Appendix

The proofs of the theorems in the paper are organized as follows: In Appendix [A] we first give the
proof for Theorem |, which includes linear fully connected and full width convolutional networks
as special cases. This gives us some general results that can be special-cased to prove the stronger
results for these networks in Section[3] In Appendix [B] we prove Theorem[I]on the implicit bias of
fully connected linear networks. In Appendix [C] we prove Theorem[2H2a on the implicit bias of linear
convolutional networks. Finally, in Appendix [D we prove the lemmas in Section [5]on computing the
form of implicit bias of linear networks learned using gradient descent.

to denote equality up to strictly positive scalar multipliers, i.e., when v = v’ for some vy > 0.

The following is a paraphrasing of Lemma 8 in|Gunasekar et al. [2018]] and is used in multiple proofs.

Lemma 8. [Lemma 8 in\Gunasekar et al.|[2018]] For almost all linearly separable dataset {Xp,, Yn tn,
consider any sequence ﬂ(t) that minimizes the empirical objective in eq. (3), i.e., E(ﬂ(t)) — 0. If

- . . . oo . —vsL(BY)
(a) ﬂ = l im HB(“H exists and has a positive margin, and (b) z°° := tli>rrolo oL@

—00 — 00
Hap, > O}nes S.LZ% =) oy YnXn, where S = {n:y, (B ,%,) =min, y,(B ,x,)} are
the indices of the data points with smallest margin to the limit direction ,800

exists, then

A Homogeneous Polynomial Parameterization: Proof of Theorem {|

Theorem 4 (Homogeneous Polynomial Parameterization). For any homogeneous polynomial map
P : RP — RP from parameters w € RP to linear predictors, almost all datasets {x,,,yn }N_;

separable by B := {P(w) : w € RF'}, almost all initializations w9, and any bounded sequence of
step sizes {n: }1, consider the sequence of gradient descent updates w® from eq. (7) for minimizing
the empirical risk objective Lp(w) in {) with exponential loss £(u,y) = exp(—uy).

If(a) the iterates w'®) asymptotically minimize the objective, i.e., Lp(w®)) = L(P(w®))) — 0,
(b) w®), and consequently B = P(w®), converge in direction to yield a separator with positive
margin, and (c) the gradients w.r.t. to the linear predictors, Vgﬁ(,@(t)) converge in direction, then the
limit direction of the parameters W = lim ﬁ is a positive scaling of a first order stationary

t—o0
point of the following optimization problem,

min |wlz st Y, Y (X, P(w)) > 1. (14)
weRP

Proof. w(®) are the sequence gradient descent iterates from eq. (7) for minimizing Lp(w) in eq (@)
with exponential loss over the model class of B = {P(w) : w € R}, where P is a homogeneous
polynomial function. We first introduce some notation.

1. From the assumption in theorem, we have that W>° = lim vav(t) ;- Denoting g(t) = = [[w®]], we
t—o0

have that for some 5&3) — 0, the following representation of w(*) holds.

w =w>g(t) + 6% g(1). (16)

2. Let ﬁ(t) = P(w(t)) denote the sequence of linear predictors for this network induced by the

gradient descent iterates. We can see that ﬂ(t) converges in direction too using the following

arguments: homogeneity of P implies that P(W(t)/nw(t)H) = P(W(t))/nw(t)H” for some v. Hence,
B8O PO/w)) g ) 5o

1BD1 ~ 1P @ /1w ] P

3. 20 = —vgL(B) =%, exp(—(ﬁ(t), ynxn>)ynxn. Since we assume that z(*) converges in

N _ . (O] . .
direction, let z*° = thm H;ij’l\ Denoting p(t) = ||z*)||, for some 63) — 0, we can write z(*) as,
— 00

2 =2%p(t) + 6% p(t), (17)
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w®
4. Let Vi P (w(¥)) € RP*P denote the Jacobian of P(w), i.e., VP (W) [p,d] = %@]ﬂd])

If P : R” — RP is a homogeneous polynomial of degree v > 0, then V4, P : RP — RP*P isa
homogeneous polynomial of degree v — 1. Using eq. (16), we have

w(®) VwP(w®)
wP (™) = i w )= lim > " /
TP = i VP (7 ) = i s
Thus, 35?) — 0, such that

VP (W) = VuP (%) g(t) " + 81" ()" (18)

5. Finally, from the definition of VP (w), we have Vo Lp(w(®)) = V,, P (w(®) V@E(ﬁ(t)), and
hence from eq. (7),

Aw® = wltt) — w) — v P < ) () (19)

Using the assumptions in the theorem along with our argument above for convergence of 3 )
direction, we satisfy the conditions of Lemma|[8] which will be crucially used in our proof.

KKT conditions for first order stationary points We want show that there exists a positive
scaling of w*°, denoted as w*> = yw for some v > 0, such that w® is a first order stationary
point of the explicitly regularized problem in eq. (14). Towards this we show that w> satisfy the
following first order KKT conditions of eq.

Vn, Yn (Xn, P(W)) = 1,
FHan N, st Vn,a, >0and o, = 0,Yn ¢ S := {n € [N] : yp(x,, P(w)) = 1},

Z Qn Yn Xn] .

Primal feasibility. We showed earlier that if w®) converges in direction, then ,B(t) = P(w(t))

(20)
w = VuP(w

converges in directionto 3 = 1' o P(W*°°). Further, from the assumptions in the theorem,

Hﬂ(t) l
we have that 3" satisfies Vn, y,, (xn, B7°) > 0, which also implies min,, ¥, (x,,, P(W>)) > 0 since

B~ o P(W™). Now, if P is homogeneous of of degree v/, then for v = (miny, y» (X,,, P(W“)})_V”,

W = YW satisfies min,, y, (x,, P(Ww>)) = 1.

