Appendix

A Average Uplift in Terms of the Individual Uplift
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B Area Under the Uplift Curve and Ranking
Define the following symbols:
o C, :=Pr[f(x) < al,
o Ua; f) = [u(@)l[a < f(@)lp(z)dz,
o Rank(f) := E[1[f(2') < f(z)][u(z’) — u(=)]l,
o AUUC(f) == [, U(a; f)dCa.

Then, we have

where yt ~ p(y | ', t = 1) andy~ ~ p(y | &', t = —1).
Assuming Pr[f(z’) = f(x)] = 0, we have

Rank(f) = E[1[f(x) > f(z")][u(z) — u(=")]
=E[1[f(z) > f(=)]u(x)]

E[1[f(z) > f(2")u(z)]

= AUUC(f) - E[(1 - 1[f(z) < f(z")])u(z")]

= Efu(a)] - 2AUUC(/).

Thus, Rank(f) = 2(AUUC(f) — AUUC(r)), where r : R — R is the random ranking scoring function
that outputs 1 or —1 with probability 1/2 for any input . Rank(f) is maximized when f(z) < f(z') <
u(x) < u(x’) for almost every pair of z € R% and 2 € R?. In particular, f = u is a maximizer of the
objective.

C Proof of Lemmalll
Lemmalll For every x such that p1 () # p2(x), u(x) can be expressed as

Eypiwia) Y] = Byaps i) [Y]
Eipy (t]z) [t] = Etmpy (t)2)[1]

u(x) =2 x (16)



Proof.
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=u(@)(p(t=1]z) —p(t =1]x)).

Whenpi(t = 1| @) # p2(t =1 | @), it holds that

Ey i) Y] = Eyaps i Y]

pit=1|z)—p(t=1]|=x)

—9x Eypi o) Y] = Eyapy (yla) [y]

Etpi (t2)[1] = Etnps(tja) [t]

u(x) =

D Proof of Lemma[2

Lemmal2l For every x such that p1(z) # p2(x), u(x) can be expressed as
E[z | z]

—9ox 21T

u(x) X B[]

where E[z | ] and E[w | @] are the conditional expectations of z given x over p(z | ¢) and w given  over
p(w | @), respectively.

Proof. We have

1 1
Bls o] = [ ¢ |3m(r=¢le)+ gty = ¢ )] a¢
5 [ =clancs [ =—¢la)
= 2/ypl(y | z)dy — g/ypz(y | z)dy
1 1
= §Ey~p1<y\m) [yl — QEy~p2(wa) [y]-
Similarly, we obtain
1 1
Elw|z] = iEtNM(t\m)[ﬂ - §Et~pz(t\w) [t].
Thus,
o El2l2 _ o Evnwio) V] — Eyepwia) ] _ ().
E[w | z] EtNh(ﬂﬂ:)[ﬂ - Et~p2(t\m)[t]

E Proof of Theorem[2]

We restate Theorem 2] below.

Theorem Assume that n1 = ng, 11 = ng, pi(x) = p2(x), W = infrcx |pw(x)| > 0, Mz =
SUp,cz 2] < 00, MF = SuDPjep,ex |f(T)] < 00, and Mg = sup,cq yex |9(x)] < oco. Then, the
following holds with probability at least 1 — ¢ that for every f € F,

Bt (7(2) = u@))'] < 55 [sup 77,0 + R+ (J= + T ) flog % + ec<f>] ,




where M., := AMyMg + M3 /2, My = 2MrMg+ M3 /2, R ¢ = 2(Mp+4Mz)R7 , ) (G)+2(2Mp +

Define J(f, g) and j(f, g) as in Section 3.2 and denote
ea(f) == sup J(f,g) —sup J(f, g).
g€L2(p) 9eG
Definition 1 (Rademacher Complexity). We define the Rademacher complexity of H over N random variables
following probability distribution q by

%g(H) =Ev,,. . . Vx,o1,.on [sup Zo’l

where 01, ...,0N are independent, {—1, 1}—valued uniform random vartables.
Lemma 3. Under the assumptions of Theorem@ with probability at least 1 — 6, it holds that for every f € F,

J(f,9) < J(f,9) + Rea + (f ]‘}) \/@

To prove Lemmal[3] we use the following lemma, which is a slightly modified version of Theorem 3.1 in Mohri
et al. [22]].

