
A Proof of Theorem 3

We will use the following observation.
Lemma 1. Suppose X,w1, . . . , wn

are independent real-valued random variables whose dis-
tributions are symmetric around 0. Assume also that the distribution of X has no atoms (i.e.
P (X = x) = 0 for all x 2 R), and fix any bounded positive function  : R ! R+ with the
property

 (t) +  (�t) = 1. (18)
Then for any constants a1, . . . , an 2 R and any non-negative integers k1, . . . , kn whose sum is even,
we have
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Proof. Using that X d
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Averaging these two expressions we combine (18) with the fact that X is independent of {w
j

}n
j=1

and its law has no atoms to obtain the desired result. s

We now turn to the proof of Theorem 3. To this end, fix d � 1, a collection of positive integers
n = (n

i

)

d

i=0, and let N 2 N
µ,⌫

(n, d). Let us briefly recall the notation for paths from §5.2. Given
1  p  n0 and 1  q  n

d

, we defined a path � from p to q to be a collection {�(j)}d
j=0 of neurons

so that �(0) = p, �(d) = q, and �(j) 2 {1, . . . , n
j

}. The numbers �(j) should be thought of as
neurons in the j

th hidden layer of N . Given such a collection, we obtain for each j a weight

w

(j)
�

:= w

(j)
�(j�1),�(j) (19)

between each two consecutive neurons along the path �. Our starting point is the expression
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where act(j) are defined as in (10). This expression is well-known and follows immediately form the
chain rule (c.f. e.g. equation (1) in [CHM+15]). We therefore have
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We will prove a slightly more general statement than in the formulation of Theorem 3. Namely,
suppose � = (�1, . . . , �2K) is any collection of paths from the input of N to the output (the paths
are not required to have the same starting and ending neurons) such that for every � 2 �(d),

# {� 2 � | �(d) = �} is even.

We will show that
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To evaluate the expectation in (21), note that the computation done by N is a Markov chain with
respect to the layers (i.e. given Act

(j�1), the activations at layers j, . . . , d are independent of the
weight and biases up to and including layer j � 1.) Hence, denoting by Fd�1 the sigma algebra
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generated by the weight and biases up to and including layer d� 1, the tower property for expectation
and the Markov property yield
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Next, observe that for each 1  j  d, conditioned on Act

(j�1), the families of random variables
{w(j)

↵,�

, act
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�

}nj�1

↵=1 are independent for different �. For j = d this implies
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(23)
Consider the decomposition
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where
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Let us make several observations about c
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conditioned random variable c
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�,� is independent of the conditioned random variable act
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Second, the distribution of c
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assumed that the bias distributions ⌫(j) for N have no atoms, the conditional distribution of c
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around 0, the above five observations, together with (24) allow us to apply Lemma 1 and to conclude
that
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Combining this with (22) yields
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To complete the argument, we must consider two cases. First, recall that by assumption, for every
� 2 �(d), the number of � 2 � for which �(d) = � is even. If for every j  d and each ↵ 2 �(j�1)
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the number of � 2 � passing through ↵ is even, then we may repeat the preceding argument to
directly obtain (21). Otherwise, we apply this argument until we reach ↵ 2 �(j � 1), � 2 �(j)

so that the number |�
↵,�

(j)| of paths in � that pass through ↵ and � is odd. In this case, the right
hand side of (22) vanishes since the measure µ

(d) is symmetric around 0 and thus has vanishing odd
moments. Relation (21) therefore again holds since in this case both sides are 0. This completes the
proof of Theorem 3. ⇤

B Proof of Theorem 1

In this section, we use Theorem 3 to prove Theorem 1. Let us first check (11). According to Theorem
3, we have
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Note that since µ is symmetric around 0, we have that µ1 = 0. Thus, the terms where �1 6= �2 vanish.
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as claimed. We now turn to proving (12). Using Theorem 3, we have

E
⇥

Z

4
p,q

⇤

=

X

�=(�k)
4
k=1

paths from p to q

d

Y

j=1

✓

1

2

◆|�(j)|
Y

�2�(j)
↵2�(j�1)