Showing other KKT conditions for w>. The crux of the proof of Theorem 4 involves showing
the existence of {a, > 0},, such that the stationarity and complementary slackness conditions in
€q. are satisfied. This crucially relies on a key lemma (Lemma 8) showing that the gradient in

the space of linear predictors Vgﬁ(,ﬁ( )) are dominated by positive linear combinations of support
vectors of the asymptotic predictor ,6

Let Soo = {n : yn(P(W>),x,) = 1} denote the indices of support vectors for P(w), which are
also the support vectors of B, since by homogeneity of P, B~ o P(W>) o« P(%>). Thus, from

_ ®
Lemma E, we have z° = hm ”;m” Znesoc QanYnXy, for some {a, }nes.. such that a,, > 0.

We propose a positive scahng of this {cv, })_, as our candidate dual certificate, which satisfies both
dual feasibility and complementary slackness.

To prove the theorem, the remaining step is to show that W™ o< VP (W)z>°. Since w>® = yw>
and P is homogeneous, this condition is equivalent to showing that W™ « VP (W>)z>.

Showing that W x V., P(W>)z>°. Substituting for z(*) and V4, P(w®) from eqs. (17) and
(18), respectively, in the gradient descent updates (eq. (19)), we have the following:

wt+) _w® — g P (wu)) 5
= (VWP (W) g0~ + 81 (1)) (7p() + 6L p(t)) @D
< (mp(Hg(t) ) VP (%) 2% + 67,
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where in (a) 6@ = Vo P (w®) 6 + 6060 + 6z — 0.
Summing over ¢, we have

wit) —wO =V P (%) 2% > nup(u)g(w)’ ™+ 8“nupu)g(w)’ ™!, (22)

u<t u<t

We want to argue that the first term, i.e., VP (W) z°°, is the dominant term. Towards this we
state and prove the following intermediate claim

Claim 1. ||V, P (W>*)z>| > 0and Y, _, nup(w)g(u)’ ! — .

Proof. First, it is straight forward to check that for any scalar valued homogeneous polynomial f :
RP — R of degree v, we have (w, Vy f(w)) = vf(w), where forp = 1,2..., P, Vi f(W)[p] =

?;EEZ]) (this is also known as the Euler’s homogeneous function theorem). Extending this to our vector

valued homogeneous function P : RF — R, we have that for all w, the Jacobian VP(w) €
RP*P satisfies Vo P(w) T w = vP(w).

Moreover, we have that for the limit direction w*°, the margin of the corresponding classifier is strictly
positive, i.e., min,, y, (P(W>),x,) > 0. Now from Lemma |§, using that z°° = 3 S OnYnXn
for a;, > 0 (and not all zero since z°° is unit norm), we immediately get the following

T VW P(%2)2° = vP(W*) 2% = 1) anln (X0, P(W™)) > 0 = Vi P(WF)Z £ 0.

n

To prove the second part, we note the following

e since 6 = 0in eq. (22), 3t such that V¢ > i, Hé(t) || <1, and since all the incremental
updates to gradient descent are finite, we have that sup, ||| < oo,
e since p(t) = |z®| and g(t) = |w®| are positive, we have that b, =
> ues Mup(w)g(w)”~ ! is monotonic increasing.
Thus, if lim sup,_, ., b = oo then lim;_,, b; = co. On contrary, if lim sup,_, . b: = C' < 00, then
from eq. (22), for large ¢ we get, [[w(®|| < WO + [[VP(w=)7%C + (sup,6?]]) € < o

which contradicts |w®| — oo. O

From above claim, the sequence b; = >, _, 7up(u)g(u)” ! is monotonic increasing and diverging.
Thus, fora; =), ., 8, p(u)g(u)” L, using Stolz-Cesaro theorem (Theorem IHI), we have

% _ lim Duct 5(u)77up(u)g(u)yil o Bl P 1 () I 0.

t—o0 by t—00 Zu<t nup( )g( )V—l t—o00 byy1 — by t—00
— for5 — 0, we have Zé nup(u)g(u)?~t = =9, () Z%p WL (23)
u<t u<t
Substituting eq. in eq. (22), we have
(t) (a) [v P (—oo 7oo + 6(t } lz nup 1] (24)
u<t
wt) VP (WX)Z® + 65 ) VWP (W®)z™ 05)
WO = [P (w2~ 4 60 VP @) 7]
® Z>
— %° = lim — VwP(W2)2"  GoP (W) 7>, (26)

e WO VWP (@) 7|

where in (@) we absorbed the diminishing terms into 65" = & +w(©)/ > ues Mup(w)g(u)’ =t — 0,
(b) follows since we proved in the claim above that VP (W>°)Z* # 0 and hence dominates § :(f)

We have shown that W™ = 7V, P (W) z™ for a positive scalar 7, which completes the proof. [J
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B Linear Fully Connected Networks: Proof of Theorem

Theorem 1 (Linear fully connected networks). For any depth L, almost all linearly separable
datasets {X,,,yn Y_,, almost all initializations w'®), and any bounded sequence of step sizes {1 }+,
consider the sequence gradient descent iterates w) in eq. (1) for minimizing Lp o (W) in eq. @)
with exponential loss £(y,y) = exp(—1yy) over L-layer fully connected linear networks.