Lemma 4. Let H be a set of real-valued functions on a measurable space D. Assume that M :=
SUDPhe g wep P(v) < 0o. Then, for any h € H and any D-valued i.i.d. random variables V, Vi, ..., VN
Sfollowing density q, we have

N M2
E[h(V)] N; (Vi) + 2R (H) + \/—log(s a7

Proof of Lemma[d] We follow the proof of Theorem 3.1 in Mobhri et al. [22] except that we set the constant B
in Eq. (28) to M /m when we apply McDiarmid’s inequality (Section [M). O

Now, we prove Lemmal3]

Proof of Lemma3] Forany f € F,ge G, o', ' € X,z € Z:={y,—y |y € Y}, andw' € {—1,1}, we
define A, and h., as follows:

I / ! 1 !
ha(a', 2 g) == —42g(2') — S9(a)’,
e NN S
ho (& w's £,9) = w' f(#)g(&) — 59(@)*.
Denoting H,, := {(z’,2") = h.(x',2';9) | g € G}, we have

1
sup }h(m',z/)’ <AMzMg + =Mz =: M., < oo,
h€EH, x'€X,2/ €2 2

and thus, we can apply Lemma@to confirm that with probability at least 1 — /2,
M. 3

1 n
B ompton[he (@ 29)] S = Y ha(@izii9) + 29 (H:) +
(xi,24)€S2

where {(w;, 2i)}7-1 =: S are the samples defined in Section[4.1] Similarly, it holds that with probability at
least 1 — §/2,

~ 1 ~ n /M%
E(E,w)rwp(m,w)[hw(maw;f:g)} <= 7 Z hw(wlawlaf7g)+2mP(Hw) + IOg 5

(®,w;)ESw

log 5’

where H, = {(@',w') — ho(@,w';fg) | f € F,g € G}, My := MrMg + MZ/2, and
{(zi, wi)}j=1 =: Sw are the samples defined in Section By the union bound, we have the following
with probability at least 1 — 4:

E(a 2)np(@.2) [0z (%, 2 9)] + E@ w)~p(@.w) [P (&, w; £, 9)] (18)
1 1

< = . - s

- n Z hz(mlazlag)+ 'ﬁ Z hw(a‘.“wl?fag) (19)
(4,2,) €Sz (,w;)

P M, M, 2
+2(R, (H,) + R, (Hy)) + ( ) log (20)

Ry (H-) + Ry, (Hw) f NG



Using some properties of the Rademacher complexity including Talagrand’s lemma, we can show that

Ry, (H.) < (Mp + 4Mz)R; (G), 1)
R (Hu) < (2Mr + Me)R; (F) + (Mr + Mc) %5 (G). (22)
Clearly,
- 1 1 _
J(f.9) =~ > h(@i zi;9) + = > W@ wi f9),
(x4,2;) €S2 (®5,w;)ESw

J(f, g) = E(m,z)rvp(a:,z) [hz (:D, z3 g)] + E(i,w)Np(m,z) [hw (Zia wy f7 g)}
From Eq. (20), Eq. (ZI), and Eq. (22)), we obtain

= M, M, 2
Ih,9) < Thg) + e+ (U2 4 22 ) og 3 e3)

Rrc = 2(Mp + 4Mz)R2(G) 4 2(2Mp + Me)R, (F) + 2(Mr + Me)R, (G).

where

O
Finally, we prove Theorem 2]
Proof of Theorem[2] From Lemma[3] with probability at least 1 — &, it holds that for all f € F
~ M. M, 2
sup J(f, g) < sup J(J, +m,+(z+—f) log =. (24)
sup (f.9) sup (f,9) +Rra N A Y
Moreover, recalling W' := infzex |pw ()| and sup ¢ 12, J(f, 9) = El(pw () f(x) — 12 (x))?], we have
pa(@) \?
E[(f(z) —u(x)?] = E (fa:— z ) (25)
(/) — (@)’ (@) - 212
1
< 2 El(pw (@) f (=) — px(@))’] (26)
1
= —— . 27
e [Ec(f) +sup J(f, g)] @7
Combining Eq. (Z4) and Eq. 7) yields the inequality of the theorem. O

F  Proof of Corollary ]|

Corollary[l] Let F = {z — o7 ¢(x) | leell, < Ar}, G = {z — B 9(x) | B8], < Ac}. and assume
that T 1= sUpgey || @(x) ||, < 0o and ra := sup,cy [P ()|, < oo, where ||-||, is the La-norm. Under the
assumptions of Theorem@ it holds with probability at least 1 — 0 that for every f € F,

C, log%—l—DZ Cuw log%—i—Dw

+
V2n 2n

~

Barpion (f(@) — u(@))’) < g | sup T(f.0) +

+ea(f)],

where C, := 7‘2gA2G +4rgAc My, Cy := ZT%A% +2rprgArAc + TéAQG, D, = réAé/2 +4draAc My,
and D, = réA%/Q +drrraArAc.

Proof. Under the assumptions, it is known that the Rademacher complexity of the linear-in-parameter model F'
can be upper bounded as follows [22]:

reArp
N

We can bound SR;V (G) similarly. Applying these bounds to Theorem we obtain the statement of Corollary 1.
O

Ry (F) <

P




G Proof of Theorem[3

We prove the following, formal version of Theorem 3]
Theorem Under the assumptions of Corollary it holds with probability at least 1 — § that E[(f(:c) —
u(x))?] < (dens + 266 + er)/W?, where et == supsepea(f), and ep == infger J(f), f € F is any

approximate solution to inf ye p SUp ¢ ¢ j(f, g) satisfying sup ¢ g f(f, g) < infrersup,cq j(f, g) + en,s,
and

C4/log % + D, Cuy,/log % + Dy,
+ .
V2n 2n

€n,s ‘=

Proof. Let J(f) = sub,c 2 J(f.9) = Bl(uu (@) (@) — 1=(@))?), o) = sup,cq J(f.q). To(f) =
sup e J(f, ). Let f € F be any approximate solution to inf s  J(f) satisfying J(f) < er + en,s.

