
Appendix
The proofs of the theorems in the paper are organized as follows: In Appendix A we first give the
proof for Theorem 4, which includes linear fully connected and full width convolutional networks
as special cases. This gives us some general results that can be special-cased to prove the stronger
results for these networks in Section 3. In Appendix B, we prove Theorem 1 on the implicit bias of
fully connected linear networks. In Appendix C, we prove Theorem 2–2a on the implicit bias of linear
convolutional networks. Finally, in Appendix D we prove the lemmas in Section 5 on computing the
form of implicit bias of linear networks learned using gradient descent.

Unless specified otherwise, k.k denotes the Euclidean norm. We additionally use the notation v / v0

to denote equality up to strictly positive scalar multipliers, i.e., when v = �v0 for some � > 0.

The following is a paraphrasing of Lemma 8 in Gunasekar et al. [2018] and is used in multiple proofs.

Lemma 8. [Lemma 8 in Gunasekar et al. [2018]] For almost all linearly separable dataset {xn, yn}n,

consider any sequence �(t)
that minimizes the empirical objective in eq. (5), i.e., L(�(t))! 0. If

(a) �
1

:= lim
t!1

�(t)

k�(t)k exists and has a positive margin, and (b) z1 := lim
t!1

�r�L(�(t))

kr�L(�(t))k exists, then

9{↵n � 0}n2S s.t. z1 =
P

n2S ↵n ynxn, where S = {n : ynh�
1
,xni = minn ynh�

1
,xni} are

the indices of the data points with smallest margin to the limit direction �
1

.

A Homogeneous Polynomial Parameterization: Proof of Theorem 4

Theorem 4 (Homogeneous Polynomial Parameterization). For any homogeneous polynomial map

P : RP ! RD
from parameters w 2 RD

to linear predictors, almost all datasets {xn, yn}Nn=1

separable by B := {P(w) : w 2 RP }, almost all initializations w(0)
, and any bounded sequence of

step sizes {⌘t}t, consider the sequence of gradient descent updates w(t)
from eq. (7) for minimizing

the empirical risk objective LP(w) in (4) with exponential loss `(u, y) = exp(�uy).

If (a) the iterates w(t)
asymptotically minimize the objective, i.e., LP(w(t)) = L(P(w(t))) ! 0,

(b) w(t)
, and consequently �(t) = P(w(t)), converge in direction to yield a separator with positive

margin, and (c) the gradients w.r.t. to the linear predictors,r�L(�(t)) converge in direction, then the

limit direction of the parameters w1 = lim
t!1

w(t)

kw(t)k2
is a positive scaling of a first order stationary

point of the following optimization problem,

min
w2RP

kwk22 s.t. 8n, ynhxn,P(w)i � 1. (14)

Proof. w(t) are the sequence gradient descent iterates from eq. (7) for minimizing LP(w) in eq (4)
with exponential loss over the model class of B = {P(w) : w 2 RP }, where P is a homogeneous
polynomial function. We first introduce some notation.

1. From the assumption in theorem, we have that w1 = lim
t!1

w(t)

kw(t)k . Denoting g(t) = kw(t)k, we

have that for some �(t)w ! 0, the following representation of w(t) holds.

w(t) = w1g(t) + �(t)w g(t). (16)

2. Let �(t) = P(w(t)) denote the sequence of linear predictors for this network induced by the
gradient descent iterates. We can see that �(t) converges in direction too using the following
arguments: homogeneity of P implies that P(w(t)/kw(t)k) = P(w(t))/kw(t)k⌫ for some ⌫. Hence,
�(t)

k�(t)k = P(w(t)/kw(t)k)

kP(w(t)/kw(t)k)k
t!1! P(w1)

kP(w1)k := �
1

.

3. z(t) = �r�L(�(t)) =
P

n exp
⇣
�h�(t), ynxni

⌘
ynxn. Since we assume that z(t) converges in

direction, let z1 = lim
t!1

z(t)

kz(t)k . Denoting p(t) = kz(t)k, for some �(t)z ! 0, we can write z(t) as,

z(t) = z1p(t) + �(t)z p(t), (17)
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4. LetrwP
�
w(t)

�
2 RP⇥D denote the Jacobian of P(w), i.e.,rwP

�
w(t)

�
[p, d] =

@(P(w(t))[d])
@w[p] .

If P : RP ! RD is a homogeneous polynomial of degree ⌫ > 0, then rwP : RP ! RP⇥D is a
homogeneous polynomial of degree ⌫ � 1. Using eq. (16), we have

rwP(w1) = lim
t!1

rwP
✓
w(t)

g(t)

◆
= lim

t!1

rwP(w(t))

g(t)⌫�1

Thus, 9�(t)1 ! 0, such that

rwP
⇣
w(t)

⌘
= rwP (w1) g(t)⌫�1 + �(t)1 g(t)⌫�1. (18)

5. Finally, from the definition ofrwP(w), we haverwLP(w(t)) = rwP
�
w(t)

�
r�L(�(t)), and

hence from eq. (7),
�w(t) := w(t+1) �w(t) = ⌘trwP

⇣
w(t)

⌘
z(t) (19)

Using the assumptions in the theorem along with our argument above for convergence of �(t) in
direction, we satisfy the conditions of Lemma 8, which will be crucially used in our proof.

KKT conditions for first order stationary points We want show that there exists a positive
scaling of w1, denoted as ew1 = �w1 for some � > 0, such that ew1 is a first order stationary
point of the explicitly regularized problem in eq. (14). Towards this we show that ew1 satisfy the
following first order KKT conditions of eq. (14)

8n, ynhxn,P(w)i � 1,

9{↵n}Nn=1 s.t. 8n,↵n � 0 and ↵n = 0, 8n /2 S := {n 2 [N ] : ynhxn,P(w)i = 1},

w = rwP(w)

"
X

n

↵n ynxn

#
.

(20)

Primal feasibility. We showed earlier that if w(t) converges in direction, then �(t) = P(w(t))

converges in direction to �
1

= lim
t!1

�(t)

k�(t)k / P(w1). Further, from the assumptions in the theorem,

we have that �
1

satisfies 8n, ynhxn,�
1i > 0, which also implies minn ynhxn,P(w1)i > 0 since

�
1 / P(w1). Now, if P is homogeneous of of degree ⌫, then for � = (minn ynhxn,P(w1)i)�1/⌫ ,
ew1 = �w1 satisfies minn ynhxn,P(ew1)i = 1.

Showing other KKT conditions for ew1
. The crux of the proof of Theorem 4 involves showing

the existence of {↵n � 0}n such that the stationarity and complementary slackness conditions in
eq. (20) are satisfied. This crucially relies on a key lemma (Lemma 8) showing that the gradient in
the space of linear predictors r�L(�(t)) are dominated by positive linear combinations of support
vectors of the asymptotic predictor �

1
.

Let S1 = {n : ynhP(ew1),xni = 1} denote the indices of support vectors for P(ew1), which are
also the support vectors of �

1
, since by homogeneity of P , �

1 / P(w1) / P(ew1). Thus, from
Lemma 8, we have z1 = lim

t!1
z(t)

kz(t)k =
P

n2S1
↵nynxn for some {↵n}n2S1 such that ↵n � 0.

We propose a positive scaling of this {↵n}Nn=1 as our candidate dual certificate, which satisfies both
dual feasibility and complementary slackness.

To prove the theorem, the remaining step is to show that ew1 / rwP(ew1)z1. Since ew1 = �w1

and P is homogeneous, this condition is equivalent to showing that w1 / rwP(w1)z1.

Showing that w1 / rwP(w1)z1. Substituting for z(t) and rwP(w(t)) from eqs. (17) and
(18), respectively, in the gradient descent updates (eq. (19)), we have the following:

w(t+1) �w(t) = ⌘trwP
⇣
w(t)

⌘
z(t)

= ⌘t
⇣
rwP (w1) g(t)⌫�1 + �(t)1 g(t)⌫�1

⌘⇣
z1p(t) + �(t)z p(t)

⌘

(a)
=
�
⌘tp(t)g(t)

⌫�1
�
[rwP (w1) z1 + �(t)],

(21)
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where in (a) �(t) = rwP (w1) �(t)z + �(t)1 �(t)z + �(t)1 z1 ! 0.