If (a) the iterates w'Y) minimize the objective, i.e., Lp (w®) = 0, (b) w9, and consequently

,B(t) = Pfu”(w(t)), converge in direction to yield a separator with positive margin, and (c) gradients
with respect to linear predictors Vgﬂ(,@(t)) converge in direction, then the limit direction is given by,

0o Pra(w®) By,

B = lim = —
t=oo |[Prau(w®)| 187,

, where 3;, := argmin||B||3 s.t. Vn,yn(xn,8) > 1. (8)

Proof. Recall that for fully connected networks of any depth L > (0 with parameters
w=[w; € RDL—“DZ]ZLA, the equivalent linear predictor given by Pryu;(w) = wiwa ... wg is
a homogeneous polynomial of degree L.

Let w(*) = [w'") € RP:-1%Di]L | denote the iterates of individual matrices w; along the gradient
descent path, and 3 ® = Prun (w(®)) denote the corresponding sequence of linear predictors.

We first introduce the following notation.

— w(® o .
1. Let w>° = hm D W] denote the limit direction of the parameters, with component
matrices in each layer denoted as W™ = [w;°]. Specializing (I6) for fully connected

networks, we have:
wi =wg(t) + 6{) g (1), @7

where g(t) = [|[w®| and &) — 0.

2. For 0 < l; <y < L, denote wl(t,)l = wl(f)wl(llrl (t) and Wio,, = WrWi .. Wi
t

Wy —
Using eq. , we can check by induction on I3 — [; that hm % = Wi 1,> and

(t
hence 36 (t — 0 such that the following holds,

Wiqily

with, = Wity g0 " 160 g(e) (28)

ZQ l1~ 2
3. Letz®) = —Vgﬁ(,@ ) Again repeating eq. for fully connected networks, we have
for some 8" — 0 and p(t) = ||z*||,
2! = 2%p(t) + 8 p(t). (29)
4. From Lemma |§, we have that H{Ozn}ne s.. suchthatz> = %" 5. O'n YnXn, Where S
are support vectors of Boo l' HB“) T x Pfu”( ).

The proof of Theorem [T]is fairly straight forward from using Lemma [8]and the intermediate results in
the proof of Theorem

Showing KKT conditions for LN")'OO & Py (W), Using our notation described above, we have

Wi, = Prou(W). In the following arguments we show that a positive scaling B~ = VWL
satisfies the following KKT conditions for the optimality of /o maximum margin problem in eq. (8):

El{an}g:l st. Vn, yn<xnvﬁ> > ]-vﬁ = Zan YnXn, 30)
n

Vn, o, > 0and o, = 0,Vi ¢ S := {i € [N] : yn (x4, 8) = 1}.

As we saw in proof of Theorem |: since Wi, = Pju”( °°) has strictly positive margin, us-

ing homogeneity of Py, we can scale Wi7, to get B = ~wjis, with unit margin, i.e.,
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~ 00
Y1, yn(xn,B3 ) > 1. For dual variables, we again use a positive scaling of «,, from Lemmal such
that z°° = Zne 5., On ynxn In order to prove the theorem, we need to show that ﬁ x z° or
equivalently Wi, o z°°

Recall that in the proof of TheoremE], we showed a version of stationarity in the parameter space in
eq. (26), repeated below.
W x VWP (W™)z™. (31)

This case in particular includes Py,;; which is homogeneous with v = L. We special case the result
fully connected network. In particular, for the parameters of the first layer wq, we have P(w) =
w1Wo.r, where wi € R and wy.;, € R4*1, This implies, for any z, Vy, P(w)z = zw;L.
Using this along with eq. (31), we get the following expression for some positive scalar 7y

.
Wi = valp(Woo)Zoo =FZOWy = Wiy = Wi Wo.p =72 - ||W§°L||2 xz™. (32)
R, ~00 ~o0o .

Since Wi, o< B , we have shown that 3 o< z°°, which completes our proof of Theorem O

C Linear Convolutional Networks: Proof of Theorem 2H24a

Recall that L-layer linear convolutional networks have parameters w = [w; € RP]F . We first
recall some complex numbers terminology and properties

1. Complex vectors z € CP are represented in polar form as z = |z|e!?z, where |z| € RY and
¢, € [0,2m)P are the vectors with magnitudes and phases, respectively, of components Z.
2. Forz = |z]e!®z € CP, the complex conjugate vector is denoted by z* = [Z]e™'¢=.
3. The complex inner product for X, 3 € CP is given by (x,8) = >, X[d|B [d] =x'8 .
1

4. Let F € CP*P denote the discrete Fourier transform matrix with F[d, p] = ﬁw%p where

recall that wp = e~ B is the D" complex root of unity. Thus, for any z € RP, the
representation in Fourier basis is given by z = Fz. F and its complex conjugate matrix J*

also satisfy: FF* = F*F =1, F = F' and F* = F* .

Before getting into full proofs of Theorem 2aH2, we also prove the two lemmas (Lemma [3 and
Lemma ) that establish equivalence of dynamics of gradient descent on full dimensional convo-
lutional networks to those on linear diagonal networks (Figure [Ic), albeit with complex valued
parameters. This makes the analysis of the of convolutional networks simpler and more intuitive.

We begin by proving Lemma [3| which shows the equivalence of representation between convolutional
networks and diagonal networks.

Lemma 3. For full-dimensional convolutions, 3 = Peony (W) is equivalent to
B = diag(w1) ...diag(Wp_1)Wp,

where forl = 1,2, ..., L, w, € CP are the Fourier coefficients of the parameters w; € RP.