µ

(j)
|�↵,�(j)|

=

X

�=(�k)
4
k=1

paths from p to q
|�↵,�(j)| even 8↵,�

d

Y

j=1

0

B

@

µ

(j)
4

2

1⇢
|�(j�1)|=1
|�(j)|=1

�
+

⇣

µ

(j)
2

⌘2

2

1⇢
|�(j�1)|=2
|�(j)|=1

�
+

⇣

µ

(j)
2

⌘2

4

1{|�(j)|=2}

1

C

A

,

where we have used that µ(j)
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Lemma 1. For each � = (�

k

)

2
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k

paths from p to q, we have
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Proof. We begin by checking the first equality in (28) by induction on d. Fix � = (�1, �2) . When
d = 1, we have |�(0)| = |�(1)| = 1. Hence �1 = �2 and A(�) = 1 since both the numerator
and denominator on the right hand side of (27) equal 1. The right hand side of (28) is also 1 since
|�(j)| = 1 for every j. This completes the base case. Suppose now that D � 2, and we have proved
(28) for all d  D � 1. Let

j⇤ := min {j = 1, . . . , d | |�(j)| = 1} .
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The six choices correspond to selecting one of two choices for �1(1) and three choices of an index
k = 2, 3, 4 so that �

k

(j) coincides with �1(j) for each j  j⇤. If j⇤ = d, we are done. Otherwise, we
apply the inductive hypothesis to paths from �(j⇤) to �(d) to complete the proof of the first equality
in (28). The second equality in (28) follows from the observation that since |�(0)| = |�(d)| = 1,

the number of j 2 {1, . . . , d} for which |�(j � 1)| = 1, |�(j)| = 2 must equal the number of j for
which |�(j � 1)| = 2, |�(j)| = 1.
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we obtain
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This completes the proof of the lower bound. The upper bound is obtained in the same way:
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As with the second and fourth moment computations, we note that µ|�↵,�(j)| vanishes unless each
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where A
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which is precisely the weight in (31) assigned to collections � with |�(j)| = K for every 1  j 
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To complete the proof of the upper bound for E
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This completes the proof of Theorem 1. ⇤

C Proof of Theorem 2
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Fixing p, q and using that the second sum in the previous line has M(M � 1) terms, we have
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To estimate the difference in this sum, we use Theorem 3 to obtain
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✓

1

2

◆|�(j)|
Y

↵,�

µ

(j)
|�↵,�(j)| =

X

�=(�k)
4
k=1

�k:p!q

d

Y

j=1

C

j

(�) (34)

E
⇥

Z

2
p1,q1

Z

2
p2,q2

⇤

=

X

�̄=(�k)
4
k=1

�1,�2:p1!q1
�3,�4:p2!q2

d

Y

j=1

✓

1

2

◆|�̄(j)|
Y

↵,�

µ

(j)

|�̄↵,�(j)| =
X

�̄=(�k)
4
k=1

�1,�2:p1!q1
�3,�4:p2!q2

d

Y

j=1

C

j

(

¯

�). (35)

Note that since the measures µ

(j) of the weights are symmetric around zero, their odd moments
vanish and hence the only non-zero terms in (34) and (35) are those for which

|�(j)| ,
�

�¯

�(j)

�

� 2 {1, 2}, |�
↵,�

(j)| ,
�

�¯

�

↵,�

(j)

�

� 2 {2, 4}, 8j,↵,�.

Further, observe that each path � from some fixed input neuron to some fixed output vertex is
determined uniquely by the sequence of hidden neurons �(j) 2 {1, . . . , n

j

} through which it passes
for j = 1, . . . , d� 1. Therefore, we may identify each collection of paths � = (�

k

)

4
k=1 in the sum

(34) with a unique collection of paths ¯

� = (�̄

k

)

4
k=1 in (35) by asking that �

k

(j) = �̄

k

(j) for each k

and all 1  j  d� 1. Observe further that under this bijection,

j 6= 1, d ) C

j

(�) = C

j

(

¯

�). (36)
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For j = 1, d, the terms C
j

(�) and C

j

(

¯

�) are related as follows:

C1(�) = C1(
¯

�)

⇣

1{|�(1)|=2} + eµ
(1)
4 · 1{|�(1)|=1}

⌘

(37)

C

d

(�) = C

d

(

¯

�)

0

@1{|�̄(d)|=1} + 2 · 1⇢ |�̄(d)|=2

|�(d�1)|=2

�
+ 2eµ

(d)
4 · 1⇢ |�̄(d)|=2

|�(d�1)|=1

�

1

A

. (38)

We consider two cases: (i) q
m1 6= q

m2 (i.e.
�

�¯

�(d)

�

�

= 2) and (ii) q
m1 = q

m2 (i.e.
�

�¯

�(d)

�

�

= 1 and
p

m1 6= p

m2 ). In case (i), we have

C1(�) = C1(
¯

�)

⇣

1{|�(1)|=2} + eµ
(1)
4 1{|�(1)|=1}

⌘

� C1(
¯

�) and C

d

(�) � 2C

d

(

¯

�).

