
Neural Code Comprehension: A Learnable
Representation of Code Semantics — Supplementary

Information

Tal Ben-Nun
ETH Zurich

Zurich 8092, Switzerland
talbn@inf.ethz.ch

Alice Shoshana Jakobovits
ETH Zurich

Zurich 8092, Switzerland
alicej@student.ethz.ch

Torsten Hoefler
ETH Zurich

Zurich 8092, Switzerland
htor@inf.ethz.ch

Abstract

This file contains the appendices of the paper “Neural Code Comprehension:
A Learnable Representation of Code Semantics”. The code, datasets, trained
embeddings, and results are available at https://www.github.com/spcl/ncc

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.

https://www.github.com/spcl/ncc

A Statement Categories for inst2vec Clustering Results

Table 1 presents the mapping from colors to statement categories that appear in Fig. 6. The following
rules apply to the categories in the table:

1. A type operation generally refers to an operation, a function call, or the definition of a
function, that returns an instance of type.

2. type* refers to a pointer of type. Asterisks could be chained for pointers-to-pointers.
3. <d x type> is a vector of d elements of type.
4. [d x type] is an array of d elements of type.
5. struct/class denotes an aggregate structure (e.g., C struct) of multiple types, e.g.,
{type_1, type_2, ..., type_n} in LLVM IR.

6. floating point can refer to either single- or double-precision floating point values.
7. int can refer to an integer of any bit-width.
8. void categories (call void, invoke void) refer to calls/invocations of functions that

have no return value.
9. conversion operations denote type conversions within LLVM, which do not necessarily

translate into code.
10. load function pointer, store function pointer refer to instructions that read or

write function pointers into memory, respectively.

Table 1: Statement category by color (Fig. 6 legend)
Color Statement Category Example

<d x int>* operation <%ID> = load <2 x i64>*, <2 x i64>** <%ID>, align 8

<d x int> operation <%ID> = and <8 x i32> <%ID>, <%ID>

<d x struct/class*> operation store <2 x { i64, i64 }*> <%ID>, <2 x { i64, i64 }*>* <%ID>, align 8

struct/class* operation <%ID> = phi { float, float }* [<%ID>, <%ID>], [<%ID>, <%ID>]

struct/class operation <%ID> = alloca { i32, i32 }, align 4

int** operation <%ID> = phi i8** [<%ID>, <%ID>], [<%ID>, <%ID>]

int* operation <%ID> = load i8*, i8** <%ID>, align 8

int operation <%ID> = add i16 <%ID>, <INT>

type conversion operation <%ID> = bitcast <4 x i32> <%ID> to <16 x i8>

global variable definition <@ID> = global i32 <INT>, align 4

<d x int*> operation <%ID> = phi <4 x i8*> [<%ID>, <%ID>], [<%ID>, <%ID>]

load function pointer <%ID> = load { i32 (...)** }*, { i32 (...)** }** <%ID>, align 8

store function pointer store void ()* <@ID>, void ()** <%ID>, align 8

floating point** operation <%ID> = phi float** [<%ID>, <%ID>], [<%ID>, <%ID>]

floating point* operation <%ID> = icmp eq double* <%ID>, null

floating point operation <%ID> = getelementptr double, double* <%ID>, i64 <%ID>

call void tail call void <@ID>(i64 <INT>)

other/misc. cleanup; unreachable

[d x [d x type]] operation <%ID> = getelementptr inbounds [8 x [256 x i32]], [8 x [256 x i32]]*

[d x struct/class] operation <%ID> = alloca [5 x { i8*, i64 }], align 8

[d x int] operation <%ID> = alloca [100 x i8], align 16

[d x floating point] operation <%ID> = getelementptr inbounds [1024 x double], [1024 x double]*

<d x floating point>* operation <%ID> = alloca <8 x float>*, align 8

<d x floating point> operation <%ID> = call <4 x float> <@ID>(float* <%ID>)

void function definition define linkonce_odr void <@ID>({ i32 (...)** }*) unnamed_addr

invoke void invoke void <@ID>(i8* <%ID>) to label <%ID> unwind label <%ID>

2

B Neural Code Comprehension: Network Architecture

Fig. 1 depicts the neural network architecture used for the high-level tasks in this paper. Below we
describe each of the underlying layers in the network.

Input and Embedding Lookup As an input, the Neural Code Comprehension architecture accepts
programs as sequences of LLVM IR statements. Each statement is represented through its corre-
sponding embedding vector, and for statements that are not in the inst2vec vocabulary, they are
assigned the embedding vector corresponding to a predefined “unknown” token. The embedding
layer remains fixed throughout the training of the code comprehension tasks (effectively, it acts as a
simple lookup matrix), and no fine-tuning is applied to the vector representations.

Program Characterization The sequence of statement embedding vectors is passed to two layers
of Long Short-Term Memory (LSTM) [33] cells. This program characterization layer transforms
an input sequence of arbitrary length into a fixed-length vector that captures the properties of the
processed program.

Auxiliary Input Concatenation (optional) Additional data may optionally be concatenated with
the output of the two-layer LSTM at this point. This allows information that is only available at
runtime (e.g., hardware parameters or data size) to be taken into account in the predictive modeling.

