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Abstract

In linear stochastic bandits, it is commonly assumed that payoffs are with sub-
Gaussian noises. In this paper, under a weaker assumption on noises, we study the
problem of linear stochastic bandits with heavy-tailed payoffs (LinBET), where
the distributions have finite moments of order 1 + ǫ, for some ǫ ∈ (0, 1]. We

rigorously analyze the regret lower bound of LinBET as Ω(T
1

1+ǫ ), implying that

finite moments of order 2 (i.e., finite variances) yield the bound of Ω(
√
T ), with T

being the total number of rounds to play bandits. The provided lower bound also
indicates that the state-of-the-art algorithms for LinBET are far from optimal. By
adopting median of means with a well-designed allocation of decisions and trun-
cation based on historical information, we develop two novel bandit algorithms,
where the regret upper bounds match the lower bound up to polylogarithmic fac-
tors. To the best of our knowledge, we are the first to solve LinBET optimally in
the sense of the polynomial order on T . Our proposed algorithms are evaluated
based on synthetic datasets, and outperform the state-of-the-art results.

1 Introduction

The decision-making model named Multi-Armed Bandits (MAB), where at each time step an algo-
rithm chooses an arm among a given set of arms and then receives a stochastic payoff with respect
to the chosen arm, elegantly characterizes the tradeoff between exploration and exploitation in se-
quential learning. The algorithm usually aims at maximizing cumulative payoffs over a sequence of
rounds. A natural and important variant of MAB is linear stochastic bandits with the expected payoff
of each arm satisfying a linear mapping from the arm information to a real number. The model of
linear stochastic bandits enjoys some good theoretical properties, e.g., there exists a closed-form so-
lution of the linear mapping at each time step in light of ridge regression. Many practical applications
take advantage of MAB and its variants to control decision performance, e.g., online personalized
recommendations (Li et al., 2010) and resource allocations (Lattimore et al., 2014).

In most previous studies of MAB and linear stochastic bandits, a common assumption is that noises
in observed payoffs are sub-Gaussian conditional on historical information (Abbasi-Yadkori et al.,
2011; Bubeck et al., 2012), which encompasses cases of all bounded payoffs and many unbounded
payoffs, e.g., payoffs of an arm following a Gaussian distribution. However, there do exist practical
scenarios of non-sub-Gaussian noises in observed payoffs for sequential decisions, such as high-
probability extreme returns in investments for financial markets (Cont and Bouchaud, 2000) and
fluctuations of neural oscillations (Roberts et al., 2015), which are called heavy-tailed noises. Thus,
it is significant to completely study theoretical behaviours of sequential decisions in the case of
heavy-tailed noises.
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Many practical distributions, e.g., Pareto distributions and Weibull distributions, are heavy-tailed,
which perform high tail probabilities compared with exponential family distributions. We consider
a general characterization of heavy-tailed payoffs in bandits, where the distributions have finite
moments of order 1 + ǫ, where ǫ ∈ (0, 1]. When ǫ = 1, stochastic payoffs are generated from distri-
butions with finite variances. When 0 < ǫ < 1, stochastic payoffs are generated from distributions
with infinite variances (Shao and Nikias, 1993). Note that, different from sub-Gaussian noises in the
traditional bandit setting, noises from heavy-tailed distributions do not enjoy exponentially decaying
tails, and thus make it more difficult to learn a parameter of an arm.

The regret of MAB with heavy-tailed payoffs has been well addressed by Bubeck et al. (2013),
where stochastic payoffs have bounds on raw or central moments of order 1 + ǫ. For MAB with
finite variances (i.e., ǫ = 1), the regret of truncation algorithms or median of means recovers the op-
timal regret for MAB under the sub-Gaussian assumption. Recently, Medina and Yang (2016) inves-
tigated theoretical guarantees for the problem of linear stochastic bandits with heavy-tailed payoffs
(LinBET). It is surprising to find that, for ǫ = 1, the regret of bandit algorithms by Medina and Yang

(2016) to solve LinBET is Õ(T
3
4 ) 2, which is far away from the regret of the state-of-the-art al-

gorithms (i.e., Õ(
√
T )) in linear stochastic bandits under the sub-Gaussian assumption (Dani et al.,

2008a; Abbasi-Yadkori et al., 2011). Thus, the most interesting and non-trivial question is

Is it possible to recover the regret of Õ(
√
T ) when ǫ = 1 for LinBET?

In this paper, we answer this question affirmatively. Specifically, we investigate the problem of
LinBET characterized by finite (1 + ǫ)-th moments, where ǫ ∈ (0, 1]. The problem of LinBET
raises several interesting challenges. The first challenge is the lower bound of the problem, which
remains unknown. The technical issues come from the construction of an elegant setting for LinBET,
and the derivation of a lower bound with respect to ǫ. The second challenge is how to develop a
robust estimator for the parameter in LinBET, because heavy-tailed noises greatly affect errors of
the conventional least-squares estimator. It is worth mentioning that Medina and Yang (2016) has
tried to tackle this challenge, but their estimators do not make full use of the contextual information
of chosen arms to eliminate the effect from heavy-tailed noises, which eventually leads to large
regrets. The third challenge is how to successfully adopt median of means and truncation to solve
LinBET with regret upper bounds matching the lower bound as closely as possible.

Our Results. First of all, we rigorously analyze the lower bound on the problem of LinBET,

which enjoys a polynomial order on T as Ω(T
1

1+ǫ ). The lower bound provides two essential hints:

one is that finite variances in LinBET yield a bound of Ω(
√
T ), and the other is that algorithms

by Medina and Yang (2016) are sub-optimal. Then, we develop two novel bandit algorithms to
solve LinBET based on the basic techniques of median of means and truncation. Both the algo-
rithms adopt the optimism in the face of uncertainty principle, which is common in bandit prob-
lems (Abbasi-Yadkori et al., 2011; Munos et al., 2014). The regret upper bounds of the proposed

two algorithms, which are Õ(T
1

1+ǫ ), match the lower bound up to polylogarithmic factors. To the
best of our knowledge, we are the first to solve LinBET almost optimally. We conduct experiments
based on synthetic datasets, which are generated by Student’s t-distribution and Pareto distribution,
to demonstrate the effectiveness of our algorithms. Experimental results show that our algorithms
outperform the state-of-the-art results. The contributions of this paper are summarized as follows:

• We provide the lower bound for the problem of LinBET characterized by finite (1 + ǫ)-th
moments, where ǫ ∈ (0, 1]. In the analysis, we construct an elegant setting of LinBET,

which results in a regret bound of Ω(T
1

1+ǫ ) in expectation for any bandit algorithm.
• We develop two novel bandit algorithms, which are named as MENU and TOFU (with

details shown in Section 4). The MENU algorithm adopts median of means with a well-
designed allocation of decisions and the TOFU algorithm adopts truncation via historical

information. Both algorithms achieve the regret Õ(T
1

1+ǫ ) with high probability.
• We conduct experiments based on synthetic datasets to demonstrate the effectiveness of

our proposed algorithms. By comparing our algorithms with the state-of-the-art results,
we show improvements on cumulative payoffs for MENU and TOFU, which are strictly
consistent with theoretical guarantees in this paper.