Hence, using (37) and (38), we find that in case (i)

q

m1 6= q

m2 ) E
⇥

Z

4
pm,qm

⇤

� 2E
h

Z

2
pm1 ,qm1

Z

2
pm2 ,qm2

i

.

In case (i) we therefore find

E
⇥

Z

4
pm,qm

⇤

� E
h

Z

2
pm1 ,qm1

i

� E
h

Z

2
pm1 ,qm1

i

� 1

n

2
0

exp

0

@

1

2

d�1
X

j=1

1

n

j

1

A

, (39)

where the last estimate is proved by the same argument as the relation (12) in Theorem 1. To
obtain the analogous lower bound for case (ii), we write q = q

m1 = q

m2 , pm1 6= p

m2 . In this case,
combining (36) with (38), we have

C

j

(�) = C

j

(

¯

�) j = 2, . . . , d.

Moreover, continuing to use the bijection between � and ¯

� above, (37) yields in this case

C1(
¯

�) =

(

1

eµ(1)
4

C1(�) , if |�(1)| = 1

0 , if |�(1)| = 2

.

Hence, E
⇥

Z

4
p,q

⇤

� E
⇥

Z

2
p1,q

Z

2
p2,q

⇤

becomes

X

�=(�k)
4
k=1

�k:p!q

�

C1(�)� C1(
¯

�)

�

d

Y

j=2

C

j

(�) =

 

1� 1

eµ

(1)
4

!

X

�=(�k)
4
k=1

�k:p!q

|�(1)|=1

d

Y

j=1

C

j

(�).

Using that if |�(0)| = |�(1)| = 1, then

C1(�) =
µ

(1)
4

2

=

2eµ

(1)
4

n

2
0

,

we find

E
⇥

Z

4
p,q

⇤

� E
⇥

Z

2
p1,q

Z

2
p2,q

⇤

=

2

n

2
0

⇣

eµ

(1)
4 � 1

⌘

X

�=(�k)
4
k=1

�k:p!q

|�(1)|=1

d

Y

j=2

C

j

(�). (40)

Writing bp for any neuron in the first hidden layer of N , we rewrite the sum in the previous line as

X

�=(�k)
4
k=1

�k:p!q

|�(1)|=1

d

Y

j=2

C

j

(�) = n1

X

�=(�k)
4
k=1

�k:bp!q

d

Y

j=2

C

j

(�) = n1E
⇥

Z

4
bp,q
⇤

,

where the point is now that we are considering paths only from bp to q. According to (12) from
Theorem 1, we have

E
⇥

Z

4
bp,q
⇤

� 2

n

2
1

exp

0

@

1

2

d�1
X

j=2

1

n

j

1

A

.
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Combining this with (40) yields

E
⇥

Z

4
p,q

⇤

� E
⇥

Z

2
p1,q

Z

2
p2,q

⇤

� 4

n

2
0n1

⇣

eµ

(1)
4 � 1

⌘

exp

0

@

1

2

d�1
X

j=2

1

n

j

1

A

.

Combining this with (33), (39) and setting

⌘ :=

# {m1 6= m2 | qm1 = q

m2}
M(M � 1)

=

(n0 � 1)n0nd

n0nd

(n0nd

� 1)

=

n0 � 1

n0nd

� 1

,

we obtain

E
h

d

Var[Z

2
]

i

� 1

n

2
0

✓

1� 1

M

◆✓

⌘ +

4 (1� ⌘)

n1

⇣

eµ

(1)
4 � 1

⌘

e

� 1
n1

◆

exp

0

@

1

2

d�1
X

j=1

1

n

j

1

A

,

proving (15). Finally, the upper bound in (14) follows from dropping the negative term in (33) and
applying the upper bound from (12). ⇤
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