Proof. First, we state the following properties which follow immediately from definitions:
1. Forx, 3 € RP,

(x.B)=x"B=x"FFB=%"B =(%B). (33)
where recall that the complex inner product is given by (X, B) = ATB*.

2. We next show the following property
F(hxw) = (Fh) 0 (F*w) = h o W*, (34)
where © denotes the Hadamard product (elementwise product), i.e., (a ® b)[d] = a[d]b[d].

The above equation follows from simple manipulations of deﬁnitions recall that (Fz)[d] =
\F Zp o z[plwh and haw defined in eq. (@) as (hxw)[d] = \ﬁ Zk o wik] h[(d + k) mod D).
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D—-1D-1 D—-1D-1

~ . Sk 1 ’ (a) Fw (k' k) mod D)d
h® w*[d] = hldw*[d = — wik]h[k i M4 — wlk
D kZ:O k'=0 D k=0 k’'=0
D— D—1
TZ ﬁ wlk[h[(p+ k) mod D] | Wiy = (F(h+w))[d], (35)
p=0 k=0

where (a) follows as w5 = 1 and in (b) we used the change of variables p = (k' — k) mod D (recall

our use of modulo operator as amod D =a — D | & ).

Recall from eq. (3)) the output of an L-layer convolutional network is given by
7x) = (x*w1) x W) .. ) xwr_1) wp = (x,3).
Denote hy_1(x) = (((x x w1) x W2)...) * wr_;. By iteratively using eq. (34), we have
th_l(X):fXQ.F*Wl @f*WQ...Q.F*WL_l. (36)
Thus, on one hand using the above equation we have,
J(x) =hp_1(2) "wp =hy_1(x) FF'wy = (Fhy_1(x)) " (F*wy)

a) (b

(37)
D (Fx)T (Fwi 0 Frws...0 Frwy) 2 (&, Fw, © Fws...0 Fwr),

—

where (a) follows from substituting for Fhy_ 1( ) from eq. and noting that for any {z, € RP},
(21 © 22 ® ...zL_l)TzL =7 (29 ®23 ® ...z1), and (b) uses the definition of complex inner
product (X, 3) = iTﬁ .

Now further using eq. in above equation, we have

(%, Peonv(W)) = (X, FPeons (W) = ¥(X)

~ ~ 38
:><X,]:'PCO»,W(W)>=<X,]:W1 @j—"WQG}—WL> (38)

Thus, for 8 = P.ony(W), we have shown that ,?3’ = FPeonv(W) = W1 © Wa... ® W,
diag(wy)diag(ws) .. .diag(Wr_1)Wp.

0ol

Forw = [\/7\\/'[ € CD]ZLZP let ,Pdiag(‘/i/') = dlag(ﬁl)dlag(v?rg) AN diag(vAvL_l)vAvL = \/?\\/'1 O] \/7\\/'2 ARNO)
w, denote the equivalent parameterization of convolutional network in Fourier domain.

The above lemma shows that optimizing Lp
mization problem in terms of representation,

conv

(w) in eq. () is equivalent to the following mini-

N

n‘%n Epdiag (VAV) = Z £(<§n7 Paiag ({J\V>>, Yn) (39)

n=1

The following lemma further shown that not only the representations of Peop,., (W ) and Pdmg( ) are
equivalent, but there corresponding gradient descent updates for problems in eq. (4) and eq. are
also equivalent up to Fourier transformations.

Lemma 9. Consider the gradient descent iterates w't) = (W, (¢ )] 1 from eq. (7) for minimizing
Lp,, . ineq. over full dimensional linear convolutional networks For all l, the incremental

update directions, AW D= W(Hl) — Wl(t) =~ Vw,Lp,,. (W) satisfy the following,
]:AWl(t) — \/K\fl(tJrl) A(t) — _nth £7Dd1,ag( (t)) (40)

L
where w(t) = {v’?/l(t)} are the Fourier transformations of w(*) = [Wl(t)]lL:l, respectively.
=1

The above lemma shows that Fourier transformation of the gradient descent iterates w(*) = [Wl(t)] E
for Lp,,,, in 1€q. (@) are equivalently obtained by gradient descent on the complex parameters w for

minimizing Lp 10y 0 €q. (B9)
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Proof. We use the notation 1/® Wy = W) OWa...W;_1 ®Wi1...® W, to denote Hadamard
product across all parameters valp with I #£ 1.
For any w = [w;]_,, using eq. (38), we have the following for all [,

(% Peonu(W)) = (R, Paiag(W)) =X (W 03 ©...w}) = w7 [( 2, %) © %|. @
Using the above equation we have,

£ Pronsw))o) = £ (w7 7 [( 0, 57) %] )

- le€(<x, Peonw (W)>, yn) (é) €I(<Xa Peonw (W)>7 y7L)-F* |:<l’<;)él®7> © ﬁ:l (42)
= 7[R Paag®)) .57 ) OF] = F T (& Poson ()0
where in (a) we use ¢'(7,y) = %%’y) and the remaining equalities simply follow from manipulation

of derivatives. From above equation, we have the following:

N
]:Awl(t) = —mFVwLp,,,, (W(t)) = _nt‘FZ VWLE«XT“Pco'rw(w(t)»a Yn)
n=1
N o~
= —mFF* Y Ve l((Zns Paiag(W 1)), yn) = =1V, Lpy,,, (WD), O

n=1

C.1 Proof of Theorem 2H2al

Theorem 2 (Linear convolutional networks of depth two). For almost all linearly separable datasets
{Xn, Yn YN_,, almost all initializations w'®), and any sequence of step sizes {n; }+ with n; smaller
than the local Lipschitz at w®), consider the sequence gradient descent iterates w') in eq. (7)) for
minimizing Lp,, (W) in eq. (@) with exponential loss over 2-layer linear convolutional networks.