Summing over t, we have

w(t) �w(0) = rwP (w1) z1
X

u<t

⌘up(u)g(u)
⌫�1 +

X

u<t

�(u)⌘up(u)g(u)
⌫�1, (22)

We want to argue that the first term, i.e., rwP (w1) z1, is the dominant term. Towards this we
state and prove the following intermediate claim

Claim 1. krwP (w1) z1k > 0 and
P

u<t ⌘up(u)g(u)
⌫�1 !1.

Proof. First, it is straight forward to check that for any scalar valued homogeneous polynomial f :
RP ! R of degree ⌫, we have hw,rwf(w)i = ⌫f(w), where for p = 1, 2 . . . , P , rwf(w)[p] =
df(w)
dw[p] (this is also known as the Euler’s homogeneous function theorem). Extending this to our vector

valued homogeneous function P : RP ! RD, we have that for all w, the Jacobian rwP(w) 2
RP⇥D satisfies rwP(w)>w = ⌫P(w).

Moreover, we have that for the limit direction w1, the margin of the corresponding classifier is strictly
positive, i.e., minn ynhP(w1),xni > 0. Now from Lemma 8, using that z1 =

P
n2S1

↵nynxn

for ↵n � 0 (and not all zero since z1 is unit norm), we immediately get the following

w1>
rwP(w1)z1 = ⌫P(w1)>z1 = ⌫

X

n

↵nynhxn,P(w1)i > 0 =) rwP(w1)z1 6= 0.

To prove the second part, we note the following

• since �(t) ! 0 in eq. (22), 9t0 such that 8t > t0, k�(t)k  1, and since all the incremental
updates to gradient descent are finite, we have that suptk�

(t)k <1,
• since p(t) = kz(t)k and g(t) = kw(t)k are positive, we have that bt =P

u<t ⌘up(u)g(u)
⌫�1 is monotonic increasing.

Thus, if lim supt!1 bt =1 then limt!1 bt =1. On contrary, if lim supt!1 bt = C <1, then
from eq. (22), for large t we get, kw(t)k  kw(0)k + krP(w1)z1kC +

⇣
suptk�

(t)k
⌘
C < 1

which contradicts kw(t)k ! 1.

From above claim, the sequence bt =
P

u<t ⌘up(u)g(u)
⌫�1 is monotonic increasing and diverging.

Thus, for at =
P

u<t �
(u)⌘up(u)g(u)⌫�1, using Stolz-Cesaro theorem (Theorem 11), we have

lim
t!1

at
bt

= lim
t!1

P
u<t �

(u)⌘up(u)g(u)⌫�1

P
u<t ⌘up(u)g(u)

⌫�1
= lim

t!1

at+1 � at
bt+1 � bt

= lim
t!1

�(t) = 0.

=) for �(t)2 ! 0, we have
X

u<t

�(u)⌘up(u)g(u)
⌫�1 = �(t)2

X

u<t

⌘up(u)g(u)
⌫�1. (23)

Substituting eq. (23) in eq. (22), we have

w(t) (a)
=
h
rwP (w1) z1 + �(t)3

i "X

u<t

⌘up(u)g(u)
⌫�1

#
(24)

=) w(t)

kw(t)k
=
rwP (w1) z1 + �(t)3

krwP (w1) z1 + �(t)3 k
(b)! rwP (w1) z1

krwP (w1) z1k (25)

=) w1 = lim
t!1

w(t)

kw(t)k
=
rwP (w1) z1

krwP (w1) z1k / rwP (w1) z1, (26)

where in (a) we absorbed the diminishing terms into �(t)3 = �(t)2 +w(0)/
P

u<t ⌘up(u)g(u)
⌫�1 ! 0,

(b) follows since we proved in the claim above that rwP (w1) z1 6= 0 and hence dominates �(t)3 .

We have shown that w1 = �rwP (w1) z1 for a positive scalar �, which completes the proof.
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B Linear Fully Connected Networks: Proof of Theorem 1

Theorem 1 (Linear fully connected networks). For any depth L, almost all linearly separable

datasets {xn, yn}Nn=1, almost all initializations w(0)
, and any bounded sequence of step sizes {⌘t}t,

consider the sequence gradient descent iterates w(t)
in eq. (7) for minimizing LPfull(w) in eq. (4)

with exponential loss `(by, y) = exp(�byy) over L–layer fully connected linear networks.

If (a) the iterates w(t)
minimize the objective, i.e., LPfull(w

(t)) ! 0, (b) w(t)
, and consequently

�(t) = Pfull(w(t)), converge in direction to yield a separator with positive margin, and (c) gradients

with respect to linear predictorsr�L(�(t)) converge in direction, then the limit direction is given by,

�
1

= lim
t!1

Pfull(w(t))

kPfull(w(t))k
=

�⇤
`2

k�⇤
`2k

, where �⇤
`2 := argmin

w
k�k22 s.t. 8n, ynhxn,�i � 1. (8)

Proof. Recall that for fully connected networks of any depth L > 0 with parameters
w = [wl 2 RDl�1⇥Dl ]Ll�1, the equivalent linear predictor given by Pfull(w) = w1w2 . . .wL is
a homogeneous polynomial of degree L.

Let w(t) = [w(t)
l 2 RDl�1⇥Dl ]Ll=1 denote the iterates of individual matrices wl along the gradient

descent path, and �(t) = Pfull(w(t)) denote the corresponding sequence of linear predictors.

We first introduce the following notation.

1. Let w1 = lim
t!1

w(t)

kw(t)k denote the limit direction of the parameters, with component
matrices in each layer denoted as w1 = [w1

l ]. Specializing (16) for fully connected
networks, we have:

w(t)
l = w1

l g(t) + �(t)wl
g(t), (27)

where g(t) = kw(t)k and �(t)wl
! 0.

2. For 0 < l1 < l2  L, denote w(t)
l1:l2

= w(t)
l1
w(t)

l1+1 . . .w
(t)
l2

and w1
l1:l2 = w1

l1 w
1
l1+1 . . .w

1
l2 .

Using eq. (27), we can check by induction on l2 � l1 that lim
t!1

w(t)
l1:l2

g(t)l2�l1+1 = w1
l1:l2 , and

hence 9�(t)wl1:l2
! 0 such that the following holds,

w(t)
l1:l2

= w1
l1:l2 g(t)

l2�l1+1 + �(t)wl1:l2
g(t)l2�l1+1. (28)

3. Let z(t) = �r�L(�(t)). Again repeating eq. (17) for fully connected networks, we have
for some �(t)z ! 0 and p(t) = kz(t)k,

z(t) = z1p(t) + �(t)z p(t). (29)
4. From Lemma 8, we have that 9{↵n}n2S1 such that z1 =

P
n2S1

↵n ynxn, where S1

are support vectors of �
1

= lim
t!1

�(t)

k�(t)k / Pfull(w
1).

The proof of Theorem 1 is fairly straight forward from using Lemma 8 and the intermediate results in
the proof of Theorem 4.

Showing KKT conditions for e�
1
/ Pfull(w

1). Using our notation described above, we have
w1

1:L = Pfull(w
1). In the following arguments we show that a positive scaling e�

1
= �w1

1:L
satisfies the following KKT conditions for the optimality of `2 maximum margin problem in eq. (8):

9{↵n}Nn=1 s.t. 8n, ynhxn,�i � 1,� =
X

n

↵n ynxn,

8n,↵n � 0 and ↵n = 0, 8i /2 S := {i 2 [N ] : ynhxn,�i = 1}.
(30)

As we saw in proof of Theorem 4, since w1
1:L = Pfull(w

1) has strictly positive margin, us-
ing homogeneity of Pfull, we can scale w1

1:L to get e�
1

= �w1
1:L with unit margin, i.e.,
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8n, ynhxn, e�
1
i � 1. For dual variables, we again use a positive scaling of ↵n from Lemma 8, such

that z1 =
P

n2S1
↵n ynxn. In order to prove the theorem, we need to show that e�

1
/ z1 or

equivalently w1
1:L / z1.