2We omit polylogarithmic factors of T for Õ(·).
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2 Preliminaries and Related Work

In this section, we first present preliminaries, i.e., notations and learning setting of LinBET. Then,
we give a detailed discussion on the line of research for bandits with heavy-tailed payoffs.

2.1 Notations

For a positive integer K , [K] , {1, 2, · · · ,K}. Let the ℓ-norm of a vector x ∈ Rd be ‖x‖ℓ ,

(xℓ
1 + · · ·+ xℓ

d)
1
ℓ , where ℓ ≥ 1 and xi is the i-th element of x with i ∈ [d]. For r ∈ R, its absolute

value is |r|, its ceiling integer is ⌈r⌉, and its floor integer is ⌊r⌋. The inner product of two vectors x, y
is denoted by x⊤y = 〈x, y〉. Given a positive definite matrix A ∈ Rd×d, the weighted Euclidean

norm of a vector x ∈ Rd is ‖x‖A =
√
x⊤Ax. B(x, r) denotes a Euclidean ball centered at x with

radius r ∈ R+, where R+ is the set of positive numbers. Let e be Euler’s number, and Id ∈ Rd×d

an identity matrix. Let 1{·} be an indicator function, and E[X ] the expectation of X .

2.2 Learning Setting

For a bandit algorithm A, we consider sequential decisions with the goal to maximize cumulative
payoffs, where the total number of rounds for playing bandits is T . For each round t = 1, · · · , T ,
the bandit algorithm A is given a decision set Dt ⊆ Rd such that ‖x‖2 ≤ D for any x ∈ Dt. A
has to choose an arm xt ∈ Dt and then observes a stochastic payoff yt(xt). For notation simplicity,
we also write yt = yt(xt). The expectation of the observed payoff for the chosen arm satisfies a

linear mapping from the arm to a real number as yt(xt) , 〈xt, θ∗〉 + ηt, where θ∗ is an underly-
ing parameter with ‖θ∗‖2 ≤ S and ηt is a random noise. Without loss of generality, we assume

E [ηt|Ft−1] = 0, where Ft−1 , {x1, · · · , xt} ∪ {η1, · · · , ηt−1} is a σ-filtration and F0 = ∅.
Clearly, we have E[yt(xt)|Ft−1] = 〈xt, θ∗〉. For an algorithm A, to maximize cumulative payoffs
is equivalent to minimizing the regret as

R(A, T ) ,

(
T∑

t=1

〈x∗
t , θ∗〉

)
−
(

T∑

t=1

〈xt, θ∗〉
)

=

T∑

t=1

〈x∗
t − xt, θ∗〉, (1)

where x∗
t denotes the optimal decision at time t for θ∗, i.e., x∗

t ∈ argmaxx∈Dt
〈x, θ∗〉. In this paper,

we will provide high-probability upper bound of R(A, T ) with respect to A, and provide the lower
bound for LinBET in expectation for any algorithm. The problem of LinBET is defined as below.

Definition 1 (LinBET). Given a decision set Dt for time step t = 1, · · · , T , an algorithm A, of
which the goal is to maximize cumulative payoffs over T rounds, chooses an arm xt ∈ Dt. With
Ft−1, the observed stochastic payoff yt(xt) is conditionally heavy-tailed, i.e., E

[
|yt|1+ǫ|Ft−1

]
≤ b

or E
[
|yt − 〈xt, θ∗〉|1+ǫ|Ft−1

]
≤ c, where ǫ ∈ (0, 1], and b, c ∈ (0,+∞).

2.3 Related Work

The model of MAB dates back to 1952 with the original work by Robbins et al. (1952), and its
inherent characteristic is the trade-off between exploration and exploitation. The asymptotic lower
bound of MAB was developed by Lai and Robbins (1985), which is logarithmic with respect to the
total number of rounds. An important technique called upper confidence bound was developed to
achieve the lower bound (Lai and Robbins, 1985; Agrawal, 1995). Other related techniques to solve
the problem of sequential decisions include Thompson sampling (Thompson, 1933; Chapelle and Li,
2011; Agrawal and Goyal, 2012) and Gittins index (Gittins et al., 2011).

The problem of MAB with heavy-tailed payoffs characterized by finite (1 + ǫ)-th moments has
been well investigated (Bubeck et al., 2013; Vakili et al., 2013; Yu et al., 2018). Bubeck et al. (2013)
pointed out that finite variances in MAB are sufficient to achieve regret bounds of the same order
as the optimal regret for MAB under the sub-Gaussian assumption, and the order of T in regret
bounds increases when ǫ decreases. The lower bound of MAB with heavy-tailed payoffs has been
analyzed (Bubeck et al., 2013), and robust algorithms by Bubeck et al. (2013) are optimal. The-
oretical guarantees by Bubeck et al. (2013); Vakili et al. (2013) are for the setting of finite arms.
In Vakili et al. (2013), primary theoretical results were presented for the case of ǫ > 1. We notice
that the case of ǫ > 1 is not interesting, because it reduces to the case of finite variances in MAB.
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For the problem of linear stochastic bandits, which is also named linear reinforcement learning

by Auer (2002), the lower bound is Ω(d
√
T ) when contextual information of arms is from a d-

dimensional space (Dani et al., 2008b). Bandit algorithms matching the lower bound up to poly-
logarithmic factors have been well developed (Auer, 2002; Dani et al., 2008a; Abbasi-Yadkori et al.,
2011; Chu et al., 2011). Notice that all these studies assume that stochastic payoffs contain sub-
Gaussian noises. More variants of MAB can be discussed by Bubeck et al. (2012).

It is surprising to find that the lower bound of LinBET remains unknown. In Medina and Yang
(2016), bandit algorithms based on truncation and median of means were presented. When ǫ is finite

for LinBET, the algorithms by Medina and Yang (2016) cannot recover the bound of Õ(
√
T ) which

is the regret of the state-of-the-art algorithms in linear stochastic bandits under the sub-Gaussian

assumption. Medina and Yang (2016) conjectured that it is possible to recover Õ(
√
T ) with ǫ being

a finite number for LinBET. Thus, it is urgent to conduct a thorough analysis of the conjecture in
consideration of the importance of heavy-tailed noises in real scenarios. Solving the conjecture
generalizes the practical applications of bandit models. Practical motivating examples for bandits
with heavy-tailed payoffs include delays in end-to-end network routing (Liebeherr et al., 2012) and
sequential investments in financial markets (Cont and Bouchaud, 2000).