If (a) the iterates w'*) minimize the objective, i.e., Lp,,  (w®) = 0, (b) w®) converge in direction

; = ; .. . o . . ~@®)
to yield a separator ﬁoo with positive margin, (c) the phase of the Fourier coefficients 3 = of the
linear predictors ,B(t) converge coordinate-wise, i.e., Vd, B el%m[d], and (d) the gradients

Vﬁﬁ(ﬂ(t)) converge in direction, then the limit direction B is given by,

8" = @ where 3% 1 := argmin||,@||1 st n, yn(B,x,) > 1. )
Hﬁ]—',l B

Theorem 2a (Linear Convolutional Networks of any Depth). For any depth L, under the conditions
J— t
of TheoremE, the limit direction B = lim Mw();” is a scaling of a first order stationary

t—o0 Hpconv(w(t)
point of the following optimization problem,

min 18]z, 5.8 Y1, yn (B, %) > 1, (10)

1/1)
where the {,, penalty given by ||z||, = (Zle |2[4] \P> (also called the bridge penalty) is a norm
for p =1 and a quasi-norm for p < 1.

For the gradient descent iterates w(*) = [wl(t)]l’::1 from eq. (7)) denote the sequence of corresponding

linear predictors as B(t) = Peono(w®). Let B(t) = }'ﬂ(t) and vAvl(t) = ]:Wl(t) denote the Fourier

L
transforms of ﬁ(t) and wl(t), respectively, and let w(*) = {vAvl(t)}

=1
.. SO @) ~@) ~(t)
Summarizing the results so far, we have 8~ = w;’ © Wy ... ® W’ (from Lemma [3) and
A(fvl(t) e (fvl(t) = —ntV@LEpdw (w®) (from Lemma 9).

We use the following observations/notations
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w( ~ 00 A~ 00

1. Let w™ hm o Denote the Fourier transform of W = [W*]asw = [w; |.
Taking Fourler transforms of eq. (16) which are also applicable here, we have:
~ =00 (1)
wf” =W, 9(t) + 8w, 9(0), (43)

~(t
where g(t) = [w(®| = [[#©] and 3ee) — 0
2. Denote the negative gradients with respect to ﬂ(t) as z(t) = —Vgﬁ(,@(t)) and let z(Y) =

: . t . —o0 (t)
Fz® . From the assumption of Theorem [22a, lim 25w exists. Let z°° = limy_, o0 127
t—oo 2] 1z ]|

Denote z . = Fz>°. We get the following by taking Fourier transform of eq. (17)
~(t)

29 =27p(t) +5, p(t), (44)
~(t
where p(t) = [z = |[2®)] and 5. — 0.
3. From Lemmal|8} we have that 3{cv,, } nes., such that tlim % = > nYnXp. Thus,
= Z O YnXn- (45)

nESs

KKT conditions for optimality We want to show that a positive scaling of BOO X Peony (W),
denoted by ,6'00 = YPeony (W) is a first order stationary point of eq. (10), repeated below,

win [|Bll, st Y0, 9 (B, %0) > 1.

Recall the KKT conditions discussed in Section[3] The first order statlonary points, or sub-stationary
points, of (10) are the set of feasible predictors 3 such that 3{c,, > 0}2_; satisfying the following:
n, yn(xm ,6) >1 = a,=0,and

> e € 0°(18]l,, (46)

where 9° denotes the local sub-differential (or Clarke’s sub-differential) operator defined as 0° f (8) =
conv{v : A(zg)g s.t. zx — Band Vf(zg) — v}.

For p = 1 and B represented in polar form as [Ai = |Z3|ei‘¢’/§ e CP, ||[A3||p is convex and the local
sub-differential is indeed the global sub-differential given by,

0°|1Bll = {z: ¥d, |z[d]] < 1and B[d] #0 = z[d] = e'*s!"}. @7

For p < 1, the local sub-differential of ||3]| » is given by,

Vp <1, O°|Blp={z:Bld #0 = z[d] =pe? |Bld]"}. (48)
Showing KKT conditions for BOO X Peonv(W™). As we showed proof of Theorem {4, since
Pcom,( °°) has strictly positive margin, using homogenelty of Peonv, We can scale Peony (W) to
get ﬁ = YPeony (W) with unit margin, i.e., Vn, y, (xn, ﬂ )y > 1. For dual variables, we again

use a positive scaling of o, from Lemma such that z>° Zne S On YnXn.
In order to prove the theorem, we need to show that for some positive scalar 5, ¥z . € 9° ||[Ai||2/L,
i.e., satisfies the conditions in eq. and (48)), for L = 2 and L > 2, respectively.