Recall that in the proof of Theorem 4, we showed a version of stationarity in the parameter space in
eq. (26), repeated below.

w1 / rwP(w1)z1. (31)

This case in particular includes Pfull which is homogeneous with ⌫ = L. We special case the result
fully connected network. In particular, for the parameters of the first layer w1, we have P(w) =
w1w2:L, where w1 2 Rd⇥d1 and w2:L 2 Rd1⇥1. This implies, for any z, rw1P(w)z = zw>

2:L.
Using this along with eq. (31), we get the following expression for some positive scalar �

w1
1 = �rw1P(w1)z1 = � z1w1>

2:L =) w1
1:L = w1

1 w1
2:L = � z1 · kw1

2:Lk2 / z1. (32)

Since w1
1:L / e�

1
, we have shown that e�

1
/ z1, which completes our proof of Theorem 1.

C Linear Convolutional Networks: Proof of Theorem 2–2a

Recall that L–layer linear convolutional networks have parameters w = [wl 2 RD]Ll�1. We first
recall some complex numbers terminology and properties

1. Complex vectors bz 2 CD are represented in polar form as bz = |bz|ei�bz , where |bz| 2 RD
+ and

�bz 2 [0, 2⇡)D are the vectors with magnitudes and phases, respectively, of components bz.
2. For bz = |bz|ei�bz 2 CD, the complex conjugate vector is denoted by bz⇤ = |bz|e�i�bz .
3. The complex inner product for bx, b� 2 CD is given by hbx, b�i =

P
d bx[d]b�

⇤
[d] = bx>b�

⇤
.

4. Let F 2 CD⇥D denote the discrete Fourier transform matrix with F [d, p] = 1p
D
!dp
D where

recall that !D = e�
2⇡i
D is the Dth complex root of unity. Thus, for any z 2 RD, the

representation in Fourier basis is given by bz = Fz. F and its complex conjugate matrix F⇤

also satisfy: FF⇤ = F⇤F = I , F = F> and F⇤ = F⇤>.

Before getting into full proofs of Theorem 2a–2, we also prove the two lemmas (Lemma 3 and
Lemma 9) that establish equivalence of dynamics of gradient descent on full dimensional convo-
lutional networks to those on linear diagonal networks (Figure 1c), albeit with complex valued
parameters. This makes the analysis of the of convolutional networks simpler and more intuitive.

We begin by proving Lemma 3 which shows the equivalence of representation between convolutional
networks and diagonal networks.
Lemma 3. For full-dimensional convolutions, � = Pconv(w) is equivalent to

b� = diag(bw1) . . . diag(bwL�1)bwL,

where for l = 1, 2, . . . , L, bw1 2 CD
are the Fourier coefficients of the parameters wl 2 RD

.

Proof. First, we state the following properties which follow immediately from definitions:

1. For x,� 2 RD,
hx,�i = x>� = x>FF⇤� = bx>b�

⇤
= hbx, b�i, (33)

where recall that the complex inner product is given by hbx, b�i = bx>b�
⇤
.

2. We next show the following property

F(h ?w) = (Fh)� (F⇤w) = bh� bw⇤, (34)

where � denotes the Hadamard product (elementwise product), i.e., (a� b)[d] = a[d]b[d].

The above equation follows from simple manipulations of definitions: recall that (Fz)[d] =
1p
D

PD�1
p=0 z[p]!pd

D and h?w defined in eq. (2) as (h?w)[d] = 1p
D

PD�1
k=0 w[k]h [(d+ k) mod D].
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bh� bw⇤[d] = bh[d]bw⇤[d] =
1

D

D�1X

k=0

D�1X

k0=0

w[k]h[k0]!(k0�k)d
D

(a)
=

1

D

D�1X

k=0

D�1X

k0=0

w[k]h[k0]!
((k0�k) mod D)d
D

(b)
=

1p
D

D�1X

p=0

"
1p
D

D�1X

k=0

w[k]h[(p+ k) mod D]

#
!pd
D = (F(h ?w)) [d], (35)

where (a) follows as !D
D = 1 and in (b) we used the change of variables p = (k0 � k) mod D (recall

our use of modulo operator as a mod D = a�D
⌅

a
D

⇧
).

Recall from eq. (3) the output of an L-layer convolutional network is given by

by(x) = ((((x ?w1) ?w2) . . .) ?wL�1)
> wL = hx,�i.

Denote hL�1(x) = (((x ?w1) ?w2) . . .) ?wL�1. By iteratively using eq. (34), we have

FhL�1(x) = Fx� F⇤w1 � F⇤w2 . . .� F⇤wL�1. (36)

Thus, on one hand using the above equation we have,

by(x) = hL�1(x)
>wL = hL�1(x))

>FF⇤wL = (FhL�1(x))
> (F⇤wL)

(a)
= (F(x))> (F⇤w1 � F⇤w2 . . .� F⇤wL)

(b)
= hbx,Fw1 � Fw2 . . .� FwLi,

(37)

where (a) follows from substituting for FhL�1(x) from eq. (36) and noting that for any {zl 2 RD},
(z1 � z2 � . . . zL�1)>zL = z>1 (z2 � z3 � . . . zL), and (b) uses the definition of complex inner
product hbx, b�i = bx>b�

⇤
.

Now further using eq. (33) in above equation, we have

hx,Pconv(w)i = hbx,FPconv(w)i = by(x)
=) hbx,FPconv(w)i = hbx,Fw1 � Fw2 . . .� FwLi.

(38)

Thus, for � = Pconv(w), we have shown that b� = FPconv(w) = bw1 � bw2 . . . � bwL =
diag(bw1)diag(bw2) . . . diag(bwL�1)bwL.

For bw = [bwl 2 CD]Ll=1, let Pdiag(bw) = diag(bw1)diag(bw2) . . . diag(bwL�1)bwL = bw1 � bw2 . . .�
bwL denote the equivalent parameterization of convolutional network in Fourier domain.

The above lemma shows that optimizing LPconv (w) in eq. (4) is equivalent to the following mini-
mization problem in terms of representation,

min
bw
bLPdiag (bw) :=

NX

n=1

`(hbxn,Pdiag(bw)i, yn) (39)

The following lemma further shown that not only the representations of Pconv(w) and Pdiag(bw) are
equivalent, but there corresponding gradient descent updates for problems in eq. (4) and eq. (39) are
also equivalent up to Fourier transformations.

Lemma 9. Consider the gradient descent iterates w(t) = [w(t)
l ]Ll=1 from eq. (7) for minimizing

LPconv in eq. (4) over full dimensional linear convolutional networks. For all l, the incremental

update directions, �w(t)
l := w(t+1)

l �w(t)
l = �⌘trwlLPconv (w

(t)) satisfy the following,

F�w(t)
l = bw(t+1)

l � bw(t)
l = �⌘trbwl

bLPdiag (bw(t)), (40)

where bw(t) =
h
bw(t)
l

iL
l=1

are the Fourier transformations of w(t) = [w(t)
l ]Ll=1, respectively.

The above lemma shows that Fourier transformation of the gradient descent iterates w(t) = [w(t)
l ]Ll=1

for LPconv in eq. (4) are equivalently obtained by gradient descent on the complex parameters bw for
minimizing bLPdiag in eq. (39)
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Proof. We use the notation �
l0 6=l
bwl0 = bw1 � bw2 . . . bwl�1 � bwl+1 . . . � bwL to denote Hadamard

product across all parameters bwl0 with l0 6= l.