Recently, the assumption in stochastic payoffs of MAB was relaxed from sub-Gaussian noises to
bounded kurtosis (Lattimore, 2017), which can be viewed as an extension of Bubeck et al. (2013).
The interesting point of Lattimore (2017) is the scale free algorithm, which might be practical in
applications. Besides, Carpentier and Valko (2014) investigated extreme bandits, where stochastic
payoffs of MAB follow Fréchet distributions. The setting of extreme bandits fits for the real scenario
of anomaly detection without contextual information. The order of regret in extreme bandits is
characterized by distributional parameters, which is similar to the results by Bubeck et al. (2013).

It is worth mentioning that, for linear regression with heavy-tailed noises, several interesting studies
have been conducted. Hsu and Sabato (2016) proposed a generalized method in light of median of
means for loss minimization with heavy-tailed noises. Heavy-tailed noises in Hsu and Sabato (2016)
might come from contextual information, which is more complicated than the setting of stochastic
payoffs in this paper. Therefore, linear regression with heavy-tailed noises usually requires a finite
fourth moment. In Audibert et al. (2011), the basic technique of truncation was adopted to solve
robust linear regression in the absence of exponential moment condition. The related studies in this
line of research are not directly applicable for the problem of LinBET.

3 Lower Bound

In this section, we provide the lower bound for LinBET. We consider heavy-tailed payoffs with finite
(1 + ǫ)-th raw moments in the analysis. In particular, we construct the following setting. Assume
d ≥ 2 is even (when d is odd, similar results can be easily derived by considering the first d − 1
dimensions). For Dt ⊆ Rd with t ∈ [T ], we fix the decision set as D1 = · · · = DT = D(d). Then,

the fixed decision set is constructed as D(d) , {(x1, · · · , xd) ∈ Rd
+ : x1+x2 = · · · = xd−1+xd =

1}, which is a subset of intersection of the cube [0, 1]d and the hyperplane x1 + · · · + xd = d/2.

We define a set Sd , {(θ1, · · · , θd) : ∀i ∈ [d/2] , (θ2i−1, θ2i) ∈ {(2∆,∆), (∆, 2∆)}} with ∆ ∈
(0, 1/d]. The payoff functions take values in {0, (1/∆)

1
ǫ } such that, for every x ∈ D(d), the expected

payoff is θ⊤∗ x. To be more specific, we have the payoff function of x as

y(x) =

{(
1
∆

) 1
ǫ with a probability of ∆

1
ǫ θ⊤∗ x,

0 with a probability of 1−∆
1
ǫ θ⊤∗ x.

(2)

We have the theorem for the lower bound of LinBET as below.

Theorem 1 (Lower Bound of LinBET). If θ∗ is chosen uniformly at random from Sd, and the

payoff for each x ∈ D(d) is in {0, (1/∆)
1
ǫ } with mean θ⊤∗ x, then for any algorithm A and every

T ≥ (d/12)
ǫ

1+ǫ , we have

E [R(A, T )] ≥ d

192
T

1
1+ǫ . (3)
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Figure 1: Framework comparison between our MENU and MoM by Medina and Yang (2016).

In the proof of Theorem 1, we first prove the lower bound when d = 2, and then generalize the
argument to any d > 2. We notice that the parameter in the original d-dimensional space is rear-
ranged to d/2 tuples, each of which is a 2-dimensional vector as (θ2i−1, θ2i) ∈ {(2∆,∆), (∆, 2∆)}
with i ∈ [d/2]. If the i-th tuple of the parameter is selected as (2∆,∆), then the i-th tuple of the
optimal arm is (x∗,2i−1, x∗,2i) = (1, 0). In this case, if we define the i-th tuple of the chosen arm as
(xt,2i−1, xt,2i), the instantaneous regret is ∆(1− xt,2i−1). Then, the regret can be represented as an
integration of ∆(1 − xt,2i−1) over D(d). Finally, with common inequalities in information theory,

we obtain the regret lower bound by setting ∆ = T− ǫ
1+ǫ /12.

We notice that martingale differences to prove the lower bound for linear stochastic bandits
in (Dani et al., 2008a) are not directly feasible for the proof of lower bound in LinBET, because
under our construction of heavy-tailed payoffs (i.e., Eq. (4)), the information of ǫ is excluded. Be-
sides, our proof is partially inspired by Bubeck (2010). We show the detailed proof of Theorem 1 in
Appendix A.

Remark 1. The above lower bound provides two essential hints: one is that finite variances in

LinBET yield a bound of Ω(
√
T ), and the other is that algorithms proposed by Medina and Yang

(2016) are far from optimal. The result in Theorem 1 strongly indicates that it is possible to design

bandit algorithms recovering Õ(
√
T ) with finite variances.

4 Algorithms and Upper Bounds

In this section, we develop two novel bandit algorithms to solve LinBET, which turns out to be al-
most optimal. We rigorously prove regret upper bounds for the proposed algorithms. In particular,
our core idea is based on the optimism in the face of uncertainty principle (OFU). The first algo-
rithm is median of means under OFU (MENU) shown in Algorithm 1, and the second algorithm is
truncation under OFU (TOFU) shown in Algorithm 2. For comparisons, we directly name the ban-
dit algorithm based on median of means in Medina and Yang (2016) as MoM, and name the bandit
algorithm based on confidence region with truncation in Medina and Yang (2016) as CRT.

Both algorithms in this paper adopt the tool of ridge regression. At time step t, let θ̂t be the ℓ2-

regularized least-squares estimate (LSE) of θ∗ as θ̂t = V −1
t X⊤

t Yt, where Xt ∈ Rt×d is a matrix

of which rows are x⊤
1 , · · · , x⊤

t , Vt , X⊤
t Xt + λId, Yt , (y1, · · · , yt) is a vector of the historical

observed payoffs until time t and λ > 0 is a regularization parameter.

4.1 MENU and Regret

Description of MENU. To conduct median of means in LinBET, it is common to allocate T
pulls of bandits among N ≤ T epochs, and for each epoch the same arm is played multiple
times to obtain an estimate of θ∗. We find that there exist different ways to construct the epochs.
We design the framework of MENU in Figure 1(a), and show the framework of MoM designed
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Algorithm 1 Median of means under OFU (MENU)

1: input d, c, ǫ, δ, λ, S, T , {Dn}Nn=1

2: initialization: k = ⌈24 log
(
eT
δ

)
⌉, N = ⌊T

k
⌋, V0 = λId, C0 = B(0, S)

3: for n = 1, 2, · · · , N do

4: (xn, θ̃n) = argmax(x,θ)∈Dn×Cn−1
〈x, θ〉 ⊲ to select an arm

5: Play xn with k times and observe payoffs yn,1, yn,2, · · · , yn,k

6: Vn = Vn−1 + xnx
⊤
n

7: For j ∈ [k], θ̂n,j = V −1
n

∑n
i=1 yi,jxi ⊲ to calculate LSE for the j-th group

8: For j ∈ [k], let rj be the median of {‖θ̂n,j − θ̂n,s‖Vn : s ∈ [k]\j}
9: k∗ = argminj∈[k] rj ⊲ to take median of means of estimates