We start from the stationarity condition in the parameter space in eq. of Theorem 4. For some
positive scalar 7, we have

W = FVWPeony (W)Z™. (49)
We will now special case the above equation for fully width convolutional networks.
From Lemma li, we have that for all w = [w; € RP], we have Peony (W) = F*Pyiay(Fw) where
F and F* denote discrete Fourier matrix and its inverse in appropriate dimensions. Let {e;} 111):1
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denote the standard basis in R”. We first note that forall ] = 1,2,..., Landforalld =1,2,..., D,
the following holds

Peons(W)[d] = €] F*Pajag(Fw) = eq F* (O} Z1%1/) (50)
—e) F* H diag(wy) | Fw; = (w, F H diag(wy,) | Fea).  (51)
V2l £l
— Vi, Peonv(W) H diag(w}) | Fea. (52)
U#l

This implies, for{ = 1,2,..., L and any z € RP, we have

Ve, Peons(W)z =Y _ V, Peons(W)[:, dlzld] = F* | ] diag(w}) | Fz. (53)
d I'#£1

Substituting the above equation in eq. (49), we have,

Wi = WP = TF Ve, Peona ()7 =7 (Qvwy ) 07, (54)
where %?,0* denotes the complex conjugate of %?,O
~oo 0
Let 3 = Pgiag(W ). The above equation, further implies, for all [
o A~ O0%* ~ 00 _ 7QOO* 200 _ (ZLOO ‘157 )
W, =W, ow, =78 0z 7|18 @z | (55)
In eq. (59), since the LHS is a real number, we have that for all d such that |3 [d]| > 0
o954 — o5 (56)

Also, by multiplying the LHS of eq. across all [ and taking Lth root over positive scalars, we
have ford =0,1,..., D — 1,

)| 2 [all (57)

2S00

Finally, let v be a positive scaling of EOO such that ﬁ = 7@ has unit margin. Let ,@ =F EOO =
vB . Since ¥ is arbitrary positive scalar, redefining as 7 < 2+%=~17, we have from eq. (56)-(57),

~00 2/p—1
> _= i d
vist|@ [ £0, 73l =" B [d (58)
C.1.1 Caseof L >2o0rp=2/r<1
For p = 2/1 < 1 s1nce z = Z anynxn, eq. is indeed the first order stationarity

condition for eq. as described in eq [11)) and (13).
C.12 Caseof L=2orp=2/L=1

For the case of p = 1, in addition to eq. (58), we need to show that 7|%m| < 1. From eq. (58)), for
L = 2 we have ‘B [d]‘ £0 = FZ " |d)| = 1.

We need to further show that Vd s.t. ‘B [d]’ x ﬁ [d]’ = 0,9z [d]] < 1.
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Tl =0 = AR <1

Using Lemmal9|for for the special case of 2-layer linear convolutional network, for Vd,

AR d) = 02 ®d] %" [d) 59
Awy[d) = iz d] 1" [d).
O moo g0 s 0 _ () 50 =
Recall: forl = 1,2, g(*) — wfo, = z .8 (t) Ow (t) and 2 sz B = w(fo © wgo.
Further, from eq. (53), we have Vd, [w, [d]|? = W, [d]|2, and hence
~00 ~00 =00
(Wi [d]] = [wy [d]| = VI8 [d]l (60)
From the convergence of complex numbers, we have the following:
1. Vd such that [z [d]| # 0, we have
ZzM®1d oo ;
|Z [ H . |Z [dH ande@“)[d] - el¢; (d (61)
p(t)
2. Vd such that |8 [d]| # 0, we have [W, [d]|, |Ws [d]| # 0, and the following holds
T )] e 4 ;
forl =1,2 W, L) — W, [d]] and e " — ¢S
g(t)
~@®)
N . o . . 62
B M 5 1) and o5 o ¥ — otarin . oz D
g(t)?
FZ7[d]| =1 and e = %%,
where the last equation follows from eq. (56).
e ~ 0O ~ 0C
3. Vd such that |3 [d]| = 0, from eq. (60), we have [w, [d]| = |[W, [d]| = 0.
In the remainder of the proof, we only consider d with |z |d]| # 0.
Consider ug) defined below,
ul) = Wi d) - e 75+ (). (63)
Since forl = 1,2, wl(t)/g(t) — w;°, we have the following:
(t) o0 A~ OO * a 0 f 3 d == 0
e TR TR L SRR et
= g(t) e~ [[wy [d)| + Wy dll] i 1B [d]] > 0
w0 it3 [d] =0 o
2e TN/ (B [d]] if[B [d]| >0
where (a) follows from using ei¢%°°[ = %% = %% . ¢"%5 9] whenever B [d] # 0 (from

eq. (62)), and (b) follows from eq. (60).
Step 1. Dynamics of ufit): Now looking at the dynamics of uy, using eq. we have that
ag ™Y =l e 2O w5 d) + 2@ ) w1 d)

=) + [2V[d)| ei(d)i“)ldl*q%m[d])VAVét)*[d] e (B0 t=1) | w0 [d] - e
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.. . 1=00 . +i N — Pz t t
Additionally, since %2 (g _y ¢l%s=a) , we can write e 1<¢z(”[d] z ld]) 6( ) + 16( 5.4 where

6%, 4, (¢ ) — 0 are real scalars. Substituting in above equation and rearranging the terms we have

g ™Y = [T O+ )| a4 8 2O L)) %8 ) - %0 [d) - e

(u)
[1+m|z (1 + 6] ul + mlz O, (65)
where in (a) we define 7' 5étd [ t)*[d] - vAvgt) [d] -e_i(z’%‘x’[d]}.

The following intermediate lemma is proved in Appendix[C.1.3]

~ ®
Lemma 10. Consider T((it) in eq. (65). For all d such thatz [d] # 0, ug) — oo and T — 0.
Ug

Using the above lemma, we have égt 4 — 0 such that ‘r(t) = 6§tzlud(t). Additionally, since

IZ;)(>t[)Cl]| — |z [d]], there exists 64(131 — 0 such that [z [d]| = |z [d]|p(t) + 55;,3117(’5)- Substituting

these representations in eq. , we have the following dynamics for ugy(t),

W = (1) (71 + 805) (146 + 60 ul)

(66)
2 [t ) (27 ()] + 60) [ u,

where in (a) we have accumulated all diminishing terms into 65) = 55& (1 +0 gtzi + 5:(;11) +
200 t t

271 (o1 +85%) = 0.