For any w = [wl]Ll=1, using eq. (38), we have the following for all l,

hx,Pconv(w)i = hbx,Pdiag(bw)i = bx> (bw⇤
1 � bw⇤

2 � . . . bw⇤
L) = bw⇤>

l

h�
�
l0 6=l

bw⇤
l0
�
� bx

i
. (41)

Using the above equation we have,

`(hx,Pconv(w)i, yn) = `

✓
w>

l F⇤
h�
�
l0 6=l

bw⇤
l0
�
� bx

i
, yn

◆

=) rwl`(hx,Pconv(w)i, yn)
(a)
= `0(hx,Pconv(w)i, yn)F⇤

✓
�
l0 6=l
bw⇤
l

◆
� bx

�

= F⇤

`0(hbx,Pdiag(bw)i, yn)

✓
�
l0 6=l
bw⇤
l

◆
� bx

�
= F⇤rbwl

`(hbx,Pdiag(bw)i, yn).

(42)

where in (a) we use `0(by, y) = @`(by,y)
@by and the remaining equalities simply follow from manipulation

of derivatives. From above equation, we have the following:

F�w(t)
l = �⌘tFrwlLPconv (w

(t)) = �⌘tF
NX

n=1

rwl`(hxn,Pconv(w
(t))i, yn)

= �⌘tFF⇤
NX

n=1

rbwl
`(hbxn,Pdiag(bw(t))i, yn) = �⌘trbwl

bLPdiag (bw(t)).

C.1 Proof of Theorem 2–2a

Theorem 2 (Linear convolutional networks of depth two). For almost all linearly separable datasets

{xn, yn}Nn=1, almost all initializations w(0)
, and any sequence of step sizes {⌘t}t with ⌘t smaller

than the local Lipschitz at w(t)
, consider the sequence gradient descent iterates w(t)

in eq. (7) for

minimizing LPconv (w) in eq. (4) with exponential loss over 2–layer linear convolutional networks.

If (a) the iterates w(t)
minimize the objective, i.e., LPconv (w

(t))! 0, (b) w(t)
converge in direction

to yield a separator �
1

with positive margin, (c) the phase of the Fourier coefficients b�
(t)

of the

linear predictors �(t)
converge coordinate-wise, i.e., 8d, e

i�b�(t)[d] ! e
i�bb�

1
[d] , and (d) the gradients

r�L(�(t)) converge in direction, then the limit direction �
1

is given by,

�
1

=
�⇤
F,1

k�⇤
F,1k

, where �⇤
F,1 := argmin

�
kb�k1 s.t. 8n, ynh�,xni � 1. (9)

Theorem 2a (Linear Convolutional Networks of any Depth). For any depth L, under the conditions

of Theorem 2, the limit direction �
1

= lim
t!1

Pconv(w
(t))

kPconv(w(t))k is a scaling of a first order stationary

point of the following optimization problem,

min
�
kb�k2/L s.t. 8n, ynh�,xni � 1, (10)

where the `p penalty given by kzkp =
⇣PD

i=1 |z[i]|p
⌘1/p

(also called the bridge penalty) is a norm

for p = 1 and a quasi-norm for p < 1.

For the gradient descent iterates w(t) = [w(t)
l ]Ll=1 from eq. (7) denote the sequence of corresponding

linear predictors as �(t) = Pconv(w(t)). Let b�
(t)

= F�(t) and bw(t)
l = Fw(t)

l denote the Fourier

transforms of �(t) and w(t)
l , respectively, and let bw(t) =

h
bw(t)
l

iL
l=1

.

Summarizing the results so far, we have b�
(t)

= bw(t)
1 � bw

(t)
2 . . . � bw(t)

L (from Lemma 3) and
�bw(t)

l := bw(t+1)
l � bw(t)

l = �⌘trbwl
bLPdiag (bw(t)) (from Lemma 9).

We use the following observations/notations
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1. Let w1 = lim
t!1

w(t)

kw(t)k . Denote the Fourier transform of w1 = [w1
l ] as bw

1
= [bw

1
l ].

Taking Fourier transforms of eq. (16) which are also applicable here, we have:

bw(t)
l = bw

1
l g(t) + b�

(t)

wl
g(t), (43)

where g(t) = kw(t)k = kbw(t)k and b�
(t)

wl
! 0.

2. Denote the negative gradients with respect to �(t) as z(t) = �r�L(�(t)) and let bz(t) =
Fz(t). From the assumption of Theorem 2-2a, lim

t!1
z(t)

kz(t)k exists. Let z1 = limt!1
z(t)

kz(t)k .

Denote bz
1

= Fz1. We get the following by taking Fourier transform of eq. (17)

bz(t) = bz
1
p(t) + b�

(t)

z p(t), (44)

where p(t) = kz(t)k = kbz(t)k and b�
(t)

z ! 0.
3. From Lemma 8, we have that 9{↵n}n2S1 such that lim

t!1
z(t)

kz(t)k =
P

n2S1

↵n ynxn. Thus,

bz
1

=
X

n2S1

↵n ynbxn. (45)

KKT conditions for optimality We want to show that a positive scaling of �
1 / Pconv(w

1),
denoted by e�

1
= �Pconv(w

1) is a first order stationary point of eq. (10), repeated below,

min
�
kb�k2/L s.t. 8n, ynh�,xni � 1.

Recall the KKT conditions discussed in Section 3. The first order stationary points, or sub-stationary
points, of (10) are the set of feasible predictors � such that 9{↵n � 0}Nn=1 satisfying the following:
8n, ynhxn,�i > 1 =) ↵n = 0, and

X

n

↵nynbxn 2 @�kb�kp, (46)

where @� denotes the local sub-differential (or Clarke’s sub-differential) operator defined as @�f(�) =
conv{v : 9(zk)k s.t. zk ! � and rf(zk)! v}.

For p = 1 and b� represented in polar form as b� = |b�|ei�b� 2 CD, kb�kp is convex and the local
sub-differential is indeed the global sub-differential given by,

@�kb�k1 = {z : 8d, |z[d]|  1 and b�[d] 6= 0 =) z[d] = ei�b�[d]}. (47)

For p < 1, the local sub-differential of kb�kp is given by,

8p < 1, @�kb�kp = {z : b�[d] 6= 0 =) z[d] = p ei�b�[d] |b�[d]|p�1}. (48)

Showing KKT conditions for e�
1
/ Pconv(w

1). As we showed proof of Theorem 4, since
Pconv(w

1) has strictly positive margin, using homogeneity of Pconv, we can scale Pconv(w
1) to

get e�
1

= �Pconv(w
1) with unit margin, i.e., 8n, ynhxn, e�

1
i � 1. For dual variables, we again

use a positive scaling of ↵n from Lemma 8, such that z1 =
P

n2S1
↵n ynxn.

In order to prove the theorem, we need to show that for some positive scalar �, �bz
1
2 @�kb�k2/L,

i.e., satisfies the conditions in eq. (47) and (48), for L = 2 and L > 2, respectively.

We start from the stationarity condition in the parameter space in eq. (26) of Theorem 4. For some
positive scalar �, we have

w1 = �rwPconv(w
1)z1. (49)

We will now special case the above equation for fully width convolutional networks.

From Lemma 3, we have that for all w = [wl 2 RD], we have Pconv(w) = F⇤Pdiag(Fw) where
F and F⇤ denote discrete Fourier matrix and its inverse in appropriate dimensions. Let {ed}Dd=1
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denote the standard basis in RD. We first note that for all l = 1, 2, . . . , L and for all d = 1, 2, . . . , D,
the following holds

Pconv(w)[d] = e>d F⇤Pdiag(Fw) = e>d F⇤ ��L�1
l0=1 bwl0

�
(50)

= e>d F⇤

0

@
Y

l0 6=l

diag(bwl0)

1

AFwl = hwl,F⇤

0

@
Y

l0 6=l

diag(bw⇤
l0)

1

AFedi. (51)

=) rwlPconv(w)[:, d] = F⇤

0

@
Y

l0 6=l

diag(bw⇤
l0)

1

AFed. (52)

This implies, for l = 1, 2, . . . , L and any z 2 RD, we have

rwlPconv(w)z =
X

d

rwlPconv(w)[:, d]z[d] = F⇤

0

@
Y

l0 6=l

diag(bw⇤
l0)

1

AFz. (53)

Substituting the above equation in eq. (49), we have,

bw
1
l = Fw1

l = �FrwlPconv(w
1)z1 = �

⇣
�l0 6=l bw

1⇤
l0

⌘
� bz

1
, (54)

where bw
1⇤
l0 denotes the complex conjugate of bw

1
l0 .