10: βn = 3
(
(9dc)

1
1+ǫ n

1−ǫ
2(1+ǫ) + λ

1
2S
)

11: Cn = {θ : ‖θ − θ̂n,k∗‖Vn ≤ βn} ⊲ to update the confidence region

12: end for

by Medina and Yang (2016) in Figure 1(b). For MENU and MoM, we have the following three dif-
ferences. First, for each epoch n = 1, · · · , N , MENU plays the same arm xn by O(log(T )) times,

while MoM plays the same arm by O(T
1+ǫ
1+3ǫ ) times. Second, at epoch n with historical payoffs,

MENU conducts LSEs by O(log(T )) times, each of which is based on {xi}ni=1, while MoM con-
ducts LSE by one time based on intermediate payoffs calculated via median of means of observed
payoffs. Third, MENU adopts median of means of LSEs, while MoM adopts median of means of
the observed payoffs. Intuitively, the execution of multiple LSEs will lead to the improved regret of
MENU. With a better trade-off between k and N in Figure 1(a), we derive an improved upper bound
of regret in Theorem 2.

In light of Figure 1(a), we develop algorithmic procedures in Algorithm 1 for MENU. We notice that,
in order to guarantee the median of means of LSEs not far away from the true underlying parameter
with high probability, we construct the confidence interval in Line 10 of Algorithm 1. Now we have
the following theorem for the regret upper bound of MENU.

Theorem 2 (Regret Analysis for the MENU Algorithm). Assume that for all t and xt ∈ Dt with

‖xt‖2 ≤ D, ‖θ∗‖2 ≤ S, |x⊤
t θ∗| ≤ L and E[|ηt|1+ǫ|Ft−1] ≤ c. Then, with probability at least 1− δ,

for every T ≥ 256 + 24 log (e/δ), the regret of the MENU algorithm satisfies

R(MENU, T ) ≤ 6
(
(9dc)

1
1+ǫ + λ

1
2S + L

)
T

1
1+ǫ

(
24 log

(
eT

δ

)
+ 1

) ǫ
1+ǫ

√

2d log

(
1 +

TD2

λd

)
.

The technical challenges in MENU (i.e., Algorithm 1) and its proofs are discussed as follows. Based
on the common techniques in linear stochastic bandits (Abbasi-Yadkori et al., 2011), to guarantee

the instantaneous regret in LinBET, we need to guarantee ‖θ∗−θ̂n,k∗‖Vn
≤ βn with high probability.

We attack this issue by guaranteeing ‖θ∗ − θ̂n,j‖Vn
≤ βn/3 with a probability of 3/4, which could

reduce to a problem of bounding a weighted sum of historical noises. Interestingly, by conducting
singular value decomposition on Xn (of which rows are x⊤

1 , · · · , x⊤
n ), we find that 2-norm of the

weights is no greater than 1. Then the weighted sum can be bounded by a term as O
(
n

1−ǫ
2(1+ǫ)

)
.

With a standard analysis in linear stochastic bandits from the instantaneous regret to the regret, we
achieve the above results for MENU. We show the detailed proof of Theorem 2 in Appendix B.

Remark 2. For MENU, we adopt the assumption of heavy-tailed payoffs on central moments,
which is required in the basic technique of median of means (Bubeck et al., 2013). Besides, there
exists an implicit mild assumption in Algorithm 1 that, at each epoch n, the decision set must contain
the selected arm xn at least k times, which is practical in applications, e.g., online personalized
recommendations (Li et al., 2010). The condition of T ≥ 256 + 24 log (e/δ) is required for T ≥ k.

The regret upper bound of MENU is Õ(T
1

1+ǫ ), which implies that finite variances in LinBET are

sufficient to achieve Õ(
√
T ).

4.2 TOFU and Regret

Description of TOFU. We demonstrate the algorithmic procedures of TOFU in Algorithm 2. We
point out two subtle differences between our TOFU and the algorithm of CRT as follows. In TOFU,
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Algorithm 2 Truncation under OFU (TOFU)

1: input d, b, ǫ, δ, λ, T , {Dt}Tt=1

2: initialization: V0 = λId, C0 = B(0, S)
3: for t = 1, 2, · · · , T do

4: bt =

(
b

log( 2T
δ )

) 1
ǫ

t
1−ǫ

2(1+ǫ)

5: (xt, θ̃t) = argmax(x,θ)∈Dt×Ct−1
〈x, θ〉 ⊲ to select an arm

6: Play xt and observe a payoff yt
7: Vt = Vt−1 + xtx

⊤
t and X⊤

t = [x1, · · · , xt]

8: [u1, · · · , ud]
⊤ = V

−1/2
t X⊤

t

9: for i = 1, · · · , d do

10: Y
†
i = (y11ui,1y1≤bt , · · · , yt1ui,tyt≤bt) ⊲ to truncate the payoffs

11: end for
12: θ

†
t = V

−1/2
t (u⊤

1 Y
†
1 , · · · , u⊤

d Y
†
d )

13: βt = 4
√
db

1
1+ǫ

(
log
(
2dT
δ

)) ǫ
1+ǫ t

1−ǫ
2(1+ǫ) + λ

1
2S

14: Update Ct = {θ : ‖θ − θ
†
t‖Vt ≤ βt} ⊲ to update the confidence region

15: end for

Table 1: Statistics of synthetic datasets in experiments. For Student’s t-distribution, ν denotes the
degree of freedom, lp denotes the location, sp denotes the scale. For Pareto distribution, α denotes
the shape and sm denotes the scale. NA denotes not available.

dataset Dt

{#arms,#dimensions}
distribution {parameters} {ǫ, b, c} mean of the

optimal arm

S1 {20,10} Student’s t-distribution
{ν = 3, lp = 0, sp = 1}

{1.00, NA, 3.00} 4.00

S2 {100,20} Student’s t-distribution
{ν = 3, lp = 0, sp = 1}

{1.00, NA, 3.00} 7.40

S3 {20,10} Pareto distribution

{α = 2, sm =
x⊤

t θ∗
2

}

{0.50, 7.72, NA} 3.10

S4 {100,20} Pareto distribution

{α = 2, sm =
x⊤

t θ∗
2

}

{0.50, 54.37, NA} 11.39

to obtain the accurate estimate of θ∗, we need to trim all historical payoffs for each dimension
individually. Besides, the truncating operations depend on the historical information of arms. By
contrast, in CRT, the historical payoffs are trimmed once, which is controlled only by the number
of rounds for playing bandits. Compared to CRT, our TOFU achieves a tighter confidence interval,
which can be found from the setting of βt. Now we have the following theorem for the regret upper
bound of TOFU.