Step 2. Remainder of the proof: We now prove our theorem by looking the following quantity: For

~00 (t)
any d,d’ withz  [d),z  [d'] # 0, define “1(1 )d, = |t
d’

We will show that whenever \%OO[ d]| > |%Oo [d']], we get /{Ez)d/ — 00. Along with eq. (64)), this would

imply that lim n&tjj, = ‘lg [[dd/]]l‘ = oo. Hence, for any d,d’ with 3 [d] =0and B [d'] # 0, we

have 3z [d]] < 7|z [d]]. Moreover from eq.(57)), we know that §|z_ [d’]| = 1 for all d’ with
E [d'] # 0. This implies Vd, 3|z [d]| < 1 and concludes the proof.

Showing |Z [d]] > \Z [d]] = fi&t)d, — 00!

For any 2¢ > 0, let [z [d]| — |z |d]| = 2¢ > 0. We note that the since the loss £(8)) — 0, norm
of the gradient p(t) = ||z!)|| = ||z*|| — 0. Hence, for any finite step size sequence {7, }, there exists

t1 such that V¢t > t; and Vd, n:p(t) (|%C>O [d]| + |6g)|) < 0.5 and the following inequalities hold,

(t+1) u&tﬂ) (1 + 1 (|%OO [d]| + 65;)) p(t)) u((it) o
R s —d_
g (1 + 1 <|Z [d']] + 55)) p(t)) ul)

Ky (68)

)
LS

)l —1851) p®)) (1= me (B 1@ +1851) p(0)) 5% (69)
)

K, (70)



where in (a) follows from using /(1+z) > (1 — ) for x < 1 since n;p(t) (|/E\OO [d]| + |5£lt)|> <05
for all ¢ > ¢, and in (c), we absorbed all o(p(t)) terms as 65’2,17(25) for 6((;)[1, — 0 and used
iz [d)| — [z [d]] = 2¢ > 0.

Since égf)d, — 0, for large enough t5 and ¢ > to, we have |5f£)d,| < e. Thus, for all ¢ > max{ty, 2},

ReaD > (L4 mep(t) v (1)

Further, from the conditions of the theorem, for almost all initializations, \vAvl(O) [d]] > 0 for all d.
For step sizes {7;} smaller than the local Lipschitz constant, for all finite ¢’ < oo, we also have
(t") [d]

|w, | > 0. Moreover from Lemma@ we have that \u&t) [, |u((;’,)| — oo and hence 3t3 such that

YVt > t3, u () > 0, but for any finite ¢’ < oo, u(t) < 00. Thus, for tg = max{ty,ts,t3}, usin
y g

>
the above observations, we have that Ii((i ?1)/ = <tZ> > 0.
u,,
Now, using eq. (71), for all t > ¢,
t
/{Ef}l) >(1+ 77t€p(t))l<LEZ)d, = <H 1+ nuep(u))> n&t‘;i), and ﬂ((;;(:i), > 0. (72)
u:tg

Finally, we show the following claim:
Claim 2. For any finite ty, finite step-sizes {n;}, and any ¢ > 0, we have szto (1+nuep(u)) — oo.

Proof. Let = maxy |z |d]| + maxsy, \6&t)| < oo. From eq. (66)), we have that for all d,

t t
uf 1< (@ @)’ < [uf®| T @+ pmap(w) < ag®| exp<z /mup(w).

u=t0 u=t0

Moreover, we have u( )

— oo for at least one d, and for any finite step sizes and finite ¢y, |u d \ < 00.
This then implies that for some p < 0o, exp (Zuzto wnup(u )) — 00 = Zu:to Nup(u) — 0.

Thus, for any € > 0, we also have Hu 1o (1 + €nup(u)) > ezzzto Nup(u) — oo. O

From eq. and above claim, we conclude that for all d, d’, if [z~ |d]| > [z |d']|, then /ffi)d, — 00.
This completes the proof of the theorem. ]
C.1.3 Proof of Lemmal[10]

oo o
Lemma 10. Consider T((it) in eq. (63). For all d such thatZ_ |d] # 0, u(t) — 00 and 'i) — 0.

Proof. Recalling T( ) from eq. (63) and u, *) from eq. , we have the following:

~ (t)* ~ i |VAV( )[d” . —ligpgoo [d]+1¢ﬂ(t)[d
Ty s WY (d) — W d] e o, ST
IORREEY BN —rs w102 O (73)
P Twyd] e R Wy T d]. [w %)[ |, e Tidgm g
[wy " [d]]
=00 ~ o0 ~ &
Forall dif B8 [d] = W, |d] - W, [d] # 0, the it is straightforward to see that %, [d]

A‘“[d]l

| ® ~ oo o o
[d]l/g(t) [w, [d]] ig00 4 Hid 5 (0) ipoo +1¢7
— =k = 1 (from eq. (60)), and also that e B e (d] (d
|W<t>[d]\/g(t) [wy [d] ( q )

)
1 (from eq. (62)). This along with eq. gives us —45 — 0.
Uq

23



Moreover, since |B(t)[ d]| — oo, we have \vAvét)[dH or |vAv§t)[d]\ — oo. Further, using
—ihgo0 4 i i
e

50— 1, we have [u| = [W[d]] + [w{"[d][e >98O — oo,
~00
We now only need to show that these results also hold for d such that 3 [d] = 0. Recall from the
200 i (¢
assumptions of the theorem that even when 3 [d] = 0, Jog= ) € [0,27) such that e %3 —

%514, We now prove the lemma by showing the following steps for d such that ﬁ [d] =0.:

Step 1. Show :Y%w{ ” — 1.

