ λ1(1 + 2Wt+kk) +W 2

t+kk

)
βt = O(W 2

t+kkβt)

Proof. Consider the term ‖E[εt+k|Ft]‖2,

‖E[εt+k|Ft]‖2 = ‖E[(wt+k −B−1Avt+k−1)v>t+k−1|Ft]‖2
≤ ‖E[(wt+k −B−1Avt+k−1)v>t |Ft]‖2︸ ︷︷ ︸

(I)

+‖E[(wt+k −B−1Avt+k−1)(vt+k−1 − vt)>|Ft]‖2︸ ︷︷ ︸
(II)

.

We first analyze term (I) in the expansion above.

‖E[(wt+k −B−1Avt+k−1)v>t |Ft]‖2 = ‖E[(wt+k − wkt ) + (wkt −B−1Avt)

+ (B−1Avt −B−1Avt+k−1))v>t |Ft]‖2
≤ ‖E[(wt+k − wkt )|Ft]v>t ‖2 + ‖E[(wkt −B−1Avt+k−1))|Ft]v>t ‖2
≤ ‖E[(wt+k − wkt )|Ft]‖2 + ‖E[(wkt −B−1Avt))|Ft]‖2

+ |E[(B−1Avt −B−1Avt+k−1))|Ft]‖2
ζ1
≤ λAWt+kk

µ
βt + λ1βt + λ1Wt+kkβt

= (
λAWt+kk

µ
+ λ1(1 +Wt+kk))βt, (22)

where ζ1 follows from using lemma B.2 with k >
log( 1

βt
)

2µα
(

1−αλB2
) , bound in (20) and bound in (21).

We now look at term (II) in the expansion.

‖E[(wt+k −B−1Avt+k−1)(vt+k−1 − vt)>|Ft]‖2 ≤ (Wt+k + λ1)‖vt+k−1 − vt‖
≤Wt+k(Wt+k + λ1)kβt. (23)

Combininig the bounds in (22) and (23), we get the desired result.
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The bound we proved above hold for any fixed fixed step-size α. However, in order to obtain the
sharpest convergence result for our algorithm, we would require the step size αt = c

log(d2β+t) for
some constant β. We provide the following lemma which accomodates for this change.

In order to get a bound on the noise term with a logarithmically decaying step size, in addition to
the previous analysis, we consider processes (ŵt+i)

k
i=1 and (v̂t+i)

k
i=1 which evolve with the same

random matrices At+i and Bt+i, but with a step size of αt+i = αt = c
log(d2β+t) .

Pointwise bound on ‖ŵt+k‖2: We can obtain a pointwise bound on ‖ŵt+k‖2 using the simple
recursive evaluation:

‖ŵt+k‖ ≤ ‖I − αtBt+k‖2‖ŵt+k−1‖2 + αtλA
≤Wt + kαtλA, (24)

where the final inequality follows from recursing on ‖ŵt+k−1‖ and using the assumption that Bi � 0.

Deviation bound for ‖vt+k − v̂t+k‖2: We can obtain a bound on this quantity as follows:

‖vt+k − v̂t+k‖2 ≤ ‖vt+k − v′t+k‖2 + ‖v̂′t+k − v̂t+k‖2 + ‖v′t+k − v̂′t+k‖2
≤ 2βt+kWt+k + 2βt+k‖ŵt+k‖2 + ‖βt+k(wt+k − ŵt+k)‖2 + ‖vt+k−1 − v̂t+k−1‖2

≤ 2

(
k∑
i=1

βt+i(Wt+i + ‖ŵt+i‖2)

)
+

k∑
i=1

βt+i‖wt+i − ŵt+i‖2

≤ 3βtk(2Wt+k + kαtλA), (25)

where the final bound is obtained using ‖wt+k‖2 ≤ Wt+k and ‖ŵt+k‖2 ≤ Wt+k + kαtλA from
Equation (24)

Lemma B.4. For any choice of k >
log( 1

βt
)

2µαt
(

1−αtλB2

) and αt ∈ (0, 2/λB) of the form αt = c
log(d2β+t) ,

we have that

‖E[εt+k|Ft]‖2 ≤
(
λAWt+kk

µ
+ λ1(1 + 2Wt+kk) +W 2

t+kk

)
βt

+
λBWt+kkαtβt

cµγ
+
λAkαtβt
cµγ

+
3λAβtk(2Wt+k + kαtλA)

µ

+ (2Wt+k + kαtλA)Wt+kkβt.

In other words, we get that ‖E[εt+k|Ft]‖2 = O(βtk
2αtWt+k).

Proof. In continuation from Lemma B.3, we consider bounding the deviation of the process ŵt+k
from the process wt+k. The extra components in the error term εt remain the same and we ignore
them for clarity of this lemma.

‖E[(wt+k−ŵt+k)v>t+k−1|Ft]‖2 ≤ ‖E[(wt+k − ŵt+k)v>t |Ft]‖2︸ ︷︷ ︸
(I)

+ ‖E[(wt+k − ŵt+k)(vt+k−1 − vt)>|Ft]‖2︸ ︷︷ ︸
(II)

(26)

We proceed by first analyzing term (I) in Equation (26).

‖E[(wt+k − ŵt+k)v>t |Ft]‖2 = ‖E[E[((I − αt+kBt+k)wt+k−1 + αt+kAt+kvt+k−1)

− ((I − αtBt+k)ŵt+k−1 + αtAt+kv̂t+k−1)|Ft+k−1]v>t |Ft]‖2
= ‖E[((I − αt+kB)wt+k−1 + αt+kAvt+k−1)

− ((I − αtB)ŵt+k−1 + αtAv̂t+k−1)|Ft]v>t ‖2
= ‖E[(αt − αt+k)Bwt+k−1 + (I − αtB)(wt+k−1 − ŵt+k−1)

+ (αt+k − αt)Avt+k−1 + αtA(vt+k−1 − v̂t+k−1))|Ft]v>t ‖2

≤

∥∥∥∥∥E
[

k∑
i=1

(αt − αt+i)(I − αtB)k−iBwt+i−1|Ft

]
v>t

∥∥∥∥∥
2
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+

∥∥∥∥∥E
[

k∑
i=1

(αt+i − αt)(I − αtB)k−iAvt+i−1|Ft

]
v>t

∥∥∥∥∥
2

+ αt

∥∥∥∥∥E
[

k∑
i=1

(I − αtB)k−iA(vt+i−1 − v̂t+i−1)|Ft

]
v>t

∥∥∥∥∥
2

≤ (αt − αt+k)λBWt+k

αtµ
+

(αt − αt+k)λA
αtµ

+
λA‖vt+k−1 − v̂t+k−1‖2

µ

≤ λBWt+kkαt
cµ(dβ + t)

+
λAkαt

cµ(dβ + t)
+

3λAβtk(2Wt+k + kαtλA)

µ

≤ λBWt+kkαtβt
cµb

+
λAkαtβt
cµb

+
3λAβtk(2Wt+k + kαtλA)

µ
(27)

where the second last inequality follows using Jensen’s ineuality along with a trinagle inequality and
using the fact that B � µI and the last equality follows from using the form of βt = b

d2β+t for some
constant b.

We now consider term (II) in Equation (26).

‖E[(wt+k − ŵt+k)(vt+k−1 − vt)>|Ft]‖2 ≤ (2Wt+k + kαtλA)Wt+kkβt, (28)

by using Jensen’s inequality along with bound (20). Combining (27) and (28) with (26), and using
Lemma B.3, we obtain the desired result.

Note that in order to prove the final convergence for Algorithm 1, we use the form of the step sizes
αt and βt as mentioned in this section.

In the following sections we denote by rt = 1

2µαt
(

1−αtλB2

) log2( 1
βt

) and At to be such that:

Atrtβt ≥ ‖E [εt+k|Ft] ‖ (29)

When αt = c
log(d2β+t) , rt will be O(log3(1/βt)) and when αt is contant, rt will be O(log2(1/βt)).

C Controlling Markov Chain wt

For the purpose of this section, we stick with bounds RA, RB the maximum of which equals R in
the main paper. In this section we provide a bound on the norm of the markov chain wt. We start by
showing the p moments of the norms of wt are bounded as long as αt = α a small enough constant
∀t. Ultimately we will use a time dependent αt as defined in the previous section, but for warm up we
start by showing some lemmas that bring out the behavior of wt when αt = α for all t. The proofs
for a moving αt will follow a similar though technically involved arguments.
Lemma C.1. For α ≤ 1/R2

B we have

E[‖wt‖22] ≤
[
(1− µα/2)t‖w0‖2 + 2

R2
A

µ

]2
.

If, in addition we assume that α ≤ 2
R2
B(p−2)

for p ≥ 3 we have:

E
[
‖wt‖p2

]
≤
[
(1− µα/4)t‖w0‖2 + 4

R2
A

µ

]p
.

Proof. We first expand wt+1 = (I − αBt+1)wt + αAt+1vt and use the Minkowski inequality on
L2-norm (denoted by ‖‖L2

) to obtain:

‖wt+1‖L2
≤ ‖(I − αBt)wt‖L2

+ ‖αAt+1vt‖L2

We directly have that ‖αAt+1vt‖L2
≤ αR2

A almost surely and we can directly compute for α <
1/R2

B :

‖(I − αBt+1)wt‖2L2
= E[w>t (I − αBt+1)2wt] = E[w>t (I − 2αBt+1 + α2B2

t+1)wt]
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(1)

≤ E[w>t (I − αBt+1)wt] ≤ E[w>t (I − αE[Bt+1|Ft])wt] ≤ (1− αµ)E[‖wt‖22],

where (1) follows asBt+1 4 R2
BI . We obtain expanding the recursion ( and using

√
1− x ≤ 1−x/2

for x ≥ 0):

‖wt‖L2
≤ (1− αµ/2)t‖w0‖L2

+ αR2
A

t−1∑
i=0

(1− αµ/2)i.

We conclude

‖wt‖L2
≤ (1− µα/2)t‖w0‖L2

+ 2
R2
A

µ
.

We consider now p ≥ 3. We expand again wt+1 = (I − αBt+1)wt + αAt+1vt and use now
the Minkowski inequality on Lp-norm on (Rd, ‖‖2) (denoted by ‖‖Lp and defined by ‖x‖Lp =

(E[‖x‖p2])1/p) to obtain:

‖wt+1‖Lp ≤ ‖(I − αBt)wt‖Lp + ‖αAt+1vt‖Lp
We then compute for α < 1/R2

B

‖(I − αBt+1)wt‖pLp = E[(w>t (I − αBt+1)2wt)
p/2] = E[(w>t (I − 2αBt+1 + α2B2

t+1)wt)
p/2]

≤ E[(w>t (I − αBt+1)wt)
p/2] ≤ E[‖wt‖p2

(
1− αw

>
t Bt+1wt
‖wt‖22

)p/2
]

(1)

≤ E[‖wt‖p2
(

1− pαw
>
t Bt+1wt
2‖wt‖22

+ α2 p(p− 2)

8

(w>t Bt+1wt)
2

‖wt‖42

)
]

(2)

≤ E[‖wt‖p2
(

1− pαw
>
t Bt+1wt
2‖wt‖22

+ α2R2
B

p(p− 2)

8

w>t Bt+1wt
‖wt‖22

)
]

≤ E[‖wt‖p2
(

1− pα

2
(1− αR2

B

p− 2

4
)
w>t Bt+1wt
‖wt‖22

)
]

(3)

≤ E[‖wt‖p2
(

1− pα

2
(1− αR2

B

p− 2

4
)µ

)
],

where (1) follows as (1−x)p ≤ (1−px+p(p−1)/2x2) for x ∈ [0, 1], (2) follows as w>t Bt+1wt ≤
R2
B‖wt‖22 and (3) follows as E[Bt+1|Ft] = B < µI . Then using (1− x)1/p ≤ 1− x/p for x ≥ 0)

yields

‖(I − αBt+1)wt‖Lp ≤ ‖wt‖Lp
(

1− α

2
(1− αR2

B

p− 2

4
)µ

)
.

Moreover
‖αAt+1vt‖Lp ≤ αR2

A a.s.
And therefore

‖wt+1‖Lp ≤ ‖wt‖Lp
(

1− α

2
(1− αR2

B

p− 2

4
)µ

)
+ αR2

A. (30)

Let us denote by δ = α
2 (1− αR2

B
p−2

4 )µ, then we directly obtain expanding the recursion:

‖wt‖Lp ≤ (1− δ)t‖w0‖Lp + αR2
A

t−1∑
i=0

(1− δ)i.

We conclude for α ≤ 2
R2
B(p−2)

‖wt‖Lp ≤ (1− µα/4)t‖w0‖Lp + 4
R2
A

µ
.

As a corollary, we conclude that:
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Corollary C.1.1. If p ≥ 3, w0 is sampled from the unit sphere, and α satisfies α ≤ min( 2
R2
B(p−2)

, 4
µ )

then:

E [‖wt‖p2] ≤
(

1 + 4
R2
A

µ

)p
(31)

We can leverage corollary C.1.1 to obtain the following control on the norms of wt. As a warm up
first we show that polynomial control on the norms of w is possible.
Lemma C.2. Let η > 0 and b > 0. If:

p =
1 + a

b
, c ≥

(
1 + 4

R2
A

µ

)
η1/p

 ∞∑
j=1

1

j1+a

1/p

(32)

Then whenever α ≤ min( 2
R2
B(p−2)

), we have that with probability 1− η, ‖wt‖ ≤ ctb for all t ≤ n.

Proof. By Corollary C.1.1 and Markov’s inequality:

Pr
(
‖wt‖p ≥ cptbp

)
≤ E [‖wt‖p]

cptbp
≤
(

1 + 4R2
A/µ

c

)p
1

tbp
≤ η

(
1∑∞

j=1
1

j1+a

)
1

tbp

The first inequality follows by Markov, the second by Corollary C.1.1 and the third by the definition
of c, and p.Applying the union bound to all wt from t = 1 to∞ yields the desired result.

The lemma above implies that for any probability level η , whenever the step size αt is a small enough
constant, independent of time t, by picking α small enough, we can show pointwise control on the
norms of ‖wt‖ with constant probability so that at time t, ‖wt‖ ≤ ctb.
Notice that for a fixed a,

∑∞
j=1

1
j1+a converges, and that in case a ≥ 1,

∑∞
j=1

1
j1+a < 10 (an absolute

constant).

We now proceed to show that in fact for any δ > 0, there is a constant C(δ, µ,RB , RA, log(d))
such that with probability 1 − δ, wt < B(δ, µ,RB , RA, log(d)) for all t whenever the step size is
αt = c

log(d2β+t) with β ≥ 0.

We start with the following observation:
Lemma C.3. Let t0 ∈ N and t1 = 2t0. Assume ‖wt0‖ ≤ B. Then for all t0 + k ∈ [t0 +
8 log(B) log(d2β+t0)

µc , · · · , t1], the following holds:

E
[
‖wt0+k‖c1 log(t1)

]
≤ (1 +

8R2
A

µ
)c1 log(t1)

Where αt0+k = c
log(d2β+t0+k) , t0 ≥ 2. And c, c1 are positive constants such that c ≤ 1

R2
Bc1

.