Batch normalization [35] is performed, and then the vector output of program characterization goes
through a 32-unit fully connected dense layer with rectifier (ReLU) activations [26]. Finally, the
output layer is another fully-connected layer, which features a number of units equal to the number
of possible output categories. The output is given by a sigmoid activation function (output between 0
and 1), where the largest activation corresponds to the model’s prediction.

Input and Embedding Lookup

<%ID> = zext i32 <%ID> to i64
<%ID> = add i16 <%ID>, <INT>

call void <@ID>(i8* <%ID>)

x

x

x

Program

Characterization

Batch

Normalization Dense Output

x

Auxiliary Input Concatenation
+

Figure 1: Neural Code Comprehension Network Architecture

C Training NCC with Immediate Values: Method Description

In the transformations applied to raw LLVM IR code before inst2vec training, the statements are
stripped of their immediate values and are replaced by tokens indicating the value type: <INT>,
<FLOAT>, <STRING> (see Section 5 for further detail). The purpose of this abstraction from the
immediate values is twofold. First, keeping all immediate values would result in an extremely
large and sparse vocabulary size; second, this transformation allows to map statements with nearly
identical semantics (e.g. <%ID> = fadd fast float <%ID>, 1.3 and <%ID> = fadd fast
float <%ID>, 5.2) to the same embedding vector. While this choice is sound for statement
training, it might nevertheless fall short in the training of downstream tasks, where immediate values
may hold values critical to the program’s semantics or performance, such as array sizes or iteration
bounds. In order to train inst2vec program representations along with their immediate values, we
store the immediate values of each statement separately before filtering them out during preprocessing.
The immediate values are then reintegrated into the NCC workflow using one of the three methods
illustrated in Fig. 2 and described below.

3

Immediate values

Input and Embedding Lookup

<%ID> = zext i32 <%ID> to i64
<%ID> = add i16 <%ID>, <INT>

call void <@ID>(i8* <%ID>)

x

x

x

1.7

64

+

Program

Characterization

Batch

Normalization Dense Output

x

(a) concat_naïve

Immediate values

Input and Embedding Lookup

<%ID> = zext i32 <%ID> to i64
<%ID> = add i16 <%ID>, <INT>

call void <@ID>(i8* <%ID>)

x

x

x

1.7

64

+

Program

Characterization

Batch

Normalization Dense Output

x

Re-

Embedding

(b) concat_embed

Immediate values

Input and Embedding Lookup

<%ID> = zext i32 <%ID> to i64
<%ID> = add i16 <%ID>, <INT>

call void <@ID>(i8* <%ID>)

x

x

x

1.7

64

Program

Characterization

Batch

Normalization Dense Output

x

Imm. Characterization +

(c) extract_concat

Figure 2: Three architectures for training inst2vec sequences of statements along with their
immediate values in NCC. The components related to immediate values are marked in dark orange.
The stage at which the immediate values are concatenated with the statements is denoted with a
yellow “+” sign.

“naïve concatenation” (concat_naïve) Instead of feeding the model with the embedding vector
of a statement alone (see layer 2, above), embedding vectors are first concatenated with their
corresponding immediate values. The first set of LSTM cells accept an input of size embedding
dimension + length of list of immediates. The remainder of the NCC layers are unchanged.

“concatenate then embed” (concat_embed) This method introduces an additional embedding step:
statement embedding vectors are first concatenated with their corresponding immediate values. They
then pass through a fully-connected layer, which reduces the layer dimension from input dimension
= embedding dimension + length of list of immediates back to embedding dimension. Next, program
characterization and the rest of the network remain unchanged.

“extract then concatenate” (extract_concat) In this method, immediate values are never cou-
pled back directly to the statement from which they were extracted. Rather, the sequence of immediate
values of the entire program undergoes a separate processing pipeline, before being concatenated
with the output of the program characterization as auxiliary inputs (see Fig. 1). The separate process-
ing of immediate values sequence consists of a single LSTM layer, designed to extract the critical
information from the immediate values that characterize the program.

4

D Training NCC with Immediate Values: Exhaustive Results

Tables 2 and 3 present the results for the heterogeneous device mapping and optimal thread coarsening
factor tasks, obtained with the different modes of immediate value handling described in Appendix C.
The column ’ignore’ presents the results for the simplest version of NCC, where immediate values
are ignored.

Table 2: Heterogeneous device mapping results obtained with inst2vec and NCC, using different
modes of immediate value handling

Architecture Prediction Accuracy [%] Speedup

ignore concat extract concat ignore concat extract concat
naïve concat emb naïve concat emb

AMD Tahiti 7970 82.79 88.09 76.18 72.06 3.42 3.47 3.36 2.76
NVIDIA GTX 970 82.06 86.62 79.71 72.50 1.42 1.44 1.40 1.32

Table 3: Speedups achieved by coarsening threads with inst2vec and NCC, using different modes
of immediate value handling

Computing Platform Speedup

ignore concat_naïve extract_concat concat_embed

AMD Radeon HD 5900 1.37 1.21 1.28 1.30
AMD Tahiti 7970 1.10 1.06 1.18 0.92
NVIDIA GTX 480 1.07 0.99 1.11 0.97
NVIDIA Tesla K20c 1.06 1.04 1.00 0.99

5

	Statement Categories for inst2vec Clustering Results
	Neural Code Comprehension: Network Architecture
	Training NCC with Immediate Values: Method Description
	Training NCC with Immediate Values: Exhaustive Results