As a special case of Eq. we can prove that with probability at least 1 — ¢, it holds for every f € F that
Ja(f) < Ja(f) + en,s. From Corollary it holds that with probability at least 1 — J,

I < [ID = Ja(D] + [J6(F) = To(D] + [Ta(F) = Ta(F)]
+[Ta(h) = Ja(P] + [Jo(D) = 1(P] + I()
<€t tens+ens

+ens +ce+[er + ens)
<dens+ 255 +er.

~

Since E[(f(w) —u(x))?] < sz J(f). we obtain the bound in Theorem O

H Binary Outcomes

When outcomes y take on binary values, e.g., success or failure, without loss of generality, we can assume
that y € {—1,1}. Then, by the definition of the individual uplift, u(x) € [—2,2] for any € R?. In
order to incorporate this fact, we may add the following range constraints on f: —2 < f(x) < 2 for every
T € {mitim U{Z:i}im.

I Cases Where p;(x) # pa(x) or (ny,n1) # (n1,n1)

So far, we have assumed that p1 () = p2(x), m1 = ma, and n1 = na. The proposed method can be adapted
to the more general case where these assumptions may not hold.

Letry (@) = 57 - pi((“;)) and 7 () = ng . pi((wm)), k = 1,2, for every « with py(x) > 0. Let ki:: 1 if the
sample ; originally comes from pi (), and k; := 2 if it comes from p2(x). Similarly, define k; € {1, 2}
according to whether &; comes from pi(x) or p2(x). Then, unbiased estimators of the three terms in the
proposed objective Eq. (T0) are given as the following weighted sample averages using r and 7:

Bopo [0f (@)g(@)] = = i f @)g(@:)7%, (@),

=1

s

Esnp@)[z9(x)] = [zig(@i)Th, (x:)]

S

E:cwp(zv) [g(w)ﬂ ~

[\D‘)i

=3 Mg e @] + 5= > lg(@)° 7, @)

i=1

The density ratios py () /p(x) can be accurately estimated using i.i.d. samples from py (x) and p(x) [211 23]
351 138].

J Unbiasedness of the Weighted Sample Average

Below, we show that the weighted sample averages are unbiased estimates. We only prove for E[w f(x)g(x)]
since the other cases can be proven similarly. The expectation of the weighted sample average transforms as



follows:

1< I
% 2B 0 gy [T @@, (@)

1=

=7 2 3 Benaniin | if@te)g - ]
= % _Z Eanp(@).trpi(tle) [(—Dk“tf(w)g(m)}
= [[E0 e S ntel @) @g@me)ds

k=1,2

~ [[ ww | @)@ (@pe)drde
= Eonp(@),wnp(wlz) [wf(@)g(2)].
K Gaussian Basis Functions Used in Experiments
The I-th element of ¢(x) = (¢1(x), - .., b, (x))" is defined by

2
B

2 I

di1(x) := exp .

where 2, 1 =1,.. ., by, are randomly chosen training data points. We used by = 100 and o = 25 for all
experiments. 1) is defined similarly.

L Justification of the Sub-Sampling Procedure

Suppose that we want a sample subset Sy following the treatment policy px(t | ). For each sample
(zi,ti,yi) ~ p(x,t,y) in the original dataset, we randomly add it into Sy with probability proportional
to pk(ti | a:z)/p(tl ‘ a:z) Then,
p((xi, i, ys) € Sk | iy ta, yi)p(s, ti, yi)
p(xi, i, yi | (i, ti,y:) € Sk) =
( wl ) ) S 2y, P ti yi) € Sk | @i ti, yi)p(ei, ti, yi)das
_ pi(ti | ®:)p(yi | @, ti)p(e:)
S22y, e pe(ti | @a)p(ys | @i, ti)p(x:)de:
= pe(ti | @:)p(yi | @i, ti)p(x:).
This means that the subsamples Sy, preserve the original p(y | «, t) and p(x) but follow the desired treatment
policy pr(t | ).

M McDiarmid’s Inequality
Although McDiarmid’s inequality is a well known theorem, we present the statement to make the paper
self-contained.

Theorem 4 (McDiarmid’s inequality). Let ¢ : DY — R be a measurable function. Assume that there exists a
real number B, > 0 such that

|@(U1,...,UN)—¢(v1,...,v§v)| < By, (28)

forany vi,...,vN,v1,...,vy € D where v; = v for all but one i € {1,...,N}. Then, for any D-valued
independent random variables V1, . ..,V and any § > 0 the following holds with probability at least 1 — §:
BIN 1

> log 5

e(V1,...,VN) <E[p(V1,...,VN)] +