Proof. Mimicking the proof of Lemma C.1, the same result of said Lemma holds up to Equation 30
even if the step size αt0+m = c

log(d2β+t0+m) , therefore for any m:

‖wt0+m+1‖Lp ≤ ‖wt0+m‖Lp
(

1− αt0+m

2

(
1− αt0+mR

2
B

p− 2

4

)
µ

)
+ αt0+kR

2
A

Let δt0+m =
αt0+m

2

(
1− αt0+mR

2
B
p−2

4

)
µ, we obtain the recursion:

‖wt0+m+1‖Lp ≤ ‖wt0+m‖Lp(1− δt0+m) + αt0+mR
2
A

Which for any k can be expanded to:

‖wt0+k‖Lp ≤
k−1∏
m=0

(1− δt0+m)‖wt0‖Lp +R2
A

k−1∑
m′=0

αt0+m′

k−1∏
j=m′+1

(1− δt0+j)

We now show that we can substitute all instances of δt0+k in the upper bound with a fixed quantity,
which will allow us to bound the whole expression afterwards.
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Notice that αt0+k is decreasing and that δt0+k ≥
αt1
2

(
1− 2αt1R

2
B
p−2

4

)
µ. The later follows because

by assumption αt0+k = c
log(d2β+t0+k) ≤ 2 c

log(d2β+t1) = 2αt1 (recall that t1 = 2t0, implying this is
true as long as t0 ≥ 2) and therefore αt1 ≤ αt0+k ≤ 2αt1 .

Define δ′t1 :=
αt1
2

(
1− 2αt1R

2
B
p−2

4

)
µ. As a consequence:

‖wt0+k‖Lp ≤
k−1∏
i=0

(1− δ′t1)‖wt0‖Lp + 2R2
Aαt1

k−1∑
m′=0

(1− δ′t1)m
′

≤
k−1∏
i=0

(1− δ′t1)‖wt0‖Lp + 2R2
Aαt1

1

δ′t1

= (1− δ′t1)k‖wt0‖Lp + 2R2
Aαt1

1

δ′t1

If αt1 <
1

R2
B(p−2)

, then δ′t1 >
αt1
4 µ. Then:

‖wt0+k‖Lp ≤ (1− µαt1/4)k‖wt0‖Lp + 8
R2
A

µ

And therefore:

E [‖wt0+k‖p] ≤
(

(1− µαt1/4)k‖wt0‖Lp + 8
R2
A

µ

)p
Notice that (1 − µαt1/4)k ≤ exp(−µαt1k4 ) and therefore (1 − µαt1/4)k‖wt0‖Lp ≤ 1 whenever
−µαt1k/4 + log(B) ≤ 0. Since 2 log(d2β + t0) ≥ log(d2β + t1) (because t0 ≥ 2), the relationship
(1− µαt1/4)k‖wt0‖Lp ≤ 1 holds (at least) whenever k ≥ 8 log(B) log(d2β+t0)

µc .

Recall that p = c1 log(t1). Since the above conditions require αt1 <
1

R2
B(p−2)

to hold, it is enough
to ensure that:

αt1 =
c

log(d2β + t1)
≤ 1

R2
Bp

=
1

R2
Bc1 log(t1)

<
1

R2
B(p− 2)

=
1

R2
B(c1 log(t1)− 2)

It is enough to take c ≤ 1
R2
Bc1

to satisfy the bound. Putting all these relationships together:

E [‖wt0+k‖p] ≤
(

1 + 8
R2
A

µ

)p
For p = c1 log(t1) and for all k such that k ∈ [ 8 log(B) log(d2β+t0)

µc , · · · , t0].

As a consequence of Lemma C.3, we have the following corollary:
Corollary C.3.1. Let t0 ∈ N and t1 = 2t0. Assume ‖wt0‖ ≤ B. Then for all t0 + k ∈ [t0 +
8 log(B) log(d2β+t0)

µc , · · · , t1], the following holds:

E
[
‖wt0+k‖c1 log(t0+k)

]
≤ (1 +

8R2
A

µ
)c1 log(t0+k)

Where αt0+k = c
log(d2β+t0+k) , t0 ≥ 2. And c, c1 are positive constants such that c ≤ 1

R2
Bc1

.

The proof of this result follows the exact same template as the proof of Lemma C.3, the only difference
is the subtitution of p with the desired c1 log(t0 + k) wherever necessary.

Now we proceed to show that having control up to the c1 log(t) moments for ‖wt‖ implies bounded-
ness of wt with high probability:

Lemma C.4. Assume E
[
‖wt‖c1 log(t)

]
≤ (1 + 8

R2
A

µ )c1 log(t), and δ > 0, then for B ≥

2
(

1 +
8R2

A

µ

)
1
δ , we have:

Pr (‖wt‖ ≥ B) ≤ 1

tc1
δc1 log(t)

Where log is base 2.
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Proof. The proof follows from a simple application of Markov’s inequality:

Pr (‖wt‖ ≥ B) ≤ Pr
(
‖wt‖c1 log(t) ≥ Bc1 log(t)

)
≤ 1

tc1
δc1 log(t)

This concludes the proof.

We now show that if there is t0 for which ‖wt‖ ≤ B, for some large enough constant B, then by
leveraging Lemmas C.3 and C.4 then we can say that with any constant probability a large chunk of
the wt are bounded provided α is time dependent αt with αt = c

log(d2β+t) for some constant c.

Lemma C.5. Let δ > 0, define η :=

∑∞
j=1

1
j2

δ , and let the step size αt = c
log(d2β+t) with c > 0

satisfying c ≤ 1
2R2

B
. Assume there exists t0 ≥ 2 such that ‖wt0‖ ≤ B with B ≥ 2

(
1 +

8R2
A

µ

)
η.

Define t1 = 2t0 and ti+1 = 2ti for all i ≥ 1. With probability 1− δ it holds that for all t ≥ t0 such
that t ∈ [ti + 2 log(B) log(d2β+ti)

µ 2R2
B , · · · , ti+1] it follows that:

‖wt‖ ≤ B

Proof. The proof is a simple application of Lemmas C.3 and C.4. Indeed, by Lemma C.3 and the
assumptions on wt0 and the step size, conditioning on the event that wt0 ≤ B, the 2 log(t1) moments
(and in fact the 2 log(t) moments as well) of ‖wt‖ for t ∈ [t0 + 2 log(B) log(d2β+t0)

µ 2R2
B , · · · , t1]

are bounded by (1 +
8R2

A

µ )2 log(t1) (respectively (1 +
8R2

A

µ )2 log(t) for the 2 log(t) moments).
This in turn implies by Lemma C.4, that conditional on ‖wt0‖ ≤ B, for any t ∈ [t0 +
2 log(B) log(d2β+t0)

µ 2R2
B , · · · , t1] the probability that ‖wt‖ is larger than B is upper bounded by

1
t2

1
η2 log(t) ≤ 1

t2
δ∑∞

j=1
1
j2

(this inequality follows because η ≥ 1 and 2 log(t) ≥ 1 as well). Conse-

quently, the probability that any ‖wt‖ > B for t ∈ [t0 + 2 log(B) log(d2β+t0)
µ 2R2

B , · · · , t1] can be
bounded by the union bound as:

δ∑∞
j=1

1
j2

∑
t∈[t0+

2 log(B) log(d2β+t0)
µ 2R2

B ,··· ,t1]

1

t2

Conditioning on ‖wt1‖ ≤ B and repeating the argument, for all i, we obtain that the probability that
there is any t such that ‖wt‖ > B and t ∈ [ti + 2 log(B) log(d2β+ti)

µ 2R2
B , · · · , ti+1] is at most:

δ∑∞
j=1

1
j2

∞∑
i=0

∑
t∈[ti+

2 log(B) log(d2β+ti)

µ 2R2
B ,··· ,ti+1]

1

t2
≤ δ

This concludes the proof.

Now we show that in fact, for any δ ∈ (0, 1), then, with probability 1− δ, for all t, all wt are bounded
(by a quantity that depends inversely on δ). More formally:

Lemma C.6. Define RA and RB such that RA = RB ≥ 1
2 . Let

B = max

(
1 +

1

RB
, (1 +

8R2
A

µ
)

∑∞
j=1

1
j2

δ
, 2, (5 + 72 · log2(1 + d2β)R3

B

µ2
)2

)
.

If αt = c
log(d2β+t) with c = 1

2R2
B

and ‖w0‖ = 1, then with probability 1− δ for all t:

‖wt‖ ≤ B +
2 log(B)RB

µ
:= C(δ, µ,RB , RA, log(d))
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Proof. Let t0 = max(
(

4
3 ∗

4 log(1+d2β) log(B)R2
B

µ

)2

, 2). Define t1 = 2t0 and in general for all i ≥ 1,
ti = 2ti−1.

• We start by showing that t0 ≥ 4
log(B) log(d2β+t0)R2

B

µ , which will allow us to show that the

interval [t0 + 4
log log(B) log(d2β+t0)R2

B

µ , · · · , t1] is nonempty.

First notice that for all t ≥ 1, (and in particular for all t ≥ 2), we have that:

t

log2(t)
≥ 3

4
t

1
2

Therefore:

t0
log(t0)

≥ 3

4
t
1/2
0 ≥ max(

(
4 log(1 + d2β) log(B)R2

B

µ

)
, 1) ≥ 4 log(1 + d2β) log(B)R2

B

µ

And therefore, since log(t0) log(1 + d2β) ≥ log(d2β + t0):

t0 ≥
4 log(t0) log(1 + d2β) log(B)R2

B

µ
≥ 4 log(d2β + t0) log(B)R2

B

µ

Which implies the desired inequality.

• Now we see that ‖wt‖ ≤ B for all t ≤ t0.

We use a very rough bound on wt. Recall that wt = (I − αt−1Bt)wt−1 + αt−1Atvt. The following
sequence of inequalities holds:

‖wt‖ ≤ ‖I − αt−1Bt‖‖wt−1‖+
1

2R2
B

‖At‖

≤ ‖wt−1‖+
1

2RB

This holds as long as ‖I − αt−1Bt‖ ≤ 1, which is true since by assumption Bt � 0 for all t
and therefore ‖αt−1Bt‖ ≤ 1

2R2
B
RB = 1

2RB
≤ 1. The last inequality follows because RB ≥ 1

2 .

Consequently, ‖wt‖ ≤ 1 + t
2RB

for t ≤ t0. We want to ensure B ≥ 1 + t0
2RB

. Notice that:

1 +
t0

2RB
= 1 +

max(
(

4
3

4 log(1+d2β) log(B)R2
B

µ

)2

, 1)

2RB

If t0 = 1, this provides the condition B ≥ 1 + 1
RB

. When the max defining t0 is achieved at(
4
3

4 log(1+d2β) log(B)R2
B

µ

)2

, we obtain the condition:

1 +

(
44

2 ∗ 32

log2(1 + d2β) log2(B)R3
B

µ2

)
≤ B (33)

Since we already have B ≥ 2, it follows that log(B) ≥ 1. And therefore, Equation 33 is satisfied as
long as:

log2(B)

(
1 +

(
44

2 ∗ 32

log2(1 + d2β)R3
B

µ2

))
≤ B

Notice that for all x ≥ 1:
x

log2(x)
≥ 1

5
x1/2

Therefore, picking B ≥ (5 + 72 · log2(1+d2β)R3
B

µ2 )2 ≥ (5 + 5 44

2∗32 · log2(1+d2β)R3
B

µ2 )2 guarantees that
Equation 33 is satisfied, (since B is also greater than 1).
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• We can therefore invoke Lemma C.5 to the sequence {ti} and conclude that with probability
1 − δ for all t such that t ∈ [ti +

4 log(B) log(d2β+ti)R
2
B

µ , · · · , ti+1] for some i, we have

‖wt‖ ≤ B simultaneously for all such t. This uses the fact that B ≥
(

1 +
8R2

A

µ

) ∑∞
j=1

1
j2

δ .

• The final step is to show a bound on wt for the remaining blocks.

For the remaining blocks notice that if ‖wti‖ ≤ B, then by a crude bound since αt = c
log(d2β+t) ,

with c = 1
2R2

B
, at each step starting from ti, wt grows by at most an additive 1

log(d2β+ti)
factor:

‖wt‖ ≤ ‖I − αt−1Bt‖‖wt−1‖+
1

2R2
B log(d2β + ti)

‖At‖

≤ ‖wt−1‖+
1

2RB log(d2β + ti)

For all t ∈ [ti + 1, · · · , ti + 2 log(B) log(d2β+ti)
µ 2R2

B ].

Since ‖wti‖ ≤ B, we have that ‖wt‖ ≤ B + 2 log(B)RB
µ for all t ∈ [ti + 1, · · · , ti +

2 log(B) log(d2β+ti)
µ 2R2

B ].

As desired.

Notation for following sections: Throughout the following sections we use the following notation:

We use the assumption that ‖E [εt|Ft−rt ] ‖ ≤ Atrtβt as proved in Section B where rt is the mixing
time window at time t.

Also, as proved in Section C, we have that ‖wt‖ ≤Wt and consequently:

‖εt‖ ≤ ‖wt −B−1Avt−1‖ ≤Wt + ‖B−1A‖ := Bεt (34)

Additionally we also have that:
‖Gt‖ ≤ λ1 +Bεt := Gt

Notice that Bεt and Gt are of the same order.

D Analysis burn in times

In order to provide a convergence analysis for Algorithm 1, we use Lemma A.1 and bound each of
the terms appearing in it. To obtain those bounds, we use a mixing time argument that allows us to
bound the expected error accumulated by terms of the form βt

(
εtHt−1H

>
t−1 +Ht−1H

>
t−1εt

)
.

To control terms of this kind we deal with the set {t} such that t ≥ rt and the set of {t} such
that t < rt differently. Let t0 = max t such that t < rt. This value t0 is finite because rt grows
polylogarithmically.

Recall that rt = O(log3( 1
βt

)) where βt = b
d2β+1 . We define rt := log3( 1

βt
)Cr. Where Cr is a

constant capturing all the missing dependencies between rt and A,B. Let’s start with an auxiliary
lemma:
Lemma D.1. Let c > 0 be some constant. If x ≥ 6!c then, x

1
3 ≥ log(cx).

Proof. Observe that x
1
3 ≥ log(cx) iff exp(x

1
3 ) ≥ cx. Let’s write the left hand side using its taylor

series:

exp(x
1
3 ) =

∞∑
i=0

x
i
3

i!

Notice that
∑∞
i=0

x
i
3

i! ≥
x2

6! , which in turn implies that if x2

6! ≥ cx and therefore x ≥ 6!c, then
exp(x

1
3 ) ≥ cx, as desired.
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We provide an upper bound for t0:

Lemma D.2. The breakpoint t0 satisfies:

t0 = max(B1(b, Cr), Cr
(
log(d2β) + log(b)− 1

)3
)

Where B1(b, Cr) := 1440
C2
r

b is a constant dependent only on b and Cr.