Let b�
1

= Pdiag(bw
1
). The above equation, further implies, for all l

|bw
1
l |2 = bw

1⇤
l � bw

1
l = � b�

1⇤
� bz

1
= �|b�

1
|� |bz

1
|ei(�bz1��b�

1 ) (55)

In eq. (55), since the LHS is a real number, we have that for all d such that |b�
1
[d]| > 0

ei�bz1[d] = e
i�b�

1
[d] . (56)

Also, by multiplying the LHS of eq. (55) across all l and taking Lth root over positive scalars, we
have for d = 0, 1, . . . , D � 1,

���b�
1
[d]
���
2/L

= �
���b�

1
[d]
��� |bz

1
[d]|, (57)

Finally, let � be a positive scaling of �
1

such that e�
1

= ��
1

has unit margin. Let be�
1

= F e�
1

=

�b�
1

. Since � is arbitrary positive scalar, redefining as �  2
L�

2/L�1�, we have from eq. (56)-(57),

8d s.t.
���be�

1
[d]
��� 6= 0, � bz[d] = e

i�b�
[d]
����
be�
1
[d]

����
2/L�1

(58)

C.1.1 Case of L > 2 or p = 2/L < 1

For p = 2/L < 1, since bz
1

=
P

n2S1
↵nynbxn, eq. (58) is indeed the first order stationarity

condition for eq. (10) as described in eq. (11) and (13).

C.1.2 Case of L = 2 or p = 2/L = 1

For the case of p = 1, in addition to eq. (58), we need to show that �|bz
1
|  1. From eq. (58), for

L = 2 we have
���be�

1
[d]
��� 6= 0 =) �|bz

1
[d]| = 1.

We need to further show that 8d s.t.
���be�

1
[d]
��� /

���b�
1
[d]
��� = 0, �|bz

1
[d]|  1.
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Showing 8d,
���b�

1
[d]
��� = 0 =) �|bz

1
[d]|  1

Using Lemma 9 for for the special case of 2–layer linear convolutional network, for 8d,

�bw(t)
1 [d] = ⌘tbz(t)[d] bw(t)⇤

2 [d],

�bw(t)
2 [d] = ⌘tbz(t)[d] bw(t)⇤

1 [d].
(59)

Recall: for l = 1, 2, bw(t)
l

g(t) ! bw
1
l , bz(t)

p(t) ! bz
1

, b�
(t)

= bw(t)
1 � bw

(t)
2 and b�(t)

g(t)2 !
b�
1

= bw
1
1 � bw

1
2 .

Further, from eq. (55), we have 8d, |bw
1
1 [d]|2 = |bw

1
2 [d]|2, and hence

|bw
1
1 [d]| = |bw

1
2 [d]| =

q
|b�

1
[d]|. (60)

From the convergence of complex numbers, we have the following:

1. 8d such that |bz
1
[d]| 6= 0, we have

|bz(t)[d]|
p(t)

! |bz
1
[d]| and e

i�bz(t)[d] ! ei�bz1[d] . (61)

2. 8d such that |b�
1
[d]| 6= 0, we have |bw

1
1 [d]|, |bw

1
2 [d]| 6= 0, and the following holds

for l = 1, 2,
|bw(t)

l [d]|
g(t)

! |bw
1
l [d]| and e

i�
bw(t)
l

[d] ! e
i� bw1

l [d]

|b�
(t)
[d]|

g(t)2
! |b�

1
[d]| and e

i�b�(t)[d] ! e
i�b�

1
[d] = e

i� bw1
1 [d] · ei� bw1

2 [d]

�|bz
1
[d]| = 1 and ei�bz1[d] = e

i�b�
1

[d] ,

(62)

where the last equation follows from eq. (56).
3. 8d such that |b�

1
[d]| = 0, from eq. (60), we have |bw

1
1 [d]| = |bw

1
2 [d]| = 0.

In the remainder of the proof, we only consider d with |bz
1
[d]| 6= 0.

Consider u(t)
d defined below,

u(t)
d := bw(t)

1 [d] · e�i�bz1[d] + bw(t)⇤
2 [d]. (63)

Since for l = 1, 2, w(t)
l /g(t)! w1

l , we have the following:

lim
t!1

u(t)
d

g(t)
= bw

1
1 [d] · e�i�bz1[d] + bw

1⇤
2 [d]

(a)
=

8
<

:
0 if |b�

1
[d]| = 0

e
�i� bw1

2 [d]

h
|bw

1
1 [d]|+ |bw

1
2 [d]|

i
if |b�

1
[d]| > 0

(b)
=

8
<

:
0 if |b�

1
[d]| = 0

2e
�i� bw1

2 [d]

q
|b�

1
[d]| if |b�

1
[d]| > 0

, (64)

where (a) follows from using ei�bz1[d] = e
i�b�

1
[d] = e

i� bw1
1 [d] · ei� bw1

2 [d] whenever �
1
[d] 6= 0 (from

eq. (62)), and (b) follows from eq. (60).

Step 1. Dynamics of u(t)
d : Now looking at the dynamics of ud, using eq. (59) we have that

u(t+1)
d = u(t)

d + e�i�bz1[d] · ⌘tbz(t)[d] bw(t)⇤
2 [d] + ⌘tbz(t)⇤[d] bw(t)

1 [d]

= u(t)
d + ⌘t|bz(t)[d]|


e
i
⇣
�bz(t)[d]��bz1[d]

⌘

bw(t)⇤
2 [d] + e

�i
⇣
�bz(t)[d]��bz1[d]

⌘

· bw(t)
1 [d] · e�i�bz1[d]

�
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Additionally, since e
i�bz(t)[d] ! ei�bz1[d] , we can write e

±i
⇣
�bz(t)[d]��bz1[d]

⌘

= 1 + �(t)1,d ± i�(t)2,d where
�(t)1,d, �

(t)
2,d ! 0 are real scalars. Substituting in above equation and rearranging the terms, we have

u(t+1)
d =

h
1 + ⌘t|bz(t)[d]|(1 + �(t)1,d)

i
u(t)
d + i�(t)2,d⌘t|bz

(t)[d]|
h
bw(t)⇤
2 [d]� bw(t)

1 [d] · e�i�bz1[d]

i

(a)
:=
h
1 + ⌘t|bz(t)[d]|(1 + �(t)1,d)

i
u(t)
d + ⌘t|bz(t)[d]|⌧ (t)

d , (65)

where in (a) we define ⌧ (t)
d = i�(t)2,d

h
bw(t)⇤
2 [d]� bw(t)

1 [d] · e�i�bz1[d]

i
.

The following intermediate lemma is proved in Appendix C.1.3.

Lemma 10. Consider ⌧ (t)
d in eq. (65). For all d such that bz

1
[d] 6= 0, u(t)

d !1 and
⌧ (t)

d

u(t)
d

! 0.

Using the above lemma, we have �(t)3,d ! 0 such that ⌧ (t)
d = �(t)3,dud(t). Additionally, since

|bz(t)[d]|
p(t) ! |bz

1
[d]|, there exists �(t)4,d ! 0 such that |bz(t)[d]| = |bz

1
[d]|p(t) + �(t)4,dp(t). Substituting

these representations in eq. (65), we have the following dynamics for ud(t),

u(t+1)
d =

h
1 + ⌘tp(t)

⇣
|bz

1
[d]|+ �(t)4,d

⌘⇣
1 + �(t)1,d + �(t)3,d

⌘i
u(t)
d

(a)
:=
h
1 + ⌘tp(t)

⇣
|bz

1
[d]|+ �(t)d

⌘i
u(t)
d ,

(66)

where in (a) we have accumulated all diminishing terms into �(t)d = �(t)4,d

⇣
1 + �(t)1,d + �(t)3,d

⌘
+

|bz
1
[d]|
⇣
�(t)1,d + �(t)3,d

⌘
! 0.