Theorem 3 (Regret Analysis for the TOFU Algorithm). Assume that for all t and xt ∈ Dt with
‖xt‖2 ≤ D, ‖θ∗‖2 ≤ S, |x⊤

t θ∗| ≤ L and E[|yt|1+ǫ|Ft−1] ≤ b. Then, with probability at least 1− δ,
for every T ≥ 1, the regret of the TOFU algorithm satisfies

R(TOFU, T ) ≤ 2T
1

1+ǫ

(
4
√
db

1
1+ǫ

(
log

(
2dT

δ

)) ǫ
1+ǫ

+ λ
1
2S + L

)√
2d log

(
1 +

TD2

λd

)
.

Similarly to the proof in Theorem 2, we can achieve the above results for TOFU. Due to space
limitation, we show the detailed proof of Theorem 3 in Appendix C.

Remark 3. For TOFU, we adopt the assumption of heavy-tailed payoffs on raw moments.
It is worth pointing out that, when ǫ = 1, we have regret upper bound for TOFU as

Õ(d
√
T ), which implies that we recover the same order of d as that under sub-Gaussian assump-

tion (Abbasi-Yadkori et al., 2011). A weakness in TOFU is high time complexity, because for each
round TOFU needs to truncate all historical payoffs. The time complexity might be reasonably
reduced by dividing T into multiple epochs, each of which contains only one truncation.
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5 Experiments

In this section, we conduct experiments based on synthetic datasets to evaluate the performance
of our proposed bandit algorithms: MENU and TOFU. For comparisons, we adopt two baselines:
MoM and CRT proposed by Medina and Yang (2016). We run multiple independent repetitions for
each dataset in a personal computer under Windows 7 with Intel CPU@3.70GHz and 16GB memory.

5.1 Datasets and Setting

To show effectiveness of bandit algorithms, we will demonstrate cumulative payoffs with respect
to number of rounds for playing bandits over a fixed finite-arm decision set. For verifications, we
adopt four synthetic datasets (named as S1–S4) in the experiments, of which statistics are shown
in Table 1. The experiments on heavy tails require ǫ, b or ǫ, c to be known, which corresponds to
the assumptions of Theorem 2 or Theorem 3. According to the required information, we can apply
MENU or TOFU into practical applications. We adopt Student’s t and Pareto distributions because
they are common in practice. For Student’s t-distributions, we easily estimate c, while for Pareto
distributions, we easily estimate b. Besides, we can choose different parameters (e.g., larger values)
in the distributions, and recalculate the parameters of b and c.

For S1 and S2, which contain different numbers of arms and different dimensions for the contextual
information, we adopt standard Student’s t-distribution to generate heavy-tailed noises. For the cho-
sen arm xt ∈ Dt, the expected payoff is x⊤

t θ∗, and the observed payoff is added a noise generated
from a standard Student’s t-distribution. We generate each dimension of contextual information for
an arm, as well as the underlying parameter, from a uniform distribution over [0, 1]. The standard
Student’s t-distribution implies that the bound for the second central moment of S1 and S2 is 3.

For S3 and S4, we adopt Pareto distribution, where the shape parameter is set as α = 2. We know
x⊤
t θ∗ = αsm/(α − 1) implying sm = x⊤

t θ∗/2. Then, we set ǫ = 0.5 leading to the bound of raw

moment as E
[
|yt|1.5

]
= αs1.5m /(α− 1.5) = 4s1.5m . We take the maximum of 4s1.5m among all arms

as the bound of the 1.5-th raw moment. We generate arms and the parameter similar to S1 and S2.

In figures, we show the average of cumulative payoffs with time evolution over ten independent
repetitions for each dataset, and show error bars of a standard variance for comparing the robustness
of algorithms. For S1 and S2, we run MENU and MoM and set T = 2 × 104. For S3 and S4, we
run TOFU and CRT and set T = 1× 104. For all algorithms, we set λ = 1.0, and δ = 0.1.

5.2 Results and Discussions

We show experimental results in Figure 2. From the figure, we clearly find that our proposed two
algorithms outperform MoM and CRT, which is consistent with the theoretical results in Theorems 2
and 3. We also evaluate our algorithms with other synthetic datasets, as well as different λ and δ,
and observe similar superiority of MENU and TOFU. Finally, for further comparison on regret,
complexity and storage of four algorithms, we list the results shown in Table 2.

Table 2: Comparison on regret, complexity and storage of four algorithms.

algorithm MoM MENU CRT TOFU

regret Õ(T
1+2ǫ
1+3ǫ ) Õ(T

1
1+ǫ ) Õ(T

1
2+

1
2(1+ǫ) ) Õ(T

1
1+ǫ )

complexity O(T ) O(T logT ) O(T ) O(T 2)

storage O(1) O(log T ) O(1) O(T )

6 Conclusion

We have studied the problem of LinBET, where stochastic payoffs are characterized by finite (1 +
ǫ)-th moments with ǫ ∈ (0, 1]. We broke the traditional assumption of sub-Gaussian noises in
payoffs of bandits, and derived theoretical guarantees based on the prior information of bounds
on finite moments. We rigorously analyzed the lower bound of LinBET, and developed two novel
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Figure 2: Comparison of cumulative payoffs for synthetic datasets S1-S4 with four algorithms.

bandit algorithms with regret upper bounds matching the lower bound up to polylogarithmic factors.
Two novel algorithms were developed based on median of means and truncation. In the sense of
polynomial dependence on T , we provided optimal algorithms for the problem of LinBET, and
thus solved an open problem, which has been pointed out by Medina and Yang (2016). Finally, our
proposed algorithms have been evaluated based on synthetic datasets, and outperformed the state-of-
the-art results. Since both algorithms in this paper require a priori knowledge of ǫ, future directions
in this line of research include automatic learning of LinBET without information of distributional
moments, and evaluation of our proposed algorithms in real-world scenarios.
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Appendix A Proof of Theorem 1 (Lower Bound of LinBET)

We prove the lower bound for d ≥ 2. Assume d is even (when d is odd, similar results can be easily
derived by considering the first d−1 dimensions). For Dt ⊆ Rd with t ∈ [T ], we fix the decision set

as D1 = · · · = DT = D(d). Then, the fixed decision set is constructed as D(d) , {(x1, · · · , xd) ∈
Rd

+ : x1 + x2 = · · · = xd−1 + xd = 1}, which is a subset of intersection of the cube [0, 1]d and the

hyperplane x1 + · · · + xd = d/2. We define a set Sd , {(θ1, · · · , θd) : ∀i ∈ [d/2] , (θ2i−1, θ2i) ∈
{(2∆,∆), (∆, 2∆)}} with ∆ ∈ (0, 1/d]. The payoff functions take values in {0, (1/∆)

1
ǫ } with

ǫ ∈ (0, 1], for every x ∈ D(d), the expected payoff is θ⊤∗ x, where θ∗ is the underlying parameter
drawn from Sd. To be more specific, we have the payoff function of x as

y(x) =

{(
1
∆

) 1
ǫ with a probability of ∆

1
ǫ θ⊤∗ x,

0 with a probability of 1−∆
1
ǫ θ⊤∗ x.