Proof. We would like to show t0 satisfies the property that for all t ≥ t0, it follows that t ≥
Cr log3( 1

βt
). This is true iff t

1
3 − C

1
3
r log( 1

βt
) ≥ 0. The following sequence of equalities holds:

t
1
3 − C

1
3
r log(

1

βt
) = t

1
3 − C

1
3
r log(d2β + t) + log(b)C

1
3
r

= t
1
3 − C

1
3
r log(

d2β + t

t
)− C

1
3
r log(t) + log(b)C

1
3
r

= t
1
3 − C

1
3
r log(

d2β

t
+ 1)− C

1
3
r log(t) + log(b)C

1
3
r

We now massage this expression by considering two cases and making use of the following inequality:
For log(1 + x) ≤ log(x) + 1 if x ≥ 1

Case 1 : t ≥ d2β

This implies that log(d
2β
t + 1) ≤ log(1 + 1) = 1. The following inequalities hold:

t
1
3 − C

1
3
r log(

d2β

t
+ 1)− C

1
3
r log(t) + log(b)C

1
3
r ≥ t

1
3 − C

1
3
r − C

1
3
r log(t) + log(b)C

1
3
r

= t
1
3 − C

1
3
r (1− log(b) + log(t))

= t
1
3 − C

1
3
r

(
log

(
2

b

)
+ log(t)

)
= t

1
3 − C

1
3
r

(
log

(
2t

b

))
Let t = Crh. Substituting into the previous equation, we would like to find a condition for h such that
t

1
3 − C

1
3
r

(
log
(

2t
b

))
= C

1
3
r

(
h

1
3 − log( 2Crh

b )
)
≥ 0. This follows as long as h ≥ 6! 2Cr

b = 1440Crb by

Lemma D.1. Let B1(b, Cr) = 1440
C2
r

b .

We conclude that as long as we have t ≥ B1(b, Cr) for some constant B1(b, Cr) depending on γ and

Cr, we can guarantee that t
1
3 − C

1
3
r

(
log
(

2t
b

))
≥ 0.

Case 2 : t < d2β.

This implies that log(d
2β
t + 1) ≤ log(d

2β
t ) + 1. The following inequalities hold:

t
1
3 − C

1
3
r log(

d2β

t
+ 1)− C

1
3
r log(t) + log(b)C

1
3
r ≥ t

1
3 − C

1
3
r log(

d2β

t
)− C

1
3
r − C

1
3
r log(t) + log(b)C

1
3
r

= t
1
3 − C

1
3
r log(d2β)− C

1
3
r + log(b)C

1
3
r

And therefore the last expression is greater than zero if t ≥ Cr (log(dβ) + log(b)− 1)
3. As a

consequence we get that as long as t ≥ t0 = max(B1(b, Cr), Cr (log(dβ) + log(b)− 1)
3
) we have

that t ≥ Cr log3( 1
βt

) as desired.

Throughout the next sections, we use t0 to denote this breakpoint.
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E Analysis for Gen-Oja

In this section, we provide bounds on expectations of various terms appearing in Lemma A.1 which
are required to obtain a convergence bound for Gen-Oja.

E.1 Upper Bound on Operator Norm of E
[
HtH

>
t

]
We start by showing an upper bound for ‖E

[
HtH

>
t

]
‖.

Lemma E.1. For all t ≥ 0:

‖E
[
HtH

>
t

]
‖ ≤ exp

2

t∑
i=1

βiλ1 + β2
i dri(Ai +BεiGi +B2

εi)C
(1) +

t0∑
j=1

βj2dBεj


Where C(1) is a constant. Assuming that for all t ≥ 0, βtrtGt < 1

4 .

Proof. We start by substituting the identity: Ht = (I + βtGt)Ht−1 = (I + βtB
−1A+ βtεt)Ht−1

into the expectation:

E
[
HtH

>
t

]
= E

[
(I + βtB

−1A+ βtεt)Ht−1H
>
t−1(I + βtB

−1A+ βtεt)
>]

= (I + βtB
−1A)E

[
Ht−1H

>
t−1

]
(I + βtB

−1A)> + βtE
[
εtHt−1H

>
t−1 +Ht−1H

>
t−1ε

>
t

]
+ β2

tE
[
εtHt−1H

>
t−1ε

>
t

]
If we assume to have a series of upper bounds θ1 ≤ · · · ≤ θt−1 such that:

E
[
BuB

>
u

]
� θuI (35)

The following inequality holds:

(I + βtB
−1A)E

[
Ht−1H

>
t−1

]
(I + βtB

−1A)> � θt−1(I + βtB
−1A)(I + βtB

−1A)> (36)

Furthermore, we show how that (I + βtB
−1A)(I + βtB

−1A)> � (1 + βtλ1)2I:

Indeed, let v be an eigenvector of B−
1
2AB−

1
2 with eigenvalue λ and denote ṽ = B

1
2 v. We show that

ṽ is an eigenvector of (I + βtB
−1A)(I + βtB

−1A)> with eigenvalue (1 + βtλ)2:

ṽ>(I + βtB
−1A)(I + βtB

−1A)>ṽ = v>(B
1
2 + βtB

− 1
2A)(B

1
2 + βtB

− 1
2A)>v

= v>(B
1
2 + βtB

− 1
2A)B−

1
2B

1
2B

1
2B−

1
2 (B

1
2 + βtB

− 1
2A)>v

= v>(I + βtB
− 1

2AB−
1
2 )B(I + βtB

− 1
2AB−

1
2 )>v

= (1 + βtλ)2v>Bv

= (1 + βtλ)2ṽ>ṽ

As a consequence, we conclude the set of eigenvalues of (I + βtB
−1A)(I + βtB

−1A)> equals
{(1 + βtλi)

2}di=1, since the set of eigenvalues of B−
1
2AB−

1
2 equals {λi}di=1, the set of eigenvalues

of B−1A. Therefore we conclude that

(I + βtB
−1A)(I + βtB

−1A)> � (1 + βtλ1)2I (37)

We proceed to bound the remaining terms.

E
[
εtHt−1H

>
t−1ε

>
t

]
≤ E

[
‖εt‖‖Ht−1H

>
t−1‖‖ε>t ‖

]
≤ B2

εtE
[
‖Ht−1H

>
t−1‖

]
≤ B2

εtE
[
Tr(Ht−1H

>
t−1)

]
≤ dB2

εt‖E
[
Ht−1H

>
t−1

]
‖

≤ dB2
εtθt−1

(38)
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The first step is a consequence of Cauchy Schwartz, the second step because of the uniform bounded-
ness of εt and the last step is true because Ht−1H

>
t−1 is a positive semidefinite matrix.

Terms with a single εt: Let Ht−1 =
∏t−1
j=t−rt+1(I + βjGj)Ht−rt .

Define Ht−rt+1
t−1 :=

∏t−1
j=t−rt+1(I + βjGj) and Lt−rt+1

t−1 := Ht−rt+1
t−1 − I .

In order to control this term we start by bounding ‖Lt−rt+1
t−1 ‖. For this we use a crude bound.

Lt−rt−1
t−1 =

rt∑
k=1

 ∑
i1>···>ik∈[t−rt−1,··· ,t−1]

 k∏
j=1

βijGij

 (39)

For any k ∈ [1, · · · , rt]:∥∥∥∥∥∥
∑

i1>···>ik∈[t−rt−1,··· ,t−1]

 k∏
j=1

βijGij

∥∥∥∥∥∥ ≤
∑

i1>···>ik∈[t−rt−1,··· ,t−1]

 k∏
j=1

‖βijGij‖


≤

∑
i1>···>ik∈[t−rt−1,··· ,t−1]

Gkt βkt−rt

≤ [rtGtβt−rt ]
k

The first follows from the triangle inequality, the second because of the uniform boundedness
assumptions at the beginning of the section and the third because

(
rt
k

)
≤ rkt .

For all t ≥ 0, since the step size condition holds:

[rtGtβt−rt ]
k ≤ [2rtGtβt]k ≤ 2rtGtβt ≤

1

2

Putting these rough bounds together we conclude that:

‖Lt−rt−1
t−1 ‖ ≤

rt∑
k=1

[2rtGtβt]k = [2rtGtβt]
1− [2rtGtβt]k

1− [2rtGtβt]
≤ 2 [2rtGtβt] = 4rtGtβt, (40)

where we have used that 1/(1−x) ≤ 2x for x ∈ [0, 1/2]. We can writeHt = (I+Lt−rt+1
t−1 )Ht−rt =

Ht−rt + Lt−rt+1
t−1 Ht−rt . Substituting this equation into E

[
εtHt−1H

>
t−1 +Ht−1H

>
t−1ε

>
t

]
gives us:

E
[
εtHt−1H

>
t−1 +Ht−1H

>
t−1ε

>
t

]
= E

[
εt(Ht−rt + Lt−rt+1

t−1 Ht−rt)(Ht−rt + Lt−rt+1
t−1 Ht−rt)

>]
+ E

[
(Ht−rt + Lt−rt+1

t−1 Ht−rt)(Ht−rt + Lt−rt+1
t−1 Ht−rt)

>ε>t
]

= E
[
εtHt−rtH

>
t−rt

]
+ E

[
εtHt−rtH

>
t−rt(L

t−rt+1
t−1 )>

]
+ E

[
εtL

t−rt+1
t−1 Ht−rtH

>
t−rt

]
+ E

[
εtL

t−rt+1
t−1 Ht−rtH

>
t−rt(L

t−rt+1
t−1 )>

]
+ E

[
Ht−rtH

>
t−rtε

>
t

]
+ E

[
Ht−rtH

>
t−rt(L

t−rt+1
t−1 )>ε>t

]
+ E

[
Lt−rt+1
t−1 Ht−rtH

>
t−rtε

>
t

]
+ E

[
Lt−rt+1
t−1 Ht−rtH

>
t−rt(L

t−rt+1
t−1 )>ε>t

]
We focus first on bounding the terms of this expansion containing Lt−rt+1

t−1 . We analyze the term
E
[
εtL

t−rt+1
t−1 Ht−rtH

>
t−rt

]
.

‖E
[
εtL

t−rt+1
t−1 Ht−rtH

>
t−rt

]
‖ ≤ E

[
‖εt‖‖Lt−rt+1

t−1 ‖‖Ht−rtH
>
t−rt‖

]
≤ Bεt4rtGtβtE

[
‖Ht−rtH

>
t−rt‖

]
≤ Bεt4rtGtβtE [Tr(Ht−rtHt−rt)]

≤ Bεt4rtGtβtd‖E [Ht−rtHt−rt ] ‖

All other terms containing Lt−rt+1
t−1 can be bounded in the same way. Combining these terms, we

obtain the following bound for the sum of all these terms:

‖E
[
εtHt−1H

>
t−1 +Ht−1H

>
t−1ε

>
t

]
‖ ≤ Bεt4Gtdrtβt (4 + 8Gtrtβt)
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= 16BεtGtdrtβt + 32dBεtG2
t rtβ

2
t

≤ 8dBεtGtβt + 16BεtGtdβtrt
= 8dBεtGtβt(2rt + 1)

The last inequality holds because of the step size condition. It remains to bound the terms
E
[
εtHt−rtH

>
t−rt

]
and E

[
Ht−rtH

>
t−rtε

>
t

]
.

By assumption, we know ‖E [εt|Ft−rt ] ‖ ≤ Atβtrt and therefore:

‖E
[
εtHt−rtH

>
t−rt

]
‖ ≤ E

[
‖E [εt|Ft−rt ]Ht−rtH

>
t−rt‖

]
≤ E

[
‖E [εt|Ft−rt ] ‖‖Ht−rtH

>
t−rt‖

]
≤ AtrtβtE

[
‖Ht−rtH

>
t−rt‖

]
≤ AtrtβtE

[
Tr(Ht−rtH

>
t−rt)

]
≤ d · AtrtβtE

[
‖Ht−rtH

>
t−rt‖

]
≤ d · Atrtβtθt−rt
≤ d · Atrtβtθt−1

Combining the last bounds we get that whenever t > t0:

‖E
[
εtHt−1H

>
t−1 +Ht−1H

>
t−1ε

>
t

]
‖ ≤ (8dBεtGtβt(2rt + 1) + dAtrtβt) θt−1 (41)

Also, whenever t ≤ t0, we have that,

‖E
[
εtHt−1H

>
t−1 +Ht−1H

>
t−1ε

>
t

]
‖ ≤ 2dBεtθt−1 (42)

Combining the bound of equation 41 with equations 36, 38, and 42 yields for t > t0

‖E
[
HtH

>
t

]
‖ ≤ θt−1‖(I + βtB

−1A)(I + βtB
−1A)>‖+ θt−1β

2
t (8dBεtGt(2rt + 1) + dAtrt)

+ θt−1β
2
t dB

2
ε

≤ θt−1

(
1 + 2βtλ1 + β2

t (Λ1 + dB2
ε ) + β2

t (8dBεtGt(2rt + 1) + dAtrt)
)

where Λ1 = λ2
1. This gives us a recursion of the form:

θt = θt−1

(
1 + 2βtλ1 + β2

t drt(At +BεtGt)C(1)
)

(43)

where C(1) is the smallest constant depending on Λ1 such that:

drt(At +BεtGt +B2
εt)C

(1) ≥ Λ1 + dB2
ε + 8dBεtGt(2rt + 1) + dAtrt (44)

Similarly, whenever t ≤ t0, we have that

‖E
[
HtH

>
t

]
‖ ≤ θt−1‖(I + βtB

−1A)(I + βtB
−1A)>‖+ θt−1βt ∗ 2dBεt

+ θt−1β
2
t dB

2
ε

≤ θt−1

(
1 + 2βtλ1 + β2

t (Λ1 + dB2
ε ) + βt ∗ 2dBεt

)
≤ θt−1

(
1 + 2βtλ1 + β2

i dri(Ai +BεiGi +B2
εi)C

(1) + βt ∗ 2dBεt

)
Using the inequality (1 +x) ≤ exp(x) for x ≥ 0, and noting that θ0 = 1 we obtain the desired result:

θt ≤ exp(

t∑
i=1

2βiλ1 + β2
i dri(Ai +BεiGi +B2

εi)C
(1) +

t0∑
j=1

βj2dBεj )

E.2 Orthogonal Subspace: Upper Bound on Expectation of Tr(V >⊥ HtH
>
t V⊥)

In this section, we provide a bound on E
[
Tr(V >⊥ HtH

>
t V⊥)

]
.
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Lemma E.2. For all t > 0 and βt is such that βtGtrt < 1
4 (which can be obtained by appropriately

controlling the constant β in the step size).,

E
[
Tr(V >⊥ HtH

>
t V⊥)

]
≤ exp

 t∑
j=1

2βjλ2 + β2
jλ

2
2

(Tr(V⊥V
>
⊥ ) + d‖V⊥V >⊥ ‖2

t∑
i=1

(
riβ

2
i SiC(2) + 1(i ≤ t0)βi ∗ 2dBεi

)
·

exp

 i∑
j=1

2βj(λ1 − λ2) + β2
j (SjdrjC(1) − λ2

2) +

min(i,t0)∑
j=1

βj2 ∗ dBεj


where the V⊥ matrix contains in its columns ũ2, . . . , ũd, where each ũ1 = Bui is the unnormalized
left eigenvector of the matrix B−1A and Si = (Ai +BεiGi +B2

εi) for all i.