Step 2. Remainder of the proof: We now prove our theorem by looking the following quantity: For

any d, d0 with bz
1
[d],bz

1
[d0] 6= 0, define (t)

d,d0 =

����
u(t)

d

u(t)

d0

����.

We will show that whenever |bz
1
[d]| > |bz

1
[d0]|, we get (t)

d,d0 !1. Along with eq. (64), this would

imply that lim
t!1

(t)
d,d0 =

r
|b�

1
[d]|

|b�
1

[d0]|
=1. Hence, for any d, d0 with b�

1
[d] = 0 and b�

1
[d0] 6= 0, we

have �|bz
1
[d]|  �|bz

1
[d0]|. Moreover from eq.(57)), we know that �|bz

1
[d0]| = 1 for all d0 with

b�
1
[d0] 6= 0. This implies 8d, �|bz

1
[d]|  1 and concludes the proof.

Showing |bz
1
[d]| > |bz

1
[d0]| =) (t)

d,d0 !1:

For any 2✏ > 0, let |bz
1
[d]|� |bz

1
[d0]| = 2✏ > 0. We note that the since the loss L(�(t))! 0, norm

of the gradient p(t) = kz(t)k = kbztk ! 0. Hence, for any finite step size sequence {⌘t}, there exists
t1 such that 8t � t1 and 8d, ⌘tp(t)

⇣
|bz

1
[d]|+ |�(t)d |

⌘
< 0.5 and the following inequalities hold,

(t+1)
d,d0 =

�����
u(t+1)
d

u(t+1)
d0

����� =

������

⇣
1 + ⌘t

⇣
|bz

1
[d]|+ �(t)d

⌘
p(t)

⌘

⇣
1 + ⌘t

⇣
|bz

1
[d0]|+ �(t)d

⌘
p(t)

⌘ u(t)
d

u(t)
d0

������
(67)

�

⇣
1 + ⌘t

⇣
|bz

1
[d]|� |�(t)d |

⌘
p(t)

⌘

⇣
1 + ⌘t

⇣
|bz

1
[d0]|+ |�(t)d0 |

⌘
p(t)

⌘(t)
d,d0 (68)

(a)
�
⇣
1 + ⌘t

⇣
|bz

1
[d]|� |�(t)d |

⌘
p(t)

⌘⇣
1� ⌘t

⇣
|bz

1
[d0]|+ |�(t)d0 |

⌘
p(t)

⌘
(t)
d,d0 (69)

(c)
�
⇣
1 + ⌘t

⇣
2✏+ �(t)d,d0

⌘
p(t)

⌘
(t)
d,d0 , (70)
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where in (a) follows from using 1/(1+x) � (1� x) for x < 1 since ⌘tp(t)
⇣
|bz

1
[d]|+ |�(t)d |

⌘
< 0.5

for all t � t1, and in (c), we absorbed all o(p(t)) terms as �(t)d,d0p(t) for �(t)d,d0 ! 0 and used
|bz

1
[d]|� |bz

1
[d0]| = 2✏ > 0.

Since �(t)d,d0 ! 0, for large enough t2 and t � t2, we have |�(t)d,d0 | < ✏. Thus, for all t � max{t1, t2},

(t+1)
d,d0 � (1 + ⌘t✏p(t))

(t)
d,d0 . (71)

Further, from the conditions of the theorem, for almost all initializations, |bw(0)
l [d]| > 0 for all d.

For step sizes {⌘t} smaller than the local Lipschitz constant, for all finite t0 < 1, we also have
|w(t0)

l [d]| > 0. Moreover from Lemma 10, we have that |u(t)
d |, |u(t)

d0 |!1 and hence 9t3 such that
8t � t3, |u(t)

d | > 0, but for any finite t0 < 1, |u(t0)
d0 | < 1. Thus, for t0 = max{t1, t2, t3}, using

the above observations, we have that (t0)
d,d0 =

����
u

(t0)
d

u
(t0)

d0

���� > 0.

Now, using eq. (71), for all t � t0,

(t+1)
d,d0 � (1 + ⌘t✏p(t))

(t)
d,d0 =

 
tY

u=t0

(1 + ⌘u✏p(u))

!
(t0)
d,d0 and (t0)

d,d0 > 0. (72)

Finally, we show the following claim:
Claim 2. For any finite t0, finite step-sizes {⌘t}, and any ✏ > 0, we have

Qt
u=t0

(1+⌘u✏p(u))!1.

Proof. Let µ = maxd |bz
1
[d]|+maxt>t0 |�

(t)
d | <1. From eq. (66), we have that for all d,

|u(t+1)
d |  (1 + µ⌘tp(t))|u(t)

d |  |u(t0)
d |

tY

u=t0

(1 + µ⌘up(u))  |u(t0)
d | exp

 
tX

u=t0

µ⌘up(u)

!
.

Moreover, we have u(t)
d !1 for at least one d, and for any finite step sizes and finite t0, |u(t0)

d | <1.
This then implies that for some µ < 1, exp

⇣Pt
u=t0

µ⌘up(u)
⌘
! 1 =)

Pt
u=t0

⌘up(u) ! 1.

Thus, for any ✏ > 0, we also have
Qt

u=t0
(1 + ✏⌘up(u)) � ✏

Pt
u=t0

⌘up(u)!1.

From eq. (72) and above claim, we conclude that for all d, d0, if |bz
1
[d]| > |bz

1
[d0]|, then (t)

d,d0 !1.

This completes the proof of the theorem. ⇤

C.1.3 Proof of Lemma 10

Lemma 10. Consider ⌧ (t)
d in eq. (65). For all d such that bz

1
[d] 6= 0, u(t)

d !1 and
⌧ (t)

d

u(t)
d

! 0.

Proof. Recalling ⌧ (t)
d from eq. (65) and u(t)

d from eq. (63), we have the following:

⌧ (t)
d

u(t)
d

= i�(t)2,d

bw(t)⇤
2 [d]� bw(t)

1 [d] · e�i�bz1[d]

bw(t)
1 [d] · e�i�bz1[d] + bw(t)⇤

2 [d].
= i�(t)2,d

1� |bw(t)
1 [d]|

|bw(t)
2 [d]|

· e�i�bz1[d]+i�b�(t)[d]

1 + |bw(t)
1 [d]|

|bw(t)
2 [d]|

· e�i�bz1[d]+i�b�(t)[d]

(73)

For all d if b�
1
[d] = bw

1
1 [d] · bw

1
2 [d] 6= 0, the it is straightforward to see that |bw(t)

1 [d]|
|bw(t)

2 [d]|
=

|bw(t)
1 [d]|/g(t)

|bw(t)
2 [d]|/g(t)

! |bw1
1 [d]|

|bw1
2 [d]|

= 1 (from eq. (60)), and also that e�i�bz1[d]+i�b�(t)[d] ! e
�i�bz1[d]+i�b�

1
[d] =

1 (from eq. (62)). This along with eq. (73) gives us ⌧ (t)
d

u(t)
d

! 0.
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Moreover, since |b�
(t)
[d]| ! 1, we have |bw(t)

2 [d]| or |bw(t)
2 [d]| ! 1. Further, using

e
�i�bz1[d]+i�b�(t)[d] ! 1, we have |u(t)

d | = |bw(t)
2 [d]|+ |bw(t)

1 [d]|e�i�bz1[d]+i�b�(t)[d] !1.

We now only need to show that these results also hold for d such that b�
1
[d] = 0. Recall from the

assumptions of the theorem that even when b�
1
[d] = 0, 9�b�

1
[d]
2 [0, 2⇡) such that ei�b�(t)[d] !

e
i�b�

1
[d] . We now prove the lemma by showing the following steps for d such that b�

1
[d] = 0. :

Step 1. Show |bw(t)
1 [d]|

|bw(t)
2 [d]|

! 1.

Step 2. Show Re(e�i�bz1[d]+i�b�
1

[d]) = 2 cos
⇣
�bz1

[d] � �b�
1

[d]

⌘
� 0.