(4)

In this setting, the (1 + ǫ)-th raw moments of payoffs are bounded by d and |θ⊤∗ x| ≤ 1. We start the
proof with the 2-dimensional case in Subsection A.1. Its extension to the general case (i.e., d > 2) is
provided in Subsection A.2. Though we set a fixed decision set in the proofs, we can easily extend
the lower bound here to the setting of time-varying decision sets, as discussed by Dani et al. (2008a).

A.1 d = 2 Case

Let µ0 = (∆,∆), µ1 = (2∆,∆) and µ2 = (∆, 2∆). The 2-dimensional decision set is D(2) =

{(x1, x2) ∈ R2
+ : x1 + x2 = 1}. Our payoff functions take values in {0, (1/∆)

1
ǫ }, and for every

x ∈ D(2), the expected payoff is θ⊤∗ x, where θ∗ is chosen uniformly at random from {µ1, µ2}. It is

easy to find µ⊤
j x = ∆(1 + xj) which is maximized at xj = 1 for j ∈ {1, 2}, and µ⊤

0 x = ∆ for any
x ∈ D(2).

Lemma 1. If θ∗ is chosen uniformly at random from {µ1, µ2}, and the payoff for each x ∈ D(2) is

in {0, (1/∆)
1
ǫ } with mean θ⊤∗ x, then for every algorithm A and every T ≥ 1, the regret satisfies

E[R(A, T )] ≥ 1

96
T

1
1+ǫ . (5)

Proof. We consider a deterministic algorithm A first. Let qx,T = T (x)/T , where T (x) denotes the
number of pulls of arm x. QT is the empirical distribution of arms with respect to qx,T and X is
drawn from QT . We let Pj and Ej denote, respectively, the probability distribution of X conditional
on θ∗ = µj and the expectation conditional on θ∗ = µj , where j ∈ {0, 1, 2}. Thus, we have
Pj(X ∈ E) = Ej [

∑
x∈E T (x)]/T for any E ⊆ D(2). At each time step t, xt = (xt,1, xt,2) is

selected. We let y∗t = 〈x∗
t , θ∗〉. Hence, for j ∈ {1, 2}, we have

Ej

[
T∑

t=1

(y∗t − yt(xt))

]
=

T∑

t=1

Ej [∆(1− xt,j)] = T

∫

D(2)

∆(1 − xj)dPj(x)

= T∆

(
1−

∫

D(2)

xjdPj(x)

)
= T∆

(
1−

(∫

0≤xj≤
1
2

xjdPj(x) +

∫

1
2<xj≤1

xjdPj(x)

))

≥ T∆

(
1−

(
1

2
Pj

(
0 ≤ Xj ≤

1

2

)
+ Pj

(
1

2
< Xj ≤ 1

)))
, (6)

which implies

E[R(A, T )] = Eθ∗

[
Ej

[
T∑

t=1

(y∗t − yt(xt))

]]

≥ T∆



1− 1

2

2∑

j=1

(
1

2
Pj

(
0 ≤ Xj ≤

1

2

)
+ Pj

(
1

2
< Xj ≤ 1

))

 . (7)
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According to Pinsker’s inequality, for any E ⊆ D(2), we have

Pj(X ∈ E) ≤ P0(X ∈ E) +
√

1

2
KL(P0,Pj), (8)

where KL(P0,Pj) denotes the Kullback-Leibler divergence (simply KL divergence). Hence,

E[R(A, T )] ≥ T∆



1− 1

2

2∑

j=1

(
1

2
P0

(
0 ≤ Xj ≤

1

2

)
+ P0

(
1

2
< Xj ≤ 1

)
+

3

2

√
1

2
KL(P0,Pj)

)



= T∆



1

4
− 3

4

2∑

j=1

√
1

2
KL(P0,Pj)



 . (9)

Since A is deterministic, the sequence of received rewards WT , (y1, y2, · · · , yT ) ∈ {0, (1/∆)
1
ǫ }T

uniquely determines the empirical distribution QT and thus, QT conditional on WT is the same for
any θ∗. We let Pt

j be the probability distribution of Wt = (y1, y2, · · · , yt) conditional on θ∗ = µj .
Based on the chain rule for KL divergence, we have

KL(P0,Pj) ≤ KL(PT
0 ,P

T
j ). (10)

Further, iteratively using the chain rule for KL divergence, we have

KL(PT
0 ,P

T
j ) = KL(P1

0,P
1
j) +

T∑

t=2

∫

Wt−1

KL
(
Pt
0(·|wt−1),P

t
j(·|wt−1)

)
dPt−1

0 (Wt−1)

= KL(P1
0,P

1
j)+ (11)

T∑

t=2

∫

xt∈D(2)

∫

Wt−1|xt,j=xj

KL
(
∆

1+ǫ
ǫ ,∆

1+ǫ
ǫ (1 + xj)

)
dPt−1

0 (Wt−1|xt,j = xj)dP
t−1
0 (xt,j = xj)

(12)

≤ 2∆
1+ǫ
ǫ +

T∑

t=2

∫

xt∈D(2)

∫

Wt−1|xt,j=xj

2∆
1+ǫ
ǫ dPt−1

0 (Wt−1|xt,j = xj)dP
t−1
0 (xt,j = xj) (13)

= 2T∆
1+ǫ
ǫ , (14)

where Eq. (13) could be derived by setting ∆ ≤ (1/2)
ǫ

1+ǫ . Note that for any p, q ∈ (0, 1), let P and
Q denote the Bernoulli distribution with parameters p and q respectively. We denote KL(P,Q) as
KL(p, q) in Eq. (12). Therefore, we have

E[R(A, T )] ≥ T∆

(
1

4
− 3

2

√
T∆

1+ǫ
ǫ

)
≥ 1

96
T

1
1+ǫ , (15)

where we set ∆ = T− ǫ
1+ǫ /12.

So far we have discussed the case where A is a deterministic algorithm. When A is a randomized
algorithm, the result is the same. In particular, let EA denote the expectation with respect to the
randomness of A. Then, we have

E[R(A, T )] = EA

[
Eθ∗

[
Ej

[
T∑

t=1

(y∗t − yt(xt))

]]]
. (16)

If we fix the realization of the algorithm’s randomization, the results of the previous steps for a

deterministic algorithm apply andEθ∗

[
Ei

[∑T
t=1(y

∗
t − yt(xt))

]]
could be lower bounded as before.

Hence, E[R(A, T )] is lower bounded as Eq. (15).