Proof. Let γt = E
[
Tr(V >⊥ HtH

>
t V⊥)

]
. By definition:

γt = Tr(E
[
HtH

>
t

]
V⊥V

>
⊥ )

= Tr(E
[
Ht−1H

>
t−1

]
(I + βtB

−1A)>V⊥V
>
⊥ (I + βtB

−1A))︸ ︷︷ ︸
♠

+ Tr(βtE
[
εtHt−1H

>
t−1 +Ht−1H

>
t−1ε

>
t

]
V⊥V

>
⊥ + β2

tE
[
εtHt−1H

>
t−1ε

>
t )
]
V⊥V

>
⊥ )︸ ︷︷ ︸

�

We focus on term ♠:

(I + βtB
−1A)>V⊥V

>
⊥ (I + βtB

−1A)︸ ︷︷ ︸
♠0

= V⊥V
>
⊥ + βt(B

−1A)>V⊥V
>
⊥ + βtV⊥V

>
⊥ (B−1A)︸ ︷︷ ︸

♠1

+ β2
t (B−1A)>V⊥V

>
⊥ B

−1A

Analysis of ♠1: We begin by noting that the columns of V⊥ contain the vectors ũi which are the
unnormalized left eigenvectors of B−1A and therefore,

V >⊥ (B−1A) = V >⊥ Λ,

where Λ is a diagonal matrix with Λi,i = λi+1 ∀i = 2 . . . d. Noting that V⊥V >⊥ Λ � λ2V⊥V
>
⊥ , we

obtain,
♠1 � V⊥V >⊥ (1 + 2βtλ2). (45)

Following a similar argument, we obtain that,

(B−1A)>V⊥V
>
⊥ B

−1A � λ2
2V⊥V

>
⊥ . (46)

Combining Eqs (45) and (46), we obtain,

♠ ≤ Tr
(
E[Ht−1H

T
t−1]V⊥V

>
⊥ (1 + 2βtλ2 + β2

t λ
2
2)
)

The terms corresponding to � can also be bounded by bonding the operator norms of its two
constituent expectations. In the same way as in Lemma E.1, let Ht−1 = (I + Lt−rt+1

t−1 )Ht−rt . Note
that V⊥V >⊥ � ‖V⊥V >⊥ ‖2I and we bound the normalized term �/‖V⊥V >⊥ ‖2.

Tr(E
[
εtHt−1H

>
t−1 +Ht−1H

>
t−1ε

>
t

]
V⊥V

>
⊥ )

‖V⊥V >⊥ ‖2
≤ Tr(E

[
εtHt−1H

>
t−1 +Ht−1H

>
t−1ε

>
t

]
)

= Tr(E
[
Ht−rtH

>
t−rt(εt + ε>t )

]
)︸ ︷︷ ︸

Γ1

+ Tr(E
[
Ht−rtH

>
t−rt

(
(Lt−rt+1

t−1 )>ε>t + εtL
t−rt+1
t−1

)]
)︸ ︷︷ ︸

Γ2

+ Tr(E
[
Ht−rtH

>
t−rt

(
(Lt−rt+1

t−1 )>εt + ε>t L
t−rt+1
t−1

)]
)︸ ︷︷ ︸

Γ3

+ Tr(E
[
Ht−rtH

>
t−rt

(
(Lt−rt+1

t−1 )>εtL
t−rt+1
t−1 + (Lt−rt+1

t−1 )>ε>t L
t−rt+1
t−1

)]
)︸ ︷︷ ︸

Γ4
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Recall that ‖Lt−rt+1
t−1 ‖ ≤ 4rtGtβt. As a consequence:

(Lt−rt+1
t−1 )>ε>t + εtL

t−rt+1
t−1 � 2Bεt ∗ 4rtGtβtI = 8BεtrtGtβtI

(Lt−rt+1
t−1 )>εt + ε>t L

t−rt+1
t−1 � 2Bεt ∗ 4rtGtβtI = 8BεtrtGtβtI

(Lt−rt+1
t−1 )>εtL

t−rt+1
t−1 + (Lt−rt+1

t−1 )>ε>t L
t−rt+1
t−1 � 2(4rtGtβt)2BεtI � 8BεtrtGtβtI

The second inequality in the last line follows from the step size condition. Therefore:

Γ2 + Γ3 + Γ4 ≤ 32BεtrtGtβt Tr(E
[
Ht−rtH

>
t−rt

]
)

≤ 32BεtrtGtβtd‖E
[
Ht−rtH

>
t−rt

]
‖

≤ 32BεtrtGtβtdθt−rt
≤ 32BεtrtGtβtdθt−1

We proceed to bound Γ1. We know that ‖E [εt|Ft−rt ] ‖ = Atβtrt and therefore E
[
εt + ε>t |Ft−rt

]
�

2AtβtrtI

Γ1 = Tr(E
[
Ht−rtH

>
t−rt(εt + ε>t )

]
) = E

[
Tr(Ht−rtH

>
t−rtE

[
εt + ε>t |Ft−rt

]
)
]

≤ 2AtβtrtE
[
Ht−rtH

>
t−rt

]
≤ 2Atβtrtd‖E

[
Ht−rtH

>
t−rt

]
‖

≤ 2Atβtrtdθt−rt
≤ 2Atβtrtdθt−1

The last inequalities follow from the same argument as in equation 41, where θt−1 is the upper bound
obtained in the previous lemma for ‖E

[
Ht−1H

>
t−1

]
‖.

As a consequence, whenever t ≥ t0 the first term in �/‖V⊥V >⊥ ‖2 can be bounded by:

Tr(E
[
εtHt−1H

>
t−1 +Ht−1H

>
t−1ε

>
t

]
V⊥V

>
⊥ )

‖V⊥V >⊥ ‖2
≤ 32BεtrtGtβtdθt−1 + 2Atβtrtdθt−1

For the case when t < t0:

Tr
(
E
[
εtHt−1H

>
t−1 +Ht−1H

>
t−1ε

>
t

]
V⊥V

>
⊥
)

‖V⊥V >⊥ ‖2
=

E
[
Tr
(
(Ht−1H

>
t−1)(V⊥V

>
⊥ εt + ε>t V⊥V

>
⊥ )
)]

‖V⊥V >⊥ ‖2
≤ 2Bεt Tr(E

[
Ht−1H

>
t−1

]
)

≤ 2dBεt‖E
[
Ht−1H

>
t−1

]
‖

≤ 2dBεtθt−1

where the first inequality follows because ‖V⊥V >⊥ εt + ε>t V⊥V
>
⊥ ‖ ≤ 2Bεt‖V⊥V >⊥ ‖2.

And the second term in �/‖V⊥V >⊥ ‖2 can be bounded for all t:

Tr(E
[
εtHt−1H

>
t−1ε

>
t

]
V⊥V

>
⊥ )

‖V⊥V >⊥ ‖2
≤ Tr(E

[
εtHt−1H

>
t−1ε

>
t

]
)

= Tr(E
[
Ht−1H

>
t−1ε

>
t εt
]
)

≤ B2
εt Tr(E

[
Ht−1H

>
t−1

]
)

≤ dB2
εt‖E

[
Ht−1H

>
t−1

]
‖

≤ dB2
εtθt−1

Let C(2) be a constant such that drt(At +BεtGt +B2
εt)C

(2) ≥ 32dBεtrtGt + 2dAtrt + dB2
ε .

The last inequalities follow from the same argument as in equation 38. We conclude that whenever
t > t0:

� = βt Tr(E
[
εtHt−1H

>
t−1 +Ht−1H

>
t−1ε

>
t

]
V⊥V

>
⊥ ) + β2

t Tr(E
[
εtHt−1H

>
t−1ε

>
t

]
V⊥V

>
⊥ )

≤ drtβ2
t (At +BεtGt +B2

εt)C
(2)θt−1‖V⊥V >⊥ ‖2
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Combining ♠ with �, whenever t > t0:

γt = ♠+� ≤ γt−1(1 + 2βtλ2 + βtλ
2
2) + drtβ

2
t (At +BεtGt +B2

εt)C
(2)θt−1‖V⊥V >⊥ ‖2

On the other hand, for t ≤ t0:

� = βt Tr(E
[
εtHt−1H

>
t−1 +Ht−1H

>
t−1ε

>
t

]
V⊥V

>
⊥ ) + β2

t Tr(E
[
εtHt−1H

>
t−1ε

>
t

]
V⊥V

>
⊥ )

≤
(
drtβ

2
t (At +BεtGt +B2

εt)C
(2) + βt ∗ dBεt

)
θt−1‖V⊥V >⊥ ‖2

And consequently:

γt = ♠+� ≤ γt−1(1+2βtλ2+β2
t λ

2
2)+

(
drtβ

2
t (At +BεtGt +B2

εt)C
(2) + βt2 ∗ dBεt

)
θt−1‖V⊥V >⊥ ‖2

Using the bound for θt−1 in Lemma E.1 and the inequality 1 + x ≤ ex:

γt ≤ exp(2βtλ2 + β2
t λ

2
2)γt−1+

‖V⊥V >⊥ ‖2
(
drtβ

2
t (At +BεtGt +B2

εt)C
(2) + 1(t ≤ t0)βt ∗ 2dBεt

)
·

exp

t−1∑
i=1

2βiλ1 + driβ
2
i (Ai +BεiGi +B2

εi)C
(1) +

min(t,t0)∑
j=1

βj2 ∗ dBεj


After doing recursion we obtain the upper bound,

γt ≤
t∑
i=1

[
‖V⊥V >⊥ ‖2

(
driβ

2
i (Ai +BεiGi +B2

εi)C
(2) + 1(i ≤ t0)βi2dBεi

)
exp

 t∑
j=i+1

2βjλ2 + β2
jλ

2
2

 ·
exp

 i∑
j=1

2βjλ1 + drjβ
2
j (Aj +BεjGj +B2

εj )C
(1) +

min(i,t0)∑
j=1

βj2 ∗ dBεj

]

+ exp(

t∑
j=1

2βjλ2 + β2
jλ

2
2)γ0

Where γ0 = Tr(V⊥V
>
⊥ ). Let Si = (Ai +BεiGi +B2

εi)

γt ≤ exp(

t∑
j=1

2βjλ2 + β2
jλ

2
2)

(
Tr(V⊥V

>
⊥ ) + d‖V⊥V >⊥ ‖2

t∑
i=1

(
riβ

2
i SiC(2) + 1(i ≤ t0)βi ∗ 2dBεi

)
·

exp

 i∑
j=1

2βj(λ1 − λ2) + β2
j (SjdrjC(1) − λ2

2) +

min(i,t0)∑
j=1

βj2 ∗ dBεj



E.3 Lower Bound on Expectation of ũ>1 HtH
>
t ũ1

Lemma E.3. For all t ≥ 0 and βt ≥ 0 we have,

E[ũ>1 HtH
>
t ũ1] ≥ ‖ũ1‖22 exp

(
t∑
i=1

2βiλ1 − 4β2
i λ

2
1

)
− d‖ũ1‖22

t∑
i=1

(
(β2
i rt(At +BεtGt +B2

εt)C
(2)

+βiI(t ≤ t0)(Bεt)) exp

i−1∑
j=1

2βjλ1 + β2
j drj(Aj +BεjGj +B2

εj )C
(1) +

min(t−1,t0)∑
j=1

βj2dBεj

 ,

(47)

where ũ1 is the unnormalized left eigenvector corresponding to the maximum eigenvalue λ1 of
(B−1A)>).
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Proof. Let γt
∆
= E[v>HtH

>
t v] where v = ũ1/‖ũ1‖2 be the normalized left eigenvector and Σ =

B−1A. Since Ht = (I + βtGt), we can obtain a bound on γt as,

γt = E[v>(I + βtGt)Ht−1H
>
t−1(I + βtGt)

>v]

= E[v>(I + βtΣ)Ht−1H
>
t−1(I + βtΣ)>v] + βtE[v>(εtHt−1H

>
t−1 +Ht−1H

>
t−1ε

>
t )v]

+ β2
tE[v>(εt + Σ)Ht−1H

>
t−1(εt + Σ)>v]− β2

tE[v>ΣHt−1H
>
t−1Σ>v]

ζ1
≥ E[v>Ht−1H

>
t−1v] + βtE[v>ΣHt−1H

>
t−1v] + βtE[v>Ht−1H

>
t−1Σ>v]

+ βtE[v>(εtHt−1H
>
t−1 +Ht−1H

>
t−1ε

>
t )v]

ζ2
= (1 + 2λ1βt)γt−1 + βt E[v>(εtHt−1H

>
t−1 +Ht−1H

>
t−1ε

>
t )v]︸ ︷︷ ︸

(I)

, (48)

where ζ1 follows since (εt+ Σ)Ht−1H
>
t−1(εt+ Σ)> is a positive semi-definite matrix and ζ2 follows

since v is the top left eigenvector of Σ. Now, in order to bound term (I), we note that

E[v>(εtHt−1H
>
t−1 +Ht−1H

>
t−1ε

>
t )v] ≥ −‖E[εtHt−1H

>
t−1 +Ht−1H

>
t−1ε

>
t ]‖2.

Using the bound obtained in (41), we get that for t > t0,

E[v>(εtHt−1H
>
t−1 +Ht−1H

>
t−1ε

>
t )v] ≥ −βt(8dBεtGt(2rt + 1) + dAtrt)θt−1,

and for t ≤ t0, we have from equation (42)

E[v>(εtHt−1H
>
t−1 +Ht−1H

>
t−1ε

>
t )v] ≥ −2dBεtθt−1,

Where θt−1 is defined as in E.1. We next use the bound from lemma E.1 to lower bound -θt−1,

E[v>(εtHt−1H
>
t−1 +Ht−1H

>
t−1ε

>
t )v] ≥ −βt(8dBεtGt(2rt + 1) + dAtrt + I(t ≤ t0)(2dBεt))·

exp

t−1∑
i=1

2βiλ1 + β2
i dri(Ai +BεiGi +B2

εi)C
(1) +

min(t−1,t0)∑
j=1

βj2dBεj

 .

Recall that in Lemma E.2 we defined C(2) as a constant such that: drt(At + BεtGt + B2
εt)C

(2) ≥
32dBεtrtGt + 2dAtrt + dB2

ε , therefore:

E[v>(εtHt−1H
>
t−1 +Ht−1H

>
t−1ε

>
t )v] ≥ −

(
βtdrt(At +BεtGt +B2

εt)C
(2) + I(t ≤ t0)(2dBεt)

)
·

exp

t−1∑
i=1

2βiλ1 + β2
i dri(Ai +BεiGi +B2

εi)C
(1) +

min(t−1,t0)∑
j=1

βj2dBεj

 .

Substituting the above in equation (48), we obtain the following recursion,

γt ≥ (1 + 2λ1βt)γt−1 −
(
βtdrt(At +BεtGt +B2

εt)C
(2) + I(t ≤ t0)(2dBεt)

)
·

exp

t−1∑
i=1

2βiλ1 + β2
i dri(Ai +BεiGi +B2

εi)C
(1) +

min(t−1,t0)∑
j=1

βj2dBεj

 .

Using the inequality 1 + x ≥ exp (x− x2) for all x ≥ 0, along with γ0 = 1, we obtain,

γt ≥ exp

(
t∑
i=1

2βiλ1 − 4β2
i λ

2
1

)
− d

t∑
i=1

(
(β2
i rt(At +BεtGt +B2

εt)C
(2) + βiI(t ≤ t0)(Bεt)) ·

exp

i−1∑
j=1

2βjλ1 + β2
j drj(Aj +BεjGj +B2

εj )C
(1) +

min(t−1,t0)∑
j=1

βj2dBεj


(49)

which concludes the proof of the lemma.
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E.4 Upper Bound on Variance of ũ>1 HtH
>
t ũ1

In this section, we provide an upper bound on E
[
(v>HtH

>
t v)2

]
which will be later used in order to

lower bound the requisite term using the Chebychev Inequality. We first prove an upper bound on
E
[
Tr(HtH

>
t HtH

>
t )
]

and use this in the next lemma to obtain the requisite bounds.
Lemma E.4. For all t ≥ 0:

E
[
Tr(HtH

>
t HtH

>
t )
]
≤ d exp(

t∑
i=1

4λ1βi+dri(Ai+B2
εi+BεiGi)C

(3)β2
i +

min(t,t0)∑
j=1

βj2∗(
101

100
)3Bεj )

As long as βt satisfies that for all t, ‖I + βtB
−1A‖ ≤ 101

100 , βtrtGt < 1
4 , and βtrtBεt < 1

4 .