Proof of lemma assuming Step 1 and Step 2 hold The above steps would imply that in eq. (73),

• the denominator satisfies
�����1 +

|bw(t)
1 [d]|

|bw(t)
2 [d]|

· e�i�bz1[d]+i�b�(t)[d]

�����!
���1 + e

�i�bz1[d]+i�b�
1

[d]

���

�
���1 + Re(e�i�bz1[d]+i�b�

1
[d])
��� � 1.

(74)

• the numerator satisfies
������

(t)
2,d

 
1� |bw(t)

1 [d]|
|bw(t)

2 [d]|
· e�i�bz1[d]+i�b�(t)[d]

!�����  |�(t)2,d|

�����1 +
|bw(t)

1 [d]|
|bw(t)

2 [d]|

�����! 0. (75)

These eqs. along with eq. (73) in turn prove the lemma, i.e., ⌧ (t)
d

u(t)
d

! 0 and |u(t)
d |!1.

Showing Step 1 and Step 2

Step 1. Show
|bw(t)

1 [d]|
|bw(t)

2 [d]|
! 1.

From the dynamics of bw(t)
l [d] from eq. (59), we have the following,

|bw(t+1)
1 [d]|2 = |bw(t)

1 [d]|2 + ⌘tbz(t)[d] · b�
(t)⇤

[d] + ⌘tbz(t)⇤[d] · b�
(t)
[d] + ⌘2t |bz(t)[d]|2|bw

(t)
2 [d]|2

|bw(t+1)
2 [d]|2 = |bw(t)

2 [d]|2 + ⌘tbz(t)[d] · b�
(t)⇤

[d] + ⌘tbz(t)⇤[d] · b�
(t)
[d] + ⌘2t |bz(t)[d]|2|bw

(t)
1 [d]|2

(76)

Note that since |bz(t)[d]|2 ! 0 and ⌘t are finite, we have that 9t1 such that for all t � t1, ⌘t|bz(t)[d]|2 
1. From the above equation, we have the following for t � t1,

���|bw(t+1)
1 [d]|2 � |bw(t+1)

2 [d]|2
��� =

���
⇣
1� ⌘2t |bz(t)[d]|2

⌘⇣
|bw(t)

1 [d]|2 � bw(t)
2 [d]|2

⌘���

(a)
=

 
tY

u=t1

⇣
1� ⌘2u|bz(u)[d]|2

⌘! ���|bw(t1)
1 [d]|2 � bw(t1)

2 [d]|2
���


���|bw(t1)

1 [d]|2 � bw(t1)
2 [d]|2

��� <1,

(77)

where (a) follows from iterating over t and using |bz(t)[d]|2  1 for t � t1.

Since |b�
(t)
[d]| = |bw(t)

1 [d]| · |bw(t)
2 [d]|!1, at least one of |bw(t)

1 [d]|, |bw(t)
2 [d]| must diverge. Without

loss of generality, let |bw(t)
2 [d]|!1. Let c(t) := |bw(t)

1 [d]|2 � |bw(t)
2 [d]|2 with |c(t)| <1. We have

|bw(t)
1 [d]|2

|bw(t)
2 [d]|2

= 1 +
c(t)

|bw(t)
2 [d]|2

(a)! 1, (78)

where the convergence in (a) follows since |c(t)| <1 (from eq. (76)) and |bw(t)
2 [d]|!1.
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Step 2. Show Re(e
�i�bz1[d]+i�b�

1
[d]) = 2 cos

⇣
�bz1

[d] � �b�
1

[d]

⌘
� 0.

Note that from Step 1 above, we have that |bw(t)
1 [d]|2

|bw(t)
2 [d]|2

! 1, which implies |bw(t)
1 [d]|2+|bw(t)

2 [d]|2

2|b�(t)
[d]|

=

|bw(t)
1 [d]|2+|bw(t)

2 [d]|2

2|bw(t)
1 [d]|·|bw(t)

2 [d]|
! 1. Thus, there exists �(t)1,d ! 0, such that

|bw(t)
1 [d]|2 + |bw(t)

2 [d]|2 = 2|b�
(t)
[d]| · (1 + �(t)1,d). (79)

Also, from eq. (44), there exists �(t)2,d ! 0, such that

bz(t)[d] = bz
1
[d]p(t) + �(t)2,dp(t), with p(t) = kbz(t)k ! 0. (80)

Using the above representations, along with eq. (59), we have the following,

b�
(t+1)

[d] = b�
(t)
[d] + ⌘tbz(t)[d]


|bw(t)

1 [d]|2 + |bw(t)
2 [d]|2 + ⌘tbz(t)[d] · b�

(t)⇤
[d]

�

(a)
= b�

(t)
[d] + 2⌘tp(t)|b�

(t)
[d]|
⇣
bz
1
[d] + �(t)2,d

⌘ h
1 + �(t)1,d + 1/2⌘tbz(t)[d]e

�i�b�(t)[d]

i

(b)
:= b�

(t)
[d] + 2⌘tp(t)|b�

(t)
[d]|
h
bz
1
[d] + �(t)3,d

i
, (81)

where (a) follows from substituting eqs. (79)-(80), and (b) follows from using
|bz(t)[d]|  p(t) ! 0 and defining �(t)3,d = �(t)2,d

h
1 + �(t)1,d + 1/2⌘tbz(t)[d]e

�i�b�(t)[d]

i
+

bz
1
[d]
h
�(t)1,d + 1/2⌘tbz(t)[d]e

�i�b�(t)[d]

i
! 0.

Denote �d = �b�
1

[d]
� �bz1

[d]. Additionally, from the assumption in the theorem, we have

e
i�b�(t)[d] ! e

i�b�
1

[d] , hence there exists �(t)4,d ! 0 such that ei�b�(t)[d]
�i�bz1[d] = ei�d(1 + �(t)4,d).

Now, from the above equation, for any t0 and t � t0, we derive the updates for |b�
(t)
[d]|,

|b�
(t+1)

[d]|2 = |b�
(t)
[d]|2

✓
e
i�b�(t)[d] + 2⌘tp(t)

h
bz
1
[d] + �(t)3,d

i◆✓
e
�i�b�(t)[d] + 2⌘tp(t)

h
bz
1⇤

[d] + �(t)⇤3,d

i◆

(a)
= |b�

(t)
[d]|2

h
1 + 2⌘tp(t)

⇣
|bz

1
[d]|
⇣
ei�d(1 + �(t)4,d) + e�i�d(1 + �(t)⇤4,d )

⌘
+ �(t)5,d

⌘i

(b)
= |b�

(t)
[d]|2

h
1 + 4⌘tp(t)

⇣
|bz

1
[d]| cos(�d) + �(t)6,d

⌘i

(c)
= |b�

(t0)
[d]|2

"
tY

u=t0

⇣
1 + 4⌘up(u)

⇣
|bz

1
[d]| cos(�d) + �(u)6,d

⌘⌘#

(d)
 |b�

(t0)
[d]|2 exp

 
tX

u=t0

4⌘up(u)
⇣
|bz

1
[d]| cos(�d) + �(u)6,d

⌘!
, (82)

where in (a) we used e
i�b�(t)[d]

�i�bz1[d] = ei�d(1 + �(t)4,d) and collected all o(p(t)) terms into �(t)5,d =

1/2e
i�b�(t)[d]�(t)⇤3,d +2p(t)bz

1
[d]
h
bz
1⇤

[d] + �(t)⇤3,d

i
+�(t)3,d

✓
e
�i�b�(t)[d] +2p(t)

h
bz
1⇤

[d] + �(t)⇤3,d

i◆
! 0

(since p(t), �(t)3,d ! 0); in (b) we defined �(t)6,d = 1/2�(t)⇤4,d ei�d + 1/2�(t)3,de
�i�d + �(t)5,d ! 0; (c) is

obtained by iterating over t; and (d) follows from using (1 + x)  exp(x).