A.2 General Case (d > 2)

Now we suppose d > 2 is even. If d is odd, we just take the first d−1 dimensions into consideration.
Then we consider the contribution to the total expected regret from the choice of (x2i−1, x2i), for
all i ∈ [d/2]. We call (x2i−1, x2i) the i-th component of x.
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Analogously to the d = 2 case, we set (θ∗,2i−1, θ∗,2i) ∈ {µ1, µ2}. The decision region is D(d) =

{(x1, · · · , xd) ∈ Rd
+ : x1 + x2 = · · · = xd−1 + xd = 1}. Then, by following the proof for d = 2

case, we could derive the regret due to the i-th component of x as

E

[
R(i)(A, T )

]
≥ 1

96
T

1
1+ǫ , (17)

where i ∈ [d/2]. Summing over the d/2 components of Eq. (17) completes the proof for Theorem 1.

Appendix B Proof of Theorem 2 (Regret Analysis for the MENU Algorithm)

To prove Theorem 2, we start with proving the following two lemmas. Recall that the algorithm in
the paper is based on least-squares estimate (LSE).

Lemma 2 (Confidence Ellipsoid of LSE). Let θ̂n denote the LSE of θ∗ with the sequence of decisions
x1, · · · , xn and observed payoffs y1, · · · , yn. Assume that for all τ ∈ [n] and all xτ ∈ Dτ ⊆ Rd,

E[|ητ |1+ǫ|Fτ−1] ≤ c and ‖θ∗‖2 ≤ S. Then θ̂n satisfies

Pr
(
‖θ̂n − θ∗‖Vn

≤ (9dc)
1

1+ǫn
1−ǫ

2(1+ǫ) + λ
1
2S
)
≥ 3

4
, (18)

where λ > 0 is a regularization parameter and Vn = λId +
∑n

τ=1 xτx
⊤
τ .

Proof. The singular value decomposition of Xn is UΣnV
⊤, where U is an n × d matrix with

orthonormal columns, V is a d × d unitary matrix and Σn is an n × n diagonal matrix with non-
negative entries. We calculate Vn = V (Σ2

n + λId)V
⊤ and

V
− 1

2
n X⊤

n = V
(
Σ2

n + λId
)− 1

2 ΣnU
⊤. (19)

Let u⊤
i denote the i-th row ofV

(
Σ2

n + λId
)− 1

2 ΣnU
⊤, which leads to ‖ui‖2 ≤ 1. More importantly,

by optimization, we have ‖ui‖1+ǫ ≤ n
1−ǫ

2(1+ǫ) . By letting Yn = (y1, · · · , yn), we have

‖θ̂n − θ∗‖Vn
= ‖V −1

n X⊤
n (Yn −Xnθ∗)− λV −1

n θ∗‖Vn

≤ ‖V − 1
2

n X⊤
n (Yn −Xnθ∗)‖2 + λ‖θ∗‖V −1

n
≤

√√√√
d∑

i=1

(
u⊤
i (Yn −Xnθ∗)

)2
+ λ

1
2S. (20)

Inspired by Bubeck et al. (2013); Medina and Yang (2016), we bound the desired probability by
using a union bound as

Pr




d∑

i=1

(
n∑

τ=1

ui,τητ

)2

> γ2



 ≤ Pr (∃i, τ, |ui,τητ | > γ) + Pr




d∑

i=1

(
n∑

τ=1

ui,τητ1|ui,τητ |≤γ

)2

> γ2



 ,

(21)

where 1{·} is the indicator function. By using a union bound and Markov’s inequality, the first term
could be bounded as

Pr (∃i, τ, |ui,τητ | > γ) ≤
d∑

i=1

n∑

τ=1

Pr(|ui,τητ | > γ) ≤
∑d

i=1

∑n
τ=1 E[|ui,τητ |1+ǫ]

γ1+ǫ
(22)

≤
∑d

i=1

∑n
τ=1 |ui,τ |1+ǫc

γ1+ǫ
≤ dcn

1−ǫ
2

γ1+ǫ
.
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Based on Markov’s inequality, we bound the second term as

Pr

(
d∑

i=1

(
n∑

τ=1

ui,τητ1|ui,τητ |≤γ

)2

> γ
2

)
≤

E

[∑d
i=1(

∑n
τ=1 ui,τητ1|ui,τητ |≤γ)

2
]

γ2

=
d∑

i=1



E
[∑n

τ=1(ui,τητ )
2
1|ui,τητ |≤γ

]

γ2
+ 2

E

[∑
τ ′>τ (ui,τητ )1|ui,τητ |≤γ(ui,τ ′ητ ′)1|ui,τ′ητ′ |≤γ

]

γ2





≤
d∑

i=1

(
E
[∑n

τ=1(ui,τητ )
2
1|ui,τητ |≤γ

]

γ2
+ 2

∑
τ ′>τ E[(ui,τητ )1|ui,τητ |≤γ ]E[(ui,τ ′ητ ′)1|ui,τ′ητ′ |≤γ |µi,τητ ]

γ2

)

≤
d∑

i=1

(∑n
τ=1 |ui,τ |1+ǫc

γ1+ǫ
+

(∑n
τ=1 |ui,τ |1+ǫc

γ1+ǫ

)2
)

(23)

≤ dcn
1−ǫ
2

γ1+ǫ
+ d

(
n

1−ǫ
2 c

γ1+ǫ

)2

. (24)

Note that Eq. (23) uses the fact that E[(ui,τητ )1|ui,τητ |≤γ |Fτ−1] = −E[(ui,τητ )1|ui,τητ |>γ |Fτ−1].

Finally, setting γ = (9dc)
1

1+ǫn
1−ǫ

2(1+ǫ) completes the proof.

Lemma 3. Recall θ̂n,j , θ̂n,k∗ and Vn in MENU (i.e., Algorithm 1). If there exists a γ > 0 such

that Pr
(
‖θ̂n,j − θ∗‖Vn

≤ γ
)
≥ 3

4 holds for all j ∈ [k] with k ≥ 1, then with probability at least

1− e−
k
24 , ‖θ̂n,k∗ − θ∗‖Vn

≤ 3γ.

Proof. The proof is inspired by Hsu and Sabato (2014). We define bj , 1‖θ̂n,j−θ∗‖Vn>γ
, pj ,

Pr(bj = 1) and BVn
(θ∗, γ) , {θ : ‖θ − θ∗‖Vn

≤ γ}. We know that pj < 1/4. By Azuma-
Hoeffding’s inequality, we have

Pr




k∑

j=1

bj ≥
k

3



 < Pr




k∑

j=1

bj − pj ≥
k

12



 ≤ e−
k
24 , (25)

which means that more than 2/3 of {θ̂n,1, · · · , θ̂n,k} are contained in BVn
(θ∗, γ) (denoting by this

event E) with probability at least 1 − e−
k
24 . Note that the value k/3 in Eq. (25) could also be set

as other values in (k/4, k/2). Conditional on the event E , by letting rj be the median of {‖θ̂n,j −
θ̂n,s‖Vn

: s ∈ [k]\j}, we have

• If θ̂n,j ∈ BVn
(θ∗, γ), ‖θ̂n,j− θ̂n,s‖Vn

≤ 2γ for all θ̂n,s ∈ BVn
(θ∗, γ) by triangle inequality.