Proof. We start by substituting the identity: Ht = (I + βtGt)Ht−1 = (I + βtB
−1A+ βtεt)Ht−1.

Substituting this decomposition intro the trace we want to bound we obtain:

E
[
Tr(HtH

>
t HtH

>
t )
]

= TrE
[
(I + βtGt)Ht−1H

>
t−1(I + βtGt)

>(I + βtGt)Ht−1H
>
t−1(I + βtGt)

>]
= TrE

Ht−1H
>
t−1︸ ︷︷ ︸

Γ1

(I + βtGt)
>(I + βtGt)︸ ︷︷ ︸
Γ2

Ht−1H
>
t−1︸ ︷︷ ︸

Γ1

(I + βtGt)
>(I + βtGt)︸ ︷︷ ︸
Γ2


≤ TrE

Ht−1H
>
t−1Ht−1H

>
t−1 (I + βtGt)

>(I + βtGt)(I + βtGt)
>(I + βtGt)︸ ︷︷ ︸

♠


where last inequality follows from the trace inequality: Tr (Γ1Γ2Γ1Γ2) ≤ Tr

(
Γ2

1Γ2
2

)
.

Expanding ♠ yields:

♠ = (I + βtB
−1A)>(I + βtB

−1A)(I + βtB
−1A)>(I + βtB

−1A)︸ ︷︷ ︸
♠1

+ βt
(
ε>t (I + βtB

−1A)(I + βtB
−1A)>(I + βtB

−1A) + (I + βtB
−1A)>εt(I + βtB

−1A)>(I + βtB
−1A)

)︸ ︷︷ ︸
♠(1)

2

+ βt
(
(I + βtB

−1A)>(I + βtB
−1A)ε>t (I + βtB

−1A) + (I + βtB
−1A)>(I + βtB

−1A)(I + βtB
−1A)>εt

)︸ ︷︷ ︸
♠(2)

2

+♠3,

where ♠3 contains all terms with at least two εt. Additionally, ♠3 is a symmetric matrix with norm
satisfying:

‖♠3‖
γ1

≤ β2
t

(
4

2

)
‖εt‖2‖I + βtB

−1A‖2 + β3
t

(
4

3

)
‖εt‖3‖I + βtB

−1A‖+ β4
t

(
4

4

)
‖εt‖4

γ2

≤ β2
t ∗ 6B2

εt(
101

100
)2 + β3

t ∗ 4 ∗B3
ε (

101

100
) + β4

tB
4
εt

γ3

≤ β2
t ∗ 6B2

εt(
101

100
)2 + β2

tB
2
εt(

101

100
) + β2

tB
2
εt

1

16

≤ 8β2
tB

2
εt

where the inequality γ1 follows from triangle, and γ2, γ3 from the step size condition. Recall that:

TrE
[
Ht−1H

>
t−1Ht−1H

>
t−1♠

]
= TrE

[
Ht−1H

>
t−1Ht−1H

>
t−1

(
♠1 + (♠(1)

2 +♠(2)
2 ) +♠3

)]
Since, as shown in equation Equation 37 we have that (I + βtB

−1A)(I + βtB
−1A)> � (1 +

βtλ1)2I . then, ♠1 � (1 + βtλ1)4I (this is because (I + βtB
−1A)(I + βtB

−1A)> and (I +
βtB

−1A)>(I + βtB
−1A) have the same eigenvalues. And therefore ♠1 � (1 + βtλ1)4I �

(1 + 4βtλ1 + 11β2
t max(λ4

1, 1))I and ♠3 � 8β2
tB

2
εtI , thus implying:

TrE
[
Ht−1H

>
t−1Ht−1H

>
t−1 (♠1 +♠3)

]
≤ (1+4βtλ1+11β2

t (λ4
1∨1)+8β2

tB
2
εt) TrE

[
Ht−1H

>
t−1Ht−1H

>
t−1

]
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It only remains to bound the term TrE
[
Ht−1H

>
t−1Ht−1H

>
t−1(♠(1)

2 +♠(2)
2 )
]

︸ ︷︷ ︸
Γ

. Notice that ♠(1)
2 +

♠(2)
2 is a symmetric matrix. Therefore,whenever t ≤ t0:

‖♠(1)
2 +♠(2)

2 ‖ ≤ 2βtBεt‖I + βtB
−1A‖3 ≤ 2βt(

101

100
)3Bεt

And also whenever t ≤ t0 :

TrE
[
Ht−1H

>
t−1Ht−1H

>
t−1(♠(1)

2 +♠(2)
2 )
]
≤ 2βtBεt‖I + βtB

−1A‖3

≤ 2(1.01)3βt TrE
[
Ht−1H

>
t−1Ht−1H

>
t−1

]
We will use similar arguments to what we used in previous sections to bound these types of terms for
the case when t > t0:

Let Ht−1 = (I + Lt−rt+1
t−1 )Ht−rt as in Lemma E.1, therefore:

TrE
[
Ht−1H

>
t−1Ht−1H

>
t−1(♠(1)

2 +♠(2)
2 )
]

= TrE
[
(I + Lt−rt+1

t−1 )Ht−rtH
>
t−rt(I + Lt−rt+1

t−1 )>

(I + Lt−rt+1
t−1 )Ht−rtH

>
t−rt(I + Lt−rt+1

t−1 )>(♠(1)
2 +♠(2)

2 )
]

We can now expand the right hand side of the last equation into different types of terms. We
start by bounding the term that does not contain any Lt−rt+1

t−1 nor (Lt−rt+1
t−1 )>. It is easy to see

that ‖E
[
♠(1)

2 +♠(2)
2 |Ft−rt

]
‖ ≤ β2

tAtrt ∗ ( 101
100 )3 ∗ 4. This follows because ‖E [εt|Ft−rt ] ‖ ≤

Atβtrt, and an operator bound on each of the remaining 3 terms in each of the four factors by
‖I + βtB

−1A‖ ≤ 101
100 . With these observations and using the fact that ♠(1)

2 +♠(2)
2 is a symmetric

matrix, we can bound the following term:

E
[
Tr
(
Ht−rtH

>
t−rtHt−rtH

>
t−rt(♠

(1)
2 +♠(2)

2 )
)
|Ft−rt

]
= Tr

(
Ht−rtH

>
t−rtHt−rtH

>
t−rtE

[
♠(1)

2 +♠(2)
2 |Ft−rt

])
≤ β2

tAtrt ∗
(

101

100

)3

∗ 4 Tr(Ht−rtH
>
t−rtHt−rtH

>
t−rt)

≤ β2
tAtrt ∗ 5 Tr(Ht−rtH

>
t−rtHt−rtH

>
t−rt)

For the terms of Γ containing Lt−rt+1
t−1 components we use a simple bound. Notice that ‖♠(1)

2 +

♠(2)
2 ‖ ≤ βt( 101

100 )3 ∗ 4 ∗Bεt . And recall just as in Equation 40, ‖Lt−rt+1
t−1 ‖ ≤ 4rtGtβt and therefore

‖(Lt−rt+1
t−1 )>Lt−rt+1

t−1 ‖ ≤ 16r2
tG2

t β
2
t . We look at the term containing four copies of Lt−rt+1

t−1 terms:

Let O1 = Tr
(
Lt−rt+1
t−1 Ht−rtH

>
t−rt(L

t−rt+1
t−1 )>Lt−rt+1

t−1 Ht−rtH
>
t−rt(L

t−rt+1
t−1 )>(♠(1)

2 +♠(1)
2 )
)

.

O1 ≤ βt(
101

100
)3 ∗ 4 ∗Bεt Tr

(
Lt−rt+1
t−1 Ht−rtH

>
t−rt(L

t−rt+1
t−1 )>Lt−rt+1

t−1 Ht−rtH
>
t−rt(L

t−rt+1
t−1 )>

)
= βt(

101

100
)3 ∗ 4 ∗Bεt Tr

(
[Ht−rtH

>
t−rt(L

t−rt+1
t−1 )>Lt−rt+1

t−1 Ht−rtH
>
t−rt ](L

t−rt+1
t−1 )>Lt−rt+1

t−1

)
≤ β3

t (
101

100
)3 ∗ 4Bεt ∗ 16r2

tG2
t Tr

(
Ht−rtH

>
t−rt(L

t−rt+1
t−1 )>Lt−rt+1

t−1 Ht−rtH
>
t−rt

)
= β3

t (
101

100
)3 ∗ 4Bεt ∗ 16r2

tG2
t Tr

(
Ht−rtH

>
t−rtHt−rtH

>
t−rt(L

t−rt+1
t−1 )>Lt−rt+1

t−1

)
≤ β5

t (
101

100
)3 ∗ 4Bεt ∗ 162r4

tG4
t Tr

(
Ht−rtH

>
t−rtHt−rtH

>
t−rt

)
≤ β2

t 17Bεt ∗ rtGt Tr
(
Ht−rtH

>
t−rtHt−rtH

>
t−rt

)
where the last inequality follows from the step size conditions. We now look at the following term in
Γ that has three Lt−rt+1

t−1 terms:

O2 = Tr(Ht−rtH
>
t−rt(L

t−rt+1
t−1 )>Lt−rt+1

t−1 Ht−rtH
>
t−rt(L

t−rt+1
t−1 )>(♠(1)

2 +♠(2)
2 ))+
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Tr(Lt−rt+1
t−1 Ht−rtH

>
t−rt(L

t−rt+1
t−1 )>Lt−rt+1

t−1 Ht−rtH
>
t−rt(♠

(1)
2 +♠(2)

2 ))

Since ‖(Lt−rt+1
t−1 )>(♠(1)

2 + ♠(2)
2 ) + (♠(1)

2 + ♠(2)
2 )Lt−rt+1

t−1 ‖ ≤ β2
t ( 101

100 )3BεtrtGt. Using a similar
series of inequalities as in the case above we obtain a bound:

O2 = Tr
(
Ht−rtH

>
t−rt(L

t−rt+1
t−1 )>Lt−rt+1

t−1 Ht−rtH
>
t−rt(L

t−rt+1
t−1 )>(♠(1)

2 +♠(2)
2 )+

Lt−rt+1
t−1 Ht−rtH

>
t−rt(L

t−rt+1
t−1 )>Lt−rt+1

t−1 Ht−rtH
>
t−rt(♠

(1)
2 +♠(2)

2 )
)

= Tr
(
Ht−rtH

>
t−rt(L

t−rt+1
t−1 )>Lt−rt+1

t−1 Ht−rtH
>
t−rt [(L

t−rt+1
t−1 )>(♠(1)

2 +♠(2)
2 ) + (♠(1)

2 +♠(2)
2 )Lt−rt+1

t−1 ]
)

≤ β2
t ∗ 32 ∗ (

101

100
)3BεtGtrt Tr

(
Ht−rtH

>
t−rt(L

t−rt+1
t−1 )>Lt−rt+1

t−1 Ht−rtH
>
t−rt

)
= β2

t ∗ 32 ∗ (
101

100
)3BεtGtrt Tr

(
Ht−rtH

>
t−rtHt−rtH

>
t−rt(L

t−rt+1
t−1 )>Lt−rt+1

t−1

)
≤ β4

t 16 ∗ 32(
101

100
)3BεtG3

t r
3
t Tr

(
Ht−rtH

>
t−rtHt−rtH

>
t−rt

)
γ1

≤ β2
t ∗ 32(

101

100
)3BεtGtrt Tr

(
Ht−rtH

>
t−rtHt−rtH

>
t−rt

)
≤ β2

t ∗ 33BεtGtrt Tr
(
Ht−rtH

>
t−rtHt−rtH

>
t−rt

)
The last inequality γ1 follows from the step size conditions.

O′2 = Tr(Lt−rt+1
t−1 Ht−rtH

>
t−rt(L

t−rt+1
t−1 )>Ht−rtH

>
t−rt(L

t−rt+1
t−1 )>(♠(1)

2 +♠(2)
2 ))+

Tr(Lt−rt+1
t−1 Ht−rtH

>
t−rtL

t−rt+1
t−1 Ht−rtH

>
t−rt(L

t−rt+1
t−1 )>(♠(1)

2 +♠(2)
2 ))

Since ‖(Lt−rt+1
t−1 )>(♠(1)

2 +♠(2)
2 )Lt−rt+1

t−1 ‖ ≤ β3
t ( 101

100 )3 ∗ 4 ∗Bεtr2
tG2

t :

O′2 = Tr
(
Lt−rt+1
t−1 Ht−rtH

>
t−rt(L

t−rt+1
t−1 )>Ht−rtH

>
t−rt(L

t−rt+1
t−1 )>(♠(1)

2 +♠(2)
2 )+

Lt−rt+1
t−1 Ht−rtH

>
t−rtL

t−rt+1
t−1 Ht−rtH

>
t−rt(L

t−rt+1
t−1 )>(♠(1)

2 +♠(2)
2 )
)

= Tr(Ht−rtH
>
t−rt(L

t−rt+1
t−1 + (Lt−rt+1

t−1 )>)Ht−rtH
>
t−rt [(L

t−rt+1
t−1 )>(♠(1)

2 +♠(2)
2 )Lt−rt+1

t−1 ])
γ1

≤ Tr(Ht−rtH
>
t−rt(L

t−rt+1
t−1 + (Lt−rt+1

t−1 )>)Ht−rtH
>
t−rt [(L

t−rt+1
t−1 )>(♠(1)

2 +♠(2)
2 )Lt−rt+1

t−1 ])+

Tr(Ht−rtH
>
t−rt‖(L

t−rt+1
t−1 + (Lt−rt+1

t−1 )>)‖IHt−rtH
>
t−rt [(L

t−rt+1
t−1 )>(♠(1)

2 +♠(2)
2 )Lt−rt+1

t−1 ])+

Tr(Ht−rtH
>
t−rt‖(L

t−rt+1
t−1 + (Lt−rt+1

t−1 )>)‖IHt−rtH
>
t−rt‖[(L

t−rt+1
t−1 )>(♠(1)

2 +♠(2)
2 )Lt−rt+1

t−1 ]‖I)
γ2

≤ β3
t (

101

100
)3 ∗ 4 ∗Bεtr2

tG2
t Tr(Ht−rtH

>
t−rt(‖L

t−rt+1
t−1 + (Lt−rt+1

t−1 )>‖I + Lt−rt+1
t−1 +

(Lt−rt+1
t−1 )>)Ht−rtH

>
t−rt) + β3

t (
101

100
)3 ∗ 4 ∗Bεtr2

tG2
t ∗ 2 ∗ 4rtGtβt Tr(Ht−rtH

>
t−rtHt−rtH

>
t−rt)

≤ (β3
t (

101

100
)3 ∗ 4 ∗Bεtr2

tG2
t ∗ 4 ∗ 4rtGtβt + β3

t (
101

100
)3 ∗ 4 ∗Bεtr2

tG2
t ∗ 2 ∗ 4rtGtβt)

∗ Tr(Ht−rtH
>
t−rtHt−rtH

>
t−rt)

= β4
t ∗ 72 ∗ (

101

100
)3r3

tG3
tBεt Tr(Ht−rtH

>
t−rtHt−rtH

>
t−rt)

≤ β2
t ∗ 5BεtGtrt Tr(Ht−rtH

>
t−rtHt−rtH

>
t−rt)

where the inequality γ1 follows because the sum of the two added terms is nonnega-
tive. The inequality γ2 follows by combining the first two terms in the previous expres-
sion and noting that Ht−rtH

>
t−rtHt−rtH

>
t−rt‖L

t−rt+1
t−1 + (Lt−rt+1

t−1 )>‖ + Ht−rtH
>
t−rt(L

t−rt+1
t−1 +

(Lt−rt+1
t−1 )>)Ht−rtH

>
t−rt � 0. The last inequality follows from the step size conditions. This

finalizes the analysis for the components in Γ having three Lt−rt+1
t−1 terms.