If possible, let cos(�d) = �2✏ < 0. Since |�(t)6,d|! 0, and for finite step sizes ⌘tp(t)! 0, 9t0 such

that for all t � t0, |�(t)6,d| < ✏|bz
1
[d]| and exp

⇣
�4✏|bz

1
[d]|⌘tp(t)

⌘
 1. From eq. (82), we now have

|b�
(t+1)

[d]|2  |b�
(t0)

[d]|2 exp
 
�4✏|bz

1
[d]|

tX

u=t0

⌘up(u)

!
 |b�

(t0)
[d]|2.
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Finally, for any finite step sizes and finite t0, we have |b�
(t0)

[d]|2 < 1 and this creates a con-

tradiction since the LHS in the above equation diverges, |b�
(t+1)

[d]|2 ! 1. Hence, in or-

der for the updates in eq. (82) to lead to a divergent |b�
(t+1)

[d]|, we necessarily require that
cos
�
ei�d

�
= Re(e�i�bz1[d]+i�b�

1
[d]) = 2 cos

⇣
�bz1

[d] � �b�
1

[d]

⌘
� 0.

This completes the proof of the lemma.

D Computing RP(�): Proofs of Lemmas in Section 5

In this appendix we prove the lemmas in Section 5 that compute the form of induced bias of linear
networks in the space of predictors. Recall that for linear predictors parameterized as � = P(w),
RP(�) = minw:P(w)=�kwk22.
Lemma 5. For fully connected networks of any depth L > 0,

RPfull(�) = min
w:Pfull(w)=�

kwk22 = Lk�k2/L2 = monotone(k�k2).

Proof. Recall that for fully connected networks of any depth L > 0 with parameters
w = [wl 2 RDl�1⇥Dl ]Ll�1, the equivalent linear predictor given by Pfull(w) = w1w2 . . .wL.

We first show that RPfull(�) � Lk�k2/L2 .
Let w?(�) = [w?

l (�)]
L
l=1 be the minimizer of minw:Pfull(w)=�kwk22, so that � = Pfull(w?(�)) =

w?
1(�) ·w?

2(�) . . .w
?
L(�) and RPfull(�) = kw?(�)k22 =

PL
l=1kw?

l (�)k22. We then have,

k�k2/L2 = kw?
1(�) ·w?

2(�) . . .w
?
L(�)k

2/L
2  kw?

1(�)k
2/L
2 kw?

2(�)k
2/L
2 . . . kw?

L(�)k
2/L
2

(a)
 1

L

LX

l=1

kw?
l (�)k22=

1

L
RPfull(�), (83)

where (a) follows as arithmetic mean is greater than the geometric mean.

Next, we show that RPfull(�)  Lk�k2/L2 .
Given any unit norm vectors zl 2 RDl for l = 1, 2, . . . , L, consider w = [wl], defined as

wl =

8
><

>:

k�k1/L2
�

k�k2
z>1 if l = 1

k�k1/L2 zl�1z>l if l = 2, 3, . . . , L� 1

k�k1/L2 zL�1 if l = L

This ensures that Pfull(w) = w1w2 . . .wL = � and kwk22 = Lk�k2/L2 , and hence

R(�) = min
w:Pfull(w)=�

kwk22  kwk22 = Lk�k2/L2 . (84)

Combining eq. (83) and eq. (84), we get RPfull(�) = Lk�k2/L2

The proofs of the lemmas for computing RP(w) for diagonal and convolutional networks are similar
to those of fully connected network.
Lemma 6. For a depth–L diagonal network with parameters w = [wl 2 RD]Ll�1, we have

RPdiag (�) = min
w:Pdiag(w)=�

kwk22 = Lk�k2/L2/L = monotone(k�k2/L).

Proof. Recall that for an L–layer linear diagonal networks with parameters w = [wl 2 RD]Ll�1, the
equivalent linear predictor is given by Pdiag(w) = diag(w1)diag(w2) . . . diag(wL�1)wL.
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Let w?(�) = [w?
l (�)]

L
l=1 be the minimizer of minw:Pdiag(w)=�kwk22, so that � = Pdiag(w?(�))

and RPdiag (�) = kw?(�)k22. We then have,

D�1X

d=0

|�[d]|2/L =
D�1X

d=0

LY

l=1

|w?
1(�)[d]|

2/L
(a)
 1

L

D�1X

d=0

LX

l=1

|w?
1(�)[d]|2

=
1

L
kw?(�)k22 =

1

L
RPdiag (�), (85)

where (a) again follows as arithmetic mean is greater than the geometric mean.

Similar to the case of fully connected networks, we now choose w = [wl] that satisfies Pdiag(w) = �

and kwk22 = Lk�k2/L2/L. This would ensure that,

RPdiag (�) = min
w:Pdiag(w)=�

kwk22  kwk22 = Lk�k2/L2/L.

We can check that these properties are satisfied by choosing w as follows: for d = 0, 1, . . . D� 1, let
w1[d] = sign(�(d)) |�(d)|1/L and wl[d] = |�(d)|1/L for l = 2, 3, . . . , L.

Combining this argument with eq. 85 concludes the proof.

For convolutional networks, the argument is the exactly the same as that for diagonal network adapted
for complex vectors.
Lemma 7. For a depth–L convolutional network with parameters w = [wl 2 RD]Ll�1, we have

RPconv (�) = min
w:Pconv(w)=�

kwk22 = Lkb�k2/L2/L = monotone(kb�k2/L).

Proof. Denote the Fourier basis coefficients of wl 2 RD and � = Pconv(w) 2 RD in polar form as

bwl = |bwl|ei� bwl 2 CD, b� = |b�|ei�b� 2 CD,

where |bwl|, |b�| 2 RD
+ and �bwl

,�b� 2 [0, 2⇡)D are the vectors with magnitudes and phases, respec-
tively, of bwl, b�.

From Lemma 3, the Fourier basis representation of � = Pconv(w) is given by

b� = diag(bw1)diag(bw2) . . . diag(bwL�1)bwL = Pdiag(bw),

where we have overloaded the notation Pdiag to denote the mapping of diagonal networks in complex
vector fields, and bw = [bwl]Ll=1. We thus have for d = 0, 1, . . . , D � 1,

|b�[d]| =
LY

l=1

|bwl[d]|, and �b�[d] =

 
LX

l=1

�bwl
[d]

!
mod 2⇡.

From orthonormality of discrete Fourier transformation, we have for all w, kwk22 = kbwk22. Thus,

RPconv (�) = min
w:Pconv(w)=�

kwk22 = min
b�:b�=Pdiag(bw)

kbwk22. (86)

We can now adapt the proof of diagonal networks here. Let bw?(�) = [bw?
l (�) 2 CD]Ll=1 be the

minimizer of minbw:b�=Pdiag(bw)kbwk
2
2, so that b� = Pdiag(bw?(�)) and RPconv (�) = kbw?(�)k22, and

D�1X

d=0

|b�[d]|2/L =
X

d

LY

l=1

|bw?
1(�)[d]|

2/L  1

L

X

d

LX

l=1

|bw?
1(�)[d]|2

=
kbw?(�)k22

L
=

1

L
RPconv (�). (87)
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Similar to the diagonal networks, we can choose the parameters in the Fourier domain bw = [bwl 2
CD] to ensure that Pdiag(bw) = b� and kbwk22 = Lkb�k2/L2/L as follows: for d = 0, 1, . . . D � 1, let

bw1[d] = �b�[d] |b�[d]|
1/L and bwl[d] = |b�[d]|1/L, 8l > 1.

This gives us
RPconv (�) = min

w:Pdiag(bw)=b�
kbwk22  kbwk22  Lkb�k2/L2/L.

Combining this with eq. 87 concludes the proof.

E Background Results

Theorem 11 (Stolz–Cesaro theorem, proof in Theorem 1.22 of Muresan [2009]). Assume that

{ak}1k=1 and {bk}1k=1 are two sequences of real numbers such that {bk}1k=1 is strictly monotonic

and diverging (i.e., monotone increasing with bk !1, or monotone decreasing with bk ! �1).

Additionally, if limk!1
ak+1�ak

bk+1�bk
= L exists, then limk!1

ak
bk

exists and is equal to L.
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