Therefore, rj ≤ 2γ.

• If θ̂n,j /∈ BVn
(θ∗, 3γ), ‖θ̂n,j−θ̂n,s‖Vn

> 2γ for all θ̂n,s ∈ BVn
(θ∗, γ) by triangle inequality.

Therefore, rj > 2γ.

Combining the above two cases completes proof.

Based on Lemmas 2 and 3, by setting k = ⌈24 log (eT/δ)⌉, we have ‖θ̂n,k∗ − θ∗‖Vn
≤

3
(
(9dc)

1
1+ǫn

1−ǫ
2(1+ǫ) + λ

1
2S
)

with probability at least 1 − δ/T . The following part of proof is stan-

dard (Dani et al., 2008a; Abbasi-Yadkori et al., 2011). We include it for the sake of completeness.

By letting βn = 3
(
(9dc)

1
1+ǫn

1−ǫ
2(1+ǫ) + λ

1
2S
)

, we can decompose the instantaneous regret as fol-

lows:

rn = θ⊤∗ x∗ − θ⊤∗ xn ≤ θ̃⊤n xn − θ⊤∗ xn ≤
(
‖θ̃n − θ̂n−1,k∗‖Vn−1 + ‖θ̂n−1,k∗ − θ∗‖Vn−1

)
‖xn‖V −1

n−1

≤ 2βn−1‖xn‖V −1
n−1

, (26)

where we recall that (xn, θ̃n) is optimistic in MENU. Note that, for n = 1, the above inequality also

holds with V0 = λId. On the other hand, by considering |x⊤
t θ∗| ≤ L, we always have

rn ≤ 2L. (27)
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We can get that

rn ≤ 2min{βn−1‖xn‖V −1
n−1

, L} ≤ 2(βn−1 + L)min{‖xn‖V −1
n−1

, 1}. (28)

Following Lemma 11 of Abbasi-Yadkori et al. (2011), we know that

N∑

n=1

min{‖xn‖2V −1
n−1

, 1} ≤ 2

N∑

n=1

log(1 + ‖xn‖2V −1
n−1

) = 2 log

(
det(VN)

det(V0)

)
≤ 2d log

(
1 +

ND2

λd

)
, (29)

where N is the number of epochs in MENU. Therefore, the total regret can be upper bounded by

R(MENU, T ) ≤ k

N∑

n=1

rn ≤ k

√√√√N

N∑

n=1

r2n ≤ 2kN
1
2 (βN + L)

√√√√
N∑

n=1

min{‖xn‖2
V −1
n−1

, 1}

≤ 6
(
(12dc)

1
1+ǫ + λ

1
2S + L

)
T

1
1+ǫ

(
24 log

(
eT

δ

)
+ 1

) ǫ
1+ǫ

√

2d log

(
1 +

TD2

λd

)
. (30)

The condition of T ≥ 256 + 24 log(e/δ) is required for T ≥ k, which completes the proof.

Appendix C Proof of Theorem 3 (Regret Analysis for the TOFU Algorithm)

Lemma 4 (Confidence Ellipsoid of Truncated Estimate). With the sequence of decisions x1, · · · , xt,

the truncated payoffs {Y †
i }di=1 and the parameter estimate θ†t are defined in TOFU (i.e., Algo-

rithm 2). Assume that for all τ ∈ [t] and all xτ ∈ Dτ ⊆ Rd, E[|yτ |1+ǫ|Fτ−1] ≤ b and ‖θ∗‖2 ≤ S.
With probability at least 1− δ, we have

‖θ†t − θ∗‖Vt
≤ 4

√
db

1
1+ǫ

(
log

(
2d

δ

)) ǫ
1+ǫ

t
1−ǫ

2(1+ǫ) + λ
1
2S, (31)

where λ > 0 is a regularization parameter and Vt = λId +
∑t

τ=1 xτx
⊤
τ .

Proof. Similarly to Eq. (20), we have

‖θ†t − θ∗‖Vt
≤

√√√√
d∑

i=1

(
u⊤
i (Y

†
i −Xtθ∗)

)2
+ λ

1
2S. (32)

We let y†τ denote Y †
i,τ for notation simplicity as the following proof holds for all i ∈ [d]. Then with

probability at least 1− δ/d, we have

u
⊤
i

(
Y

†
i −Xtθ∗

)
=

t∑

τ=1

ui,τ

(
y
†
τ − E[yτ |Fτ−1]

)
(33)

=
t∑

τ=1

ui,τ

(
y
†
τ − E

[
y
†
τ |Fτ−1

]
− E

[
yτ1|ui,τyτ |>bt |Fτ−1

])

≤
∣∣∣∣∣

t∑

τ=1

ui,τ (y
†
τ − E[y†

τ |Fτ−1])

∣∣∣∣∣+
∣∣∣∣∣

t∑

τ=1

ui,τE[yτ1|ui,τyτ |>bt |Fτ−1]

∣∣∣∣∣

≤
∣∣∣∣∣2bt log

(
2d

δ

)
+

1

2bt

t∑

τ=1

E

[
u
2
i,τ

(
y
†
τ − E

[
y
†
τ |Fτ−1

])2
|Fτ−1

]∣∣∣∣∣+
∣∣∣∣∣

t∑

τ=1

E[ui,τyτ1|ui,τyτ |>bt |Fτ−1]

∣∣∣∣∣
(34)

≤ 2bt log

(
2d

δ

)
+

∑t
τ=1 |ui,τ |1+ǫb

2bǫt
+

∑t
τ=1 |ui,τ |1+ǫb

bǫt

≤ 4b
1

1+ǫ

(
log

(
2d

δ

)) ǫ
1+ǫ

t
1−ǫ

2(1+ǫ) , (35)

where Eq. (34) is obtained by applying Bernstein’s inequality for martingales (Seldin et al.,

2012) and Eq. (35) is obtained by the fact that ‖ui‖1+ǫ ≤ t
1−ǫ

2(1+ǫ) and by setting bt =

(b/ log(2d/δ))
1

1+ǫ t
1−ǫ

2(1+ǫ) . Combining Eq. (32) and Eq. (35) completes the proof.
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With similar procedures to the proof of Theorem 2, we have the regret of TOFU as:

R(TOFU, T ) ≤ 2T
1

1+ǫ

(
4
√
db

1
1+ǫ

(
log

(
2dT

δ

)) ǫ
1+ǫ

+ λ
1
2S + L

)√

2d log

(
1 +

TD2

λd

)
, (36)

which completes the proof.
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