We now look at the components of Γ with two Lt−rt+1
t−1 terms. Their sum equals:

Tr
((

(Lt−rt+1
t−1 Ht−rtH

>
t−rt +Ht−rtH

>
t−rtL

t−r−t+1
t−1 )2 + (Lt−rt+1

t−1 Ht−rtH
>
t−rt(L

t−rt+1
t−1 )> +Ht−rtH

>
t−rt)

2

33



−Ht−rtH
>
t−rtHt−rtH

>
t−rt − L

t−rt+1
t−1 Ht−rtH

>
t−rt(L

t−rt+1
t−1 )>Lt−rt+1

t−1 Ht−rtH
>
t−rt(L

t−rt+1
t−1 )>

)
(♠(1)

2 +♠(2)
2 )
)

We look at a generic term of Γ having exactly two Lt−rt+1
t−1 terms: Let

O3 = Tr(Ht−rtH
>
t−rt(L

t−rt+1
t−1 )>Lt−rt+1

t−1 Ht−rtH
>
t−rt(♠

(1)
2 +♠(2)

2 )).

Then, we have that,

O3 ≤ d‖Lt−rt+1
t−1 ‖2‖Ht−rtH

>
t−rt‖

2‖♠(1)
2 +♠(2)

2 )‖

≤ dβ2
t ∗ 42 ∗ r2

t ∗ G2
t ∗ (

101

100
)3 ∗ 4 ∗Bεt‖(Ht−rtH

>
t−rt)

2‖

≤ dβ2
t 17GtBεt Tr(Ht−rtH

>
t−rtHt−rtH

>
t−rt)

The last inequality follows from a the step size conditions plus the fact that trace is larger than
operator norm for a PSD matrix.

We now look at a generic term in Γ with one Lt−rt+1
t−1 term: Let

O4 = Tr(Ht−rtH
>
t−rt(L

t−rt+1
t−1 )>Ht−rtH

>
t−rt(♠

(1)
2 +♠(2)

2 )).

Then, we have that,

O4 ≤ d‖Lt−rt+1
t−1 ‖‖Ht−rtH

>
t−rt‖

2‖♠(1)
2 +♠(2)

2 )‖

≤ d4rtGtβt(
101

100
)3 ∗ 4Bεt‖(Ht−rtH

>
t−rt)

2‖

≤ 17dβ2
t rtGtBεt Tr(Ht−rtH

>
t−rtHt−rtH

>
t−rt)

Since there is a single term of type O1, four of type O2, six of type O3 and four of type O4, we obtain
the bound whenever t > t0:

TrE
[
Ht−1H

>
t−1Ht−1H

>
t−1(♠(1)

2 +♠(2)
2 )
]
≤ β2

t (5rtAt + 55BεtGtrt + 23dGtBεtrt)·

E
[
Tr(Ht−rtH

>
t−rtHt−rtH

>
t−rt)

]
Therefore we obtain the following recursion:

Tr(E
[
HtH

>
t HtH

>
t

]
) ≤ TrE

[
Ht−1H

>
t−1Ht−1H

>
t−1♠

]
≤ (1 + 4βtλ1 + 11β2

t max(λ4
1, 1) + 8β2

tB
2
εt) TrE

[
Ht−1H

>
t−1Ht−1H

>
t−1

]
+

β2
t (5rtAt + 55BεtGtrt + 23dGtBεtrt + 1(t ≤ t0)2βt(

101

100
)3Bεt)·

E
[
Tr(Ht−rtH

>
t−rtHt−rtH

>
t−rt)

]
Let C(3) be a constant such that:

drt(At +B2
εt +BεtGt)C(3) ≥ (5rtAt + 55BεtGtrt + 23dGtBεtrt) + 11 max(λ4

1, 1) + 8B2
εt

Let {ηi} be a sequence of increasing upper bounds for E
[
Tr(HiH

>
i HiH

>
i )
]
. In other words,

E
[
Tr(HiH

>
i HiH

>
i )
]
≤ ηi ∀i

And η0 ≤ η1 ≤ η2 ≤ · · · , where η0 = d. Let C(3)
t = Eε +D(3)

t + 11 max(λ4
1, 1). We can obtain a

recursion of the form:

ηt ≤ (1 + 4βtλ1 + β2
t drt(At +B2

εt +BεtGt)C(3) + 1(t ≤ t0)2βt(
101

100
)3Bεt)ηt−1

We conclude by applying the inequality 1 + x ≤ exp(x) for x > 0 and the initial condition η0 = d:

ηt ≤ d exp(

t∑
i=1

4λ1βi + dri(Ai +B2
εi +BεiGi)C(3)β2

i +

min(t,t0)∑
j=1

βj2 ∗ (
101

100
)3Bεj )
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Lemma E.5. For t > 0, we have that

E
[
(ũ>i HtH

>
t ũi)

2
]

≤ ‖ũ1‖42 exp(

t∑
i=1

4λ1βi + 11λ2
1β

2
t ) + ‖ũ1‖42

t∑
i=1

((
β2
i dri(Ai +B2

εi +BεiGi)U2 + 1(i ≤ t0)βi4Bεi
)
·

exp
( i∑
j=1

4λ1βj + drj(Aj +B2
εj + GjBεj )C(3)β2

j +

min(t,t0)∑
j=i

βj2 ∗ (
101

100
)3Bεj

))
where ũ1 is the unnormalized left eigenvector corresponding to the maximum eigenvalue λ1 of B−1A.
As long as βt follows that ‖I + βtB

−1A‖ ≤ 101
100 , βtBεt < 1

Proof. As in the previous lemma, we let v = ũ1/‖ũ1‖2 denote the normalized left principal eigenvector.
Let Ht = (I + βtGt)Ht−1 = (I + βtB

−1A+ βtεt)Ht−1. The desired expectation can be written
as:

E
[
(v>HtH

>
t v)2

]
= E

[
v>(I + βtGt)Ht−1H

>
t−1(I + βtGt)

>vv>(I + βtGt)Ht−1H
>
t−1(I + βtGt)

>v
]

= E

v>(I + βtB
−1A)Ht−1H

>
t−1(I + βtB

−1A)>vv>(I + βtB
−1A)Ht−1H

>
t−1(I + βtB

−1A)>v︸ ︷︷ ︸
Γ0


+ E [Γ1 + Γ2 + Γ3 + Γ4]

where Γi is the collection of terms in the expansion of E
[
(v>HtH

>
t v)2

]
that have exactly i terms of

the form εt.

Since v is a left eigenvector of B−1A, the term Γ0 can be written as follows:

E [Γ0] = (1 + βtλ1)4E
[
v>Ht−1H

>
t−1vv

>Ht−1H
>
t−1v

]
≤ exp(4λ1βt + 11λ2

1β
2
t )E

[
v>Ht−1H

>
t−1vv

>Ht−1H
>
t−1v

]
Now we bound the terms Γi with i ≥ 2. Each of these terms is formed of component terms with at
least two βtεt each. Let’s look at a generic term like this one and bound it, for example one that has
two terms of the form εt:

|v>βtεtHt−1H
>
t−1βtεtvv

>(I + βtB
−1A)Ht−1H

>
t−1(I + βtB

−1A)>v| ≤ β2
t ‖Ht−1H

>
t−1‖2B2

εt

(
101

100

)2

≤ 2B2
εtβ

2
t Tr(Ht−1H

>
t−1Ht−1H

>
t−1)

By a similar argument, and using the step size conditions βtBεt < 1, we can bound each of the terms
in Γ2,Γ3 and Γ4 and obtain (using the fact that βt < 1):

Γ2 + Γ3 + Γ4 ≤ β2
tB

2
εtU1 Tr(Ht−1H

>
t−1Ht−1H

>
t−1) (50)

For some universal constant U1 depending on 101
100 and the number of component terms in Γ2,Γ3, and

Γ4. Therefore,

E [Γ2 + Γ3 + Γ4] ≤ β2
tB

2
εtU1E

[
Tr(Ht−1H

>
t−1Ht−1H

>
t−1)

]
≤ β2

tB
2
ε−tU1d exp

(
t−1∑
i=1

4λ1βi + dri(Ai +B2
εi +BεiGi)C(3)β2

i

+

min(t,t0)∑
j=1

2 ∗ βj(
101

100
)3Bεj


Bounding expectation of Γ1: We start by bounding the expectation of Γ1 whenever t ≤ t0. Let’s
look at a generic term from Γ1:

Z := v>(I + βtB
−1A)Ht−1H

>
t−1βtεtvv

>(I + βtB
−1A)Ht−1H

>
t−1(I + βtB

−1A)>v

35



We bound this term naively:

‖Z‖ ≤ βt‖I + βtB
−1A‖3‖Ht−1H

>
t−1‖2Bεt

≤ βt
(

101

100

)3

Tr(Ht−1H
>
t−1Ht−1H

>
t−1)Bεt

There are exactly 4 terms of type Z . Now we proceed to bound the expectation of Γ1 whenever
t > t0: Let’s look at a generic term from Γ1:

v>(I + βtB
−1A)Ht−1H

>
t−1βtεtvv

>(I + βtB
−1A)Ht−1H

>
t−1(I + βtB

−1A)>v (51)

In the same way as in previous lemmas, in order to obtain a bound for this term, we write Ht−1 =
(I + Lt−rt+1

t−1 )Ht−rt and substitute this equality in Equation 51. Recall that ‖Lt−rt+1
t−1 ‖ ≤ 4rtGtβt.

In this expansion, we bound all terms that have at least one Lt−rt+1
t−1 using a simple bound. Let’s look

at a generic such term and bound it:

♠ := |v>(I+βtB
−1A)Lt−rt+1

t−1 Ht−rtH
>
t−rtβtεtvv

>(I+βtB
−1A)Ht−rtH

>
t−rt(I+βtB

−1A)>v|
(52)

♠ ≤ 4rtGtβ2
t

(
101

100

)3

· ‖Ht−rtH
>
t−rt‖

2Bε

≤ 2rtGtβ2
tBεt

(
101

100

)3

· Tr(Ht−rtH
>
t−rtHt−rtH

>
t−rt)

And therefore:

E [♠] ≤ 2rtGtβ2
tBεt

(
101

100

)3

d exp

(
t−rt∑
i=1

4λ1βi + dri(Ai +B2
εi +BεiGi)C(3)β2

i

)

≤ 2rtGtβ2
tBεt

(
101

100

)3

d exp

(
t−1∑
i=1

4λ1βi + dri(Ai +B2
εi +BεiGi)C(3)β2

i

)

Using the step size condition, βtGtrt ≤ 1
4 , all of the remaining terms with at least one Lt−rt+1

t−1

can be upper bounded by a expression of order O(β2
t rtGtBεt Tr(Ht−rtH

>
t−rtHt−rtH

>
t−rt)). This

procedure will handle the terms in Γ1 that after the subsitution Ht−1 = (I + Lt−rt+1
t−1 )Ht−rt have at

least one Lt−rt+1
t−1 .

The only terms remaining to bound are those coming from Γ1, such that after substituting Ht−1 =
(I + Lt−rt+1

t−1 )Ht−rt do not involve any Lt−rt+1
t−1 . Let’s look at a generic such term and bound its

expectation:

♦ := E

v>(I + βtB
−1A)Ht−rtH

>
t−rtβtεtvv

>(I + βtB
−1A)Ht−rtH

>
t−rt(I + βtB

−1A)>v︸ ︷︷ ︸
♦1


Recall that ‖E[εt|Ft−rt ]‖ ≤ Atβtrt. We bound ♦ by first bounding the norm of the conditional
expectation of ♦1:

‖E [♦1|Ft−rt ] ‖ ≤ β2
tO(rt)

(
101

100

)3

‖Ht−rtH
>
t−rt‖

2

≤ β2
tAtrt

(
101

100

)3

Tr(Ht−rtH
>
t−rtHt−rtH

>
t−rt)

And therefore:

♦ = E [♦1] ≤ E [‖E [♦1|Ft−rt ] ‖]

≤ β2
tAtrt

(
101

100

)3

d exp

t−rt∑
i=1

4λ1βi + dri(Ai +B2
εi +BεiGi)C(3)β2

i +

min(t−rt,t0)∑
j=1

βj2 ∗ (
101

100
)3Bεj
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≤ β2
tAtrt

(
101

100

)3

d exp

t−1∑
i=1

4λ1βi + dri(Ai +B2
εi +BεiGi)C(3)β2

i +

min(t,t0)∑
j=1

βj2 ∗ (
101

100
)3Bεj


The last inequality follows from the results of E.4. Combining all these bounds yields for all t we
have:

E [Γ1 + Γ2 + Γ3 + Γ4] ≤
(
β2
t drt(At +B2

εt +BεtGt)U2 + 1(t ≤ t0)βt4 ∗Bεt(
101

100
)3

)

exp
( t−1∑
i=1

4λ1βi + dri(Ai +B2
εi +BεiGi)C(3)β2

i +

min(t,t0)∑
j=1

βj2 ∗ (
101

100
)3
)

where U2 is an absolute constant depending on 101
100 , and the number of terms in Γ1,Γ2, · · · ,Γ4.

Combining all these terms we get a recursion of the form:

E
[
(v>HtH

>
t v)2

]
≤ exp(4λ1βt + 11λ2

1β
2
t )E

[
(v>Ht−1H

>
t−1v)2

]
+
(
β2
t drt(At +B2

εt +BεtGt)U2+

1(t ≤ t0)βtBεt(
101

100
)3
)

exp

(
t−1∑
i=1

4λ1βi + dri(Ai +B2
εi +BεiGi)C(3)β2

i

+

min(t,t0)∑
j=1

βj(
101

100
)3Bεj


After applying recursion on this equation we obtain:

E
[
(v>HtH

>
t v)2

]
≤ exp(

t∑
i=1

4λ1βi + 11λ2
1β

2
t )

+

t∑
i=1

(
β2
i dri(Ai +B2

εi +BεiGi)U2 + 1(i ≤ t0)βi4Bεi(
101

100
)3

)
exp

( i∑
j=1

4λ1βj+

drj(Aj +B2
εj + GjBεj )C(3)β2

j +

min(t,t0)∑
j=i

βj2(
101

100
)3Bεj

)

As desired.

F Convergence Analysis and Main Result

We reproduce the bounds that we will be requiring in this section from the previous ones. We begin
by reporducing the lower bound of Lemma 5.3.

E[ũ>1 HnH
>
n ũ1]

‖ũ1‖22
≥ exp

(
n∑
t=1

2βtλ1 − 4β2
t λ

2
1

)
−

d

n∑
t=1

c1

(
(β2
t rt + βtI(t ≤ t0)) exp

(
t∑
i=1

2βiλ1 + c2β
2
i dri + c3

t0∑
i=1

βid

))
︸ ︷︷ ︸

(I)

,

(53)
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where we have merged previous explicit constants into c1, c2 and c3, which throughout the course of
this section might assume different values. Restating the bound from Lemma 5.4, we have,

E
[
(ũ>1 HnH

>
n ũ1)2

]
‖ũ1‖42

≤ exp

(
n∑
t=1

4λ1βt + 11λ2
1β

2
t

)
+

c1

n∑
t=1

((
dβ2

t rt + I(t ≤ t0)βt
)

exp
( t∑
i=1

4λ1βi + c2driβ
2
i + c3

t0∑
i=1

βi

))
︸ ︷︷ ︸

(II)

.

(54)

Note that as mentioned before in Section B, the term rt = O(log3(β−1
t )) and t0 = O(log3(d2β)).

In the following, we substitute the step size βt = b
d2β+t , where b, β are constants, implying that

rt = O(log3(d2β + t)).

Bounds on partial sums of series: We begin by obtaining bounds on partial sums of some series
which will be useful in our analysis. We first prove the following upper bound:

t∑
i=1

4βiλ1 = 4bλ1

t∑
i=1

1

d2β + i
= 4bλ1

d2β+t∑
i=d2β+1

1

i
≤ 4bλ1 log

(
d2β + t

d2β

)
. (55)

We next have the following lower bound:

t∑
i=1

4βiλ1 = 4bλ1

t∑
i=1

1

d2β + i
= 4bλ1

d2β+t∑
i=d2β+1

1

i
≥ 4bλ1 log

(
d2β + t+ 1

d2β + 1

)
. (56)

We can obtain the following bound on the squared terms:

c

t∑
i=1

β2
i log3(d2β + i) = c

t∑
i=1

log3(d2β + i)

(d2β + i)2

= c

d2β+t∑
i=d2β+1

log3(i)

i2
≤ c

∫ ∞
d2β

log3(x)

x2
dx ≤ c log3(dβ)

d2β
,

where c is a constant which changes with inequality. Next, we proceed by bounding the excess terms
in the exponent corresponding to the summation over the t0 terms.

c

t0∑
i=1

βi ≤ cb log

(
d2β + t0
d2β

)
≤ ct0
d2β
≤ c log3(dβ)

d2β
≤ c

d
, (57)

where the last inequality follows since log3(x)
(x) ≤ 2.

Bounds on E[v>HnH
>
n v] and E[(v>HnH

>
n v)2]: We first proceed by providing upper bounds on

Term (I) in (53) and Term (II) in (54).

d

n∑
t=1

c1

(
(β2
t rt + βtI(t ≤ t0)) exp

(
t∑
i=1

2βiλ1 + c2β
2
i dri + c3

t0∑
i=1

βid

))
≤ cd

n∑
t=1

(
(β2
t rt + βtI(t ≤ t0))

∗
(
d2β + t

d2β

)2bλ1 )
.

Similarly term (II) by:

c1

n∑
t=1

((
dβ2

t rt + I(t ≤ t0)βt
)

exp
( t∑
i=1

4λ1βi + c2driβ
2
i + c3

t0∑
i=1

βi

))

≤ c
n∑
t=1

(dβ2
t rt + βtI(t ≤ t0))

(
d2β + t

d2β

)4bλ1

.
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Lemma F.1. For any δ1 ∈ (0, 1) and n satisfying,

d2β + n

log
4

min(1,2bλ1) (d2β + n)
≥ max

(exp(
cλ2

1

d2 )

δ1

)1/2bλ1

(d2β + 1),

cdβ2bλ1

δ1
exp

(
cλ2

1

d2

)((
1 +

1

d2β

)2bλ1

+ d2β
)
,
cβ2d3 exp

(
cλ2

1

d2

)
δ1


we have that

E[ũ>1 HnH
>
n ũ1]

‖ũ1‖22
≥ (1− δ1) exp

(
n∑
t=1

2βtλ1 − 4β2
t λ

2
1

)
,

where c depends polynomially on b, β, λ1.

Proof. We consider the term E[ũ>1 HnH
>
n ũ1] from Equation (53),

E[ũ>1 HnH
>
n ũ1]

‖ũ1‖22
≥ exp(

n∑
t=1

2βtλ1 − 4β2
t λ

2
1)− cd

n∑
t=1

(β2
t rt + βtI(t ≤ t0))

(
d2β + t

d2β

)2bλ1

= (1− δ1) exp

(
n∑
t=1

2βtλ1 − 4β2
t λ

2
1

)
− cd

n∑
t=1

(β2
t rt + βtI(t ≤ t0))

(
d2β + t

d2β

)2bλ1

+ δ1 exp

(
n∑
t=1

2βtλ1 − 4β2
t λ

2
1

)

≥ (1− δ1) exp

(
n∑
t=1

2βtλ1 − 4β2
t λ

2
1

)
− c

d4bλ1−1

n∑
t=1

(β2
t rt + βtI(t ≤ t0))

(
d2β + t

)2bλ1

+ δ1 exp

(
−c
′λ2

1

d2

)(
d2β + n+ 1

d2β + 1

)2bλ1

≥ (1− δ1) exp

(
n∑
t=1

2βtλ1 − 4β2
t λ

2
1

)
− c

d4bλ1−1

n∑
t=1

(β2
t rt)

(
d2β + t

)2bλ1

+ δ1 exp

(
−c
′λ2

1

d2

)(
d2β + n+ 1

d2β + 1

)2bλ1

− c

d4bλ1−1

t0∑
t=1

(
d2β + t

)2bλ1−1

ζ1
≥ (1− δ1) exp

(
n∑
t=1

2βtλ1 − 4β2
t λ

2
1

)
− c

d4bλ1−1

n∑
t=1

(β2
t rt)

(
d2β + t

)2bλ1

+ δ1 exp

(
−c
′λ2

1

d2

)(
d2β + n+ 1

d2β + 1

)2bλ1

− c

2bλ1d4bλ1−1

(
d2β + log3(dβ)

)2bλ1

ζ2
≥ (1− δ1) exp

(
n∑
t=1

2βtλ1 − 4β2
t λ

2
1

)
− c

d4bλ1−1

n∑
t=1

(β2
t rt)

(
d2β + t

)2bλ1

+ δ1 exp

(
−c
′λ2

1

d2

)(
d2β + n+ 1

d2β + 1

)2bλ1

− cβ2bλ1d4bλ1

d4bλ1−1

≥ (1− δ1) exp

(
n∑
t=1

2βtλ1 − 4β2
t λ

2
1

)
− c

d4bλ1−1

n∑
t=1

log3(d2β + t)
(
d2β + t

)2bλ1−2

+ δ1 exp

(
−c
′λ2

1

d2

)(
d2β + n+ 1

d2β + 1

)2bλ1

− cβ2bλ1d

≥ (1− δ1) exp

(
n∑
t=1

2βtλ1 − 4β2
t λ

2
1

)
− c log3(d2β + n)

d4bλ1−1

n∑
t=1

(
d2β + t

)2bλ1−2
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+ δ1 exp

(
−c
′λ2

1

d2

)(
d2β + n+ 1

d2β + 1

)2bλ1

− cβ2bλ1d,

where ζ1 from using
∑n
i=1 i

γ ≤ nγ+1/γ + 1 for γ > −1 and ζ2 follows from the fact that
log3(x) ≤ cx. We now consider the following three cases:

Case 1: 2bλ1 < 1

In this case we can lower bound the term E[ũ>1 HnH
>
n ũ1]

‖ũ1‖22
as,

E[ũ>1 HnH
>
n ũ1]

‖ũ1‖22
≥ (1− δ1) exp

(
n∑
t=1

2βtλ1 − 4β2
t λ

2
1

)
− c log3(d2β + n)

d4bλ1−1(d2β)(1−2bλ1)

+ δ1 exp

(
−c
′λ2

1

d2

)(
d2β + n+ 1

d2β + 1

)2bλ1

− cβ2bλ1d

≥ (1− δ1) exp

(
n∑
t=1

2βtλ1 − 4β2
t λ

2
1

)
− cβ2bλ1 log3(d2β + n)

dβ

+ δ1 exp

(
−c
′λ2

1

d2

)(
d2β + n+ 1

d2β + 1

)2bλ1

− cβ2bλ1d

≥ (1− δ1) exp

(
n∑
t=1

2βtλ1 − 4β2
t λ

2
1

)
− cdβ2bλ1 log3(d2β + n)

+ δ1 exp

(
−c
′λ2

1

d2

)(
d2β + n+ 1

d2β + 1

)2bλ1

ζ1
≥ (1− δ1) exp

(
n∑
t=1

2βtλ1 − 4β2
t λ

2
1

)
,

where ζ1 follows by using that

d2β + n

log3/2bλ1(d2β + n)
≥
(
cd

δ1

)1/2bλ1

(d2β + 1).

Case 2: 2bλ1 > 1

In this case, we can lower bound the term E[ũ>1 HnH
>
n ũ1]

‖ũ1‖22
as,

E[ũ>1 HnH
>
n ũ1]

‖ũ1‖22
≥ (1− δ1) exp

(
n∑
t=1

2βtλ1 − 4β2
t λ

2
1

)
− c log3(d2β + n)

d4bλ1−1

(d2β + n)2bλ1−1

2bλ1 − 1

+ δ1 exp

(
−c
′λ2

1

d2

)(
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d2β + 1

)2bλ1

− cβ2bλ1d

≥
(
d2β + n

d2β + 1

)2bλ1 (
δ1 exp

(
−c
′λ2

1

d2

)
− cβ2bλ1d

(
d2β + 1
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)
− cdβ2bλ1

(
1 +

1

d2β

)2bλ1 log3(d2β + n)

d2β + n

)
+ (1− δ1) exp

(
n∑
t=1

2βtλ1 − 4β2
t λ

2
1

)
ζ1
≥ (1− δ1) exp

(
n∑
t=1

2βtλ1 − 4β2
t λ

2
1

)
,

where ζ1 follows by using that

d2β + n

log3(d2β + n)
≥ cdβ2bλ1

δ1
exp

(
cλ2

1

d2

)((
1 +

1

d2β

)2bλ1

+ d2β

)
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Case 3: 2bλ1 = 1

In this case, we can lower bound the term E[ũ>1 HnH
>
n ũ1]

‖ũ1‖22
as,

E[ũ>1 HnH
>
n ũ1]

‖ũ1‖22
≥ (1− δ1) exp

(
n∑
t=1

2βtλ1 − 4β2
t λ

2
1

)
− c log4(d2β + n)

d

+ δ1 exp

(
−c
′λ2

1

d2

)(
d2β + n+ 1

d2β + 1

)
− cβd

ζ1
≥ (1− δ1) exp

(
n∑
t=1

2βtλ1 − 4β2
t λ

2
1

)
,

where ζ1 follows from using

d2β + n

log4(d2β + n)
≥
cβ2d3 exp

(
cλ2

1

d2

)
δ1

.

Lemma F.2. For any δ2 ∈ (0, 1) and n satisfying,

d2β + n

log4 min(1,1/4bλ1)(d2β + n)
≥ max

(
c(d2β + 1)

(δ2 log3(dβ))
1

4bλ1

,
c4bλ1

δ2
(d2β + n)

)
,

we have that,

E
[
(ũ>1 HnH

>
n ũ1)2

]
‖ũ1‖42

≤ (1 + δ2) exp

(
n∑
t=1

4λ1βt + 11λ2
1β

2
t

)
,

where c depends polynomially on b, β, λ1,∆λ.

Proof. We consider the term E
[
(ũ>1 HnH

>
n ũ1)2

]
from Equation (54),

E
[
(ũ>1 HnH

>
n ũ1)2

]
‖ũ1‖42

≤ exp

(
n∑
t=1

4λ1βt + 11λ2
1β

2
t

)
+ c

n∑
t=1

(dβ2
t rt + βtI(t ≤ t0))

(
d2β + t

d2β

)4bλ1

= c

n∑
t=1

(dβ2
t rt + βtI(t ≤ t0))

(
d2β + t

d2β

)4bλ1

− δ2 exp

(
n∑
t=1

4λ1βt + 11λ2
1β

2
t

)

+ (1 + δ2) exp

(
n∑
t=1

4λ1βt + 11λ2
1β

2
t

)

= c

n∑
t=1

(dβ2
t rt)

(
d2β + t

d2β

)4bλ1

− δ2 exp

(
n∑
t=1

4λ1βt + 11λ2
1β

2
t

)

+ cb

t0∑
t=1

1

d2β + t

(
d2β + t

d2β

)4bλ1

+ (1 + δ2) exp

(
n∑
t=1

4λ1βt + 11λ2
1β

2
t

)

= c

n∑
t=1

(dβ2
t rt)

(
d2β + t

d2β

)4bλ1

− δ2 exp

(
n∑
t=1

4λ1βt + 11λ2
1β

2
t

)

+
cb

(d2β)4bλ1

t0∑
t=1

(d2β + t)4bλ1−1 + (1 + δ2) exp

(
n∑
t=1

4λ1βt + 11λ2
1β

2
t

)
ζ1
≤ c

n∑
t=1

(dβ2
t rt)

(
d2β + t

d2β

)4bλ1

− δ2 exp

(
n∑
t=1

4λ1βt + 11λ2
1β

2
t

)
+
c4bλ1

λ1

+ (1 + δ2) exp

(
n∑
t=1

4λ1βt + 11λ2
1β

2
t

)
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≤ cdb2

(d2β)4bλ1

n∑
t=1

log3(d2β + t)(d2β + t)4bλ1−2 − δ2 exp

(
n∑
t=1

4λ1βt + 11λ2
1β

2
t

)

+
c4bλ1

λ1
+ (1 + δ2) exp

(
n∑
t=1

4λ1βt + 11λ2
1β

2
t

)

≤ cdb2 log3(d2β + n)

(d2β)4bλ1

n∑
t=1

(d2β + t)4bλ1−2 − δ2 exp

(
n∑
t=1

4λ1βt + 11λ2
1β

2
t

)
+
c4bλ1

λ1

+ (1 + δ2) exp

(
n∑
t=1

4λ1βt + 11λ2
1β

2
t

)

≤ cdb2 log3(d2β + n)

(d2β)4bλ1

n∑
t=1

(d2β + t)4bλ1−2 − δ2
(
d2β + n+ 1

d2β + 1

)4bλ1

+
c4bλ1

λ1

+ (1 + δ2) exp

(
n∑
t=1

4λ1βt + 11λ2
1β

2
t

)
,

where ζ1 follows by using the fact that
∑n
i=1 i

γ ≤ nγ+1/γ + 1 for γ > −1. We consider now the
following three cases as before:

Case 1: 4bλ1 < 1

In this case, we can upper bound the term
E[(ũ>1 HnH

>
n ũ1)2]

‖ũ1‖42
as,

E
[
(ũ>1 HnH

>
n ũ1)2

]
‖ũ1‖42

≤ cb2 log3(d2β + n)

dβ
− δ2

(
d2β + n+ 1

d2β + 1

)4bλ1

+
c4bλ1

λ1

+ (1 + δ2) exp

(
n∑
t=1

4λ1βt + 11λ2
1β

2
t

)
ζ1
≤ (1 + δ2) exp

(
n∑
t=1

4λ1βt + 11λ2
1β

2
t

)
,

where ζ1 follows from using that
d2β + n

log
3

4bλ1 (d2β + n)
≥ c(d2β + 1)

(δ2 log3(dβ))
1

4bλ1

.

Case 2: 4bλ1 > 1

In this case, we can upper bound the term
E[(ũ>1 HnH

>
n ũ1)2]

‖ũ1‖42
as,

E
[
(ũ>1 HnH

>
n ũ1)2

]
‖ũ1‖42

≤ cdb2 log3(d2β + n)

(d2β)4bλ1

n∑
t=1

(d2β + t)4bλ1−2 − δ2
(
d2β + n+ 1

d2β + 1

)4bλ1

+
c4bλ1

λ1

+ (1 + δ2) exp

(
n∑
t=1

4λ1βt + 11λ2
1β

2
t

)
ζ1
≤ cdb2 log3(d2β + n)

(d2β)4bλ1
(d2β + n)4bλ1−1 − δ2

(
d2β + n+ 1

d2β + 1

)4bλ1

+
c4bλ1

λ1

+ (1 + δ2) exp

(
n∑
t=1

4λ1βt + 11λ2
1β

2
t

)
ζ2
≤ (1 + δ2) exp

(
n∑
t=1

4λ1βt + 11λ2
1β

2
t

)
,

where ζ2 follows by using that
d2β + n

log3(d2β + n)
≥ c4bλ1

δ2
(d2β + 1).
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Case 3: 4bλ1 = 1

In this case, we can upper bound the term
E[(ũ>1 HnH

>
n ũ1)2]

‖ũ1‖42
as,

E
[
(ũ>1 HnH

>
n ũ1)2

]
‖ũ1‖42

≤ cdb2 log3(d2β + n)

(d2β)

n∑
t=1

(d2β + t)−1 − δ2
(
d2β + n+ 1

d2β + 1

)
+

c

λ1

+ (1 + δ2) exp

(
n∑
t=1

4λ1βt + 11λ2
1β

2
t

)

≤ cdb2 log3(d2β + n)

(d2β)
log

(
d2β + n

d2β

)
− δ2

(
d2β + n+ 1

d2β + 1

)
+

c

λ1

+ (1 + δ2) exp

(
n∑
t=1

4λ1βt + 11λ2
1β

2
t

)
ζ1
≤ (1 + δ2) exp

(
n∑
t=1

4λ1βt + 11λ2
1β

2
t

)
,

where ζ1 holds due to
d2β + n

log4(d2β + n)
≥ cd

δ2
.

Convergence Theorem: We begin by restating the bound obtained on E
[
Tr(V >⊥ HtH

>
t V⊥)

]
in

Lemma E.2,

E
[
Tr(V >⊥ HnH

>
n V⊥)

]
≤ exp

(
n∑
t=1

2βtλ2 + β2
t λ

2
2

)
(

Tr(V⊥V
>
⊥ ) + cd‖V⊥V >⊥ ‖2

n∑
t=1

(
rtβ

2
t + I(t ≤ t0)βtd

)
exp

(
2

t∑
i=1

βi(λ1 − λ2) + cdβ2
i ri + c

t0∑
i=1

βid

))
ζ1
≤ exp

(
n∑
t=1

2βtλ2 + β2
t λ

2
2

)(
Tr(V⊥V

>
⊥ ) (58)

+ cd‖V⊥V >⊥ ‖2
n∑
t=1

(
rtβ

2
t + I(t ≤ t0)βtd

)
exp

(
2

t∑
i=1

βi(λ1 − λ2) + cdβ2
i ri

))
, (59)

where ζ1 follows from using Equation (57).

Theorem F.3 (Convergence Theorem). Let δ > 0 and the step sizes βi = b
d2β+i . The output vn of

Algorithm 1 for n satisfying the assumption in Lemma F.1 and F.2 is an ε-approximation to u1 with
probability atleast 1− δ where,

sin2
B(u1, vn)︸ ︷︷ ︸

ε

≤ d‖V⊥V >⊥ ‖2
Q

exp

(
5λ2

1

n∑
t=1

β2
t

)(
exp

(
−2∆λ

n∑
t=1

βt

)

+ c

n∑
t=1

(
rtβ

2
t + I(t ≤ t0)βtd

)
exp

(
−2∆λ

n∑
i=t+1

βi

))
,

where ∆λ = λ1 − λ2 and

Q =
2δ2‖ũ1‖22

(2 + ε1)c log(1/δ)

1− 1√
δ

√√√√(1 + ε1) exp

(
19

n∑
t=1

β2
t λ

2
1

)
− 1

 ,

The constant c occuring in the equations, as before depends polynomially on problem dependent
paramters b, λ1,∆λ and the parameters δ1

2 = δ2 = ε1
2+ε1

.
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Proof. First, using the Chebychev’s inequality, we have:

P
[∣∣ũ>1 HnH

>
n ũ1 − E

[
ũ>1 HnH

>
n ũ1

]∣∣ ≥ 1

δ

√
Var[ũ>1 HnH>n ũ1]

]
≤ δ.

With probability greater than 1− δ, we have,

ũ>1 HnH
>
n ũ1 ≥ E

[
ũ>1 HnH

>
n ũ1

]
− 1√

δ

√
Var
[
ũ>1 HnH>n ũ1

]
= E

[
ũ>1 HnH

>
n ũ1

](
1− 1√

δ

√
E[(ũ>1 HnH>n ũ1)2]

E[ũ>1 HnH>n ũ1]2
− 1

)
(60)

Now, using Lemma F.2, we have that,

E
[
(ũ>1 HnH

>
n ũ1)2

]
‖ũ1‖42

≤ (1 + δ2) exp

(
n∑
t=1

4λ1βt + 11λ2
1β

2
t

)
(61)

and using Lemma F.1, we have,

E[ũ>1 HnH
>
n ũ1]

‖ũ1‖22
≥ (1− δ1) exp

(
n∑
t=1

2βtλ1 − 4β2
t λ

2
1

)
,

squaring the above, we obtain,

E[ũ>1 HnH
>
n ũ1]2

‖ũ1‖42
≥ (1− δ′1) exp

(
n∑
t=1

4βtλ1 − 8β2
t λ

2
1

)
, (62)

where δ′1 = 2δ1. Setting δ′1 = δ2 = ε1
2+ε1

and substituting bounds (61) and (62) in (60), we obtain,

ũ>1 HnH
>
n ũ1 ≥

2‖ũ1‖22
2 + ε1

exp

(
n∑
t=1

2βtλ1 − 4β2
t λ

2
1

)1− 1√
δ

√√√√(1 + ε1) exp

(
19
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β2
t λ

2
1

)
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 .

Further, using the Equation (58) along with Markov’s inequality, we have with probability atleast
1− δ

Tr(V >⊥ HnH
>
n V⊥) ≤ 1

δ
exp

(
n∑
t=1

2βtλ2 + β2
t λ

2
2

)(
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⊥ )

+ cd‖V⊥V >⊥ ‖2
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(
rtβ

2
t + I(t ≤ t0)βtd

)
exp

(
2

t∑
i=1

βi(λ1 − λ2) + cdβ2
i ri

))
.

Combining the above with Lemma 6.2, we have that the output vn of Algorithm 1 is an ε-
approximation to u1 with probability atleast 1− δ,

ε ≤ c log(1/δ)(2 + ε1)

2δ‖ũ1‖22
exp

(∑n
t=1−2βtλ1 + 4β2

t λ
2
1

)
Tr(V >⊥ HnHnV⊥)(

1− 1√
δ

√
(1 + ε1) exp (19

∑n
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2
t λ

2
1)− 1
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≤ d‖V⊥V >⊥ ‖2

Q
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(
5λ2

1

n∑
t=1
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t

)(
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(
−2∆λ

n∑
t=1

βt

)

+ c

n∑
t=1

(
rtβ

2
t + I(t ≤ t0)βtd

)
exp

(
−2∆λ

n∑
i=t+1

βi

))
,

where ∆λ = λ1 − λ2 and

Q =
2δ2‖ũ1‖22

(2 + ε1)c log(1/δ)

1− 1√
δ

√√√√(1 + ε1) exp

(
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β2
t λ

2
1

)
− 1

 .
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Main Result: Next, we state our main theorem and instantiate the parameters of our algorithm.
Theorem F.4 (Main Result). Fix any δ > 0 and ε1 > 0. Suppose that the step sizes are set to
αt = c

log(d2β+t) and βt = γ
∆λ(d2β+t) for γ > 1/2 and

β = max

 20γ2λ2
1

∆2
λd

2 log
(

1+δ/100
1+ε1

) , 200
(
R
µ + R3

µ2 + R5

µ3

)
log(1 + R2

µ + R4

µ2 )

δ∆2
λ

 .

Suppose that the number of samples n satisfy the assumptions of Lemma F.1 and F.2. Then, the output
vn of Algorithm 1 satisfies,

sin2
B(u1, vn) ≤

(2 + ε1)cd‖
∑d
i=1 ũiũ

>
i ‖2 log

(
1
δ

)
δ2‖ũ1‖22

(( d2β + 1

d2β + n+ 1

)2γ

+
cγ2 log3(d2β + n)

∆2
λ(d2β + n+ 1)

+
cd

∆λ

(
d2β + log3(d2β)

d2β + n+ 1

)2γ )
,

with probability at least 1 − δ with c depending polynomially on parameters of the problem
λ1, κB , R, µ. The parameters δ1, δ2 are set as δ1 = ε1

2(2+ε1) and δ2 = ε1
2+ε1

.

Proof. With the step size βt = b
d2β+t , we set the parameter b = γ

λ1−λ2
and thus we get βt =

γ
∆λ(d2β+t) . Now, we have that

n∑
t=1

β2
t ≤

γ2

∆2
λd

2β

and using the assumption that γ2λ2
1

∆2
λd

2β
≤ 1

19 log
(

1+ δ
100

1+ε1

)
, we obtain,√√√√((1 + ε1) exp

(
19

n∑
t=1

β2
t λ

2
1

)
− 1) ≥ 9

10
⇒ Q ≥ cδ2‖ũ1‖22

(2 + ε1) log(1/δ)
. (63)

Using previous bounds on sums of partial harmonic sums, we have that,
n∑
t=1

βt ≥
γ

∆λ
log

(
d2β + n+ 1

d2β + 1

)
and

n∑
i=t+1

βi ≥
γ

∆λ
log

(
d2β + n+ 1

d2β + t+ 1

)
.

Using these bounds, we obtain,

exp

(
−2∆λ

n∑
t=1

βt

)
≤
(

d2β + 1

d2β + n+ 1

)2γ

. (64)

In order to bound the remaining terms from Theorem F.3, we note that,

c

n∑
t=1

(
rtβ

2
t + I(t ≤ t0)βtd

)
exp

(
−2∆λ

n∑
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βi

)

≤ c
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(
rtβ

2
t + I(t ≤ t0)βtd
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≤ c
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2
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(
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)2γ

+ cd

t0∑
t=1

γ

∆λ(d2β + t)

(
d2β + t+ 1

d2β + n+ 1

)2γ

≤ cγ2 log3(d2β + n)

∆2
λ(2γ − 1)(d2β + n+ 1)

+
cd

∆λ

(
d2β + log3(d2β)

d2β + n+ 1

)2γ

, (65)

where the last bounds holds for any γ > 1/2. Substituting bounds (63),(64) and (65) in the result of
Theorem F.3, we obtain that the output vn of Algorithm 1 satisfies,

sin2
B(u1, vn) ≤

(2 + ε1)cd‖
∑d
i=1 ũiũ

>
i ‖2 log

(
1
δ

)
δ2‖ũ1‖22

(( d2β + 1
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)2γ

+
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+
cd

∆λ

(
d2β + log3(d2β)

d2β + n+ 1

)2γ )
.

G Auxiliary Properties

G.1 Useful Trace Inequalities

In this section we enumerate some useful inequalities.

Lemma G.1. 1. 〈A,B〉 ≤ 〈A,C〉 for PSD matrices A,B,C with B � C.

2. Tr(A>B) ≤ 1
2 Tr(A>A+B>B) for all matrices A,B ∈ Rm×n.

As a consequence:

Corollary G.1.1. 〈A,B〉 ≤ 〈A,C〉 for a PSD matrix A and B � C, with B and C symmetric.

Proof. If B is PSD, the result follows immediately from the previous lemma. Otherwise let λmin be
the smallest eigenvalue of B. Let B′ = B + |λmin|I and C ′ = C + |λmin|I . The matrices B′ and
C ′ are PSD and satisfy B′ � C ′. The result follows by applying the lemma above and rearranging
the terms.

G.2 Useful spectral norm Inequalities

In this section we enumerate some useful inequalities.

Lemma G.2. If 0 � B � C and symmetric then 0 � ABA> � ACA>.

As a consequence:

Corollary G.2.1. If 0 � B � C and symmetric then ‖ABA>‖ ≤ ‖ACA>‖.

G.3 Properties concerning Eigenvectors of B−1A

In this subsection, we highlight some important properties concerning the left and right eigenvectors
of the matrix under consideration B−1A.

As before, we let ũ1, . . . , ũd denote the left eigenvetors and u1, . . . , ud denote the right eigenvectors
of B−1A.

Lemma G.3. The right eigenvectors of the matrix B−1A satisfy the following:

u>i Buj = 0 if i 6= j.

Proof. Consider the symmetric matrix C = B−1/2AB−1/2. Let uC1 , . . . , u
C
d be the eigenvectors of

C. Notice that if uCi is an eigenvector of C with eigenvalue λi, then

B−1/2(B−1/2AB−1/2)uCi = λiB
−1/2uCi ,

implying that B−1/2uCi is a right eigenvector of B−1A, ui. Therefore the eigenvector of C are
related to the righteigenvectors of B−1A as B1/2ui = uCi . Further, since the matrix C is symmetric,
its eigencvectors can be taken to form an orthogonal basis, and hence,

(uCi )>uCj = u>i Buj = 0 if i 6= j.

Lemma G.4. Let u1 denote the top right eigenvector of B−1A. Then,

ũ>i u1 = 0 for all i ≥ 2,

where ũi represent the left eigenvectors of the matrix B−1A.
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Proof. We begin by noting that the left and right eigenvectors of the matrix B−1A are related as
ũi = Bui, which follows from,

(B−1A)B−1ũi = B−1(AB−1)ũi = λiB
−1ũi

As a consequence B−1ũi is a right eigenvector of B−1A and the lemma now follows from using
Lemma G.3.

As a consequence of Lemma G.4, we have the following corollary relating the orthogonal subspace
of u1 to the left eigenvectors ũ2, . . . , ũd.
Corollary G.4.1. If λ1 has multiplicity 1, the space orthogonal to u1 is spanned by the vectors
{ũ2, . . . , ũd}.
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