Step 2. Show Re(e *7™ [d]“")ﬁw[d]):?COS(%w[ — b5 [d]) 0-

Proof of lemma assuming Step 1 and Step 2 hold The above steps would imply that in eq. (73)),

e the denominator satisfies

1+ szt) ], itz tidgeon | }1 +e %
w " [d]] (74)
> ’1 +Re(e @@t > .
o the numerator satisfies
w® _ . (1)
5&?1 (1 _ |A(t) [d” . C7‘¢%°°[d]+1¢5“‘) ) < | (t) 1+ | %t) [d” 0. (75)
[wy (]| [wy (]|
®
These eqs. along with eq. in turn prove the lemma, i.e., % — O and \u((it)| — 00.
Ug
Showing Step 1 and Step 2
Step 1. Show :Vj@){ ” -1
From the dynamics of vAvl(t) [d] from eq. (59), we have the following,
~ . ~ ~(@)x ()% > ~ ~
SO = (O B 1) a1 B O P
® ~(®)

WSV = (W [d)? +pz0ld) - B [d] + 02 d] - B d) + 220 [d) P [w) [d])?

Note that since [z(*) [d]|? — 0 and 7, are finite, we have that 3¢; such that for all ¢ > ¢4, 1 |z(t) [d]|? <
1. From the above equation, we have the following for ¢ > ¢1,

SR~ [wEEE] = [(1- B OEE) (90 - w0 l)|
t
@<IIG—ﬁEWM2DMW?MW—W&WW\ )

u=ty
< |l - S| < oo,
where (a) follows from iterating over ¢ and using |z(!)[d]|? < 1 for t > t;.
Since |B(t)[ d)| = |A(t)[ d]| - |A(f)[ d]| — oo, at least one 0f|A(t)[ d]|, |A(t)[ d]| must diverge. Without
loss of generality, let | WS [d]| — oo. Let ¢(t) = [W\”[d]|2 — |w$"[d]|? with |(t)| < co. We have

=) 712
|vf§t)[d” —1+ Ai(f) @y, (78)
(W [d]]? (W [d]]?

where the convergence in (a) follows since |c(t)| < oo (from eq. (76)) and |A(t)[ d]| — oo.
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71(25%@ +igpzoco
Step 2. Show Re(e @ E 74 ) = 2 cos (rj)%oo [~ qﬁﬁoc [d]) > 0.

Note that from Step 1 above, we have that :Y“)S}}? — 1, which implies W =
% — 1. Thus, there exists § % — 0, such that
SO+ 9 =208 ) - 1+ 8. 79
Also, from eq. , there exists 5(2% — 0, such that
2[d) =2 [dp(t) + 85p(t). with p(t) = |2 - . (80)

Using the above representations, along with eq. (39), we have the following,

~(t+1)

g ld]

31 + iz [W AP + WO + n2®d -B‘”*[d}]

a )+ 20 ()13 ()] (27 1)+ 85) 1+ 80+ /ona e 501
ﬁ

'[d)+ 200(0)|B" (0] [2 1) + ééfz] , @)

where (a) follows from substituting eqgs. [79)-(80), and (b) follows from using
20| < p(t) — 0 and defining 8 = agtg [1+ 60+ 1270 [d]e™ 8] +

z [d] [ 6 1oz dle” mld]} — 0.

Denote Ay = ¢Eoo W gb%oo () Additionally, from the assumption in the theorem, we have

e'%3W1 s ¢'%5™ 1), hence there exists 8 — 0 such that e “3® @ ¥ @) = eida(1 4 ().

Now, from the above equation, for any ¢y and ¢ > ¢y, we derive the updates for \B(t) [d]],

8 P = 13" P (el%mw + 2p(t) [771d] + 65 ) (el%(”w + 2p(t) [7 1) + 64| )
’\(t) o000 i —i *

2B [1 4+ 2mp(t) ([ (20 (14 600) + 7201+ 810 ) + 6]

© |B(t)[d]|2 [1 + 4nep(t) (|§Oo [d]| cos(Aq) + 5((3?1)]

© 3" (g2 [ f[ (1+ 4nup(w) (2 [d]| cos(Aa) + 55’3))]

~(t+1)

u=tg
(d) "(to) 5 : ~o0 (w)
< 1B P exp| S anup(u) (127 (] cos(Aa) + 655) ). (82)
u=to
where in (a) we used e “3® 1 79510 = ¢ida(] 4 65&) and collected all o(p(t)) terms into 65 )=
1268101650 1 2p(1)2” [d] [%“’*[d] +5“>*} +5§f3i< “80 ) 4 9p(t) [ “1d] +5<t>*}> =0
(since p(t), 55& — 0); in (b) we defined 6(7521 = 1/2 6(t)* iBa 4 1/26(t) —iAa 5(t) 0; (¢) is

obtained by iterating over ¢; and (d) follows from using (1 +z) < eXp( ).

If possible, let cos(Ag) = —2¢ < 0. Since \5gizi| — 0, and for finite step sizes 7;p(t) — 0, Jto such
that for all ¢ > to, |6 d| < €[z [d]] and exp(—46|%OC [d]|77tp(t)) < 1. From eq. (82)), we now have

8" < B‘t°)[d]|2exp(4e2°°[dn > nup<u>> < Bl

u=to
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~(t
Finally, for any finite step sizes and finite ¢y, we have |ﬁ( 0)[d]|2 < oo and this creates a con-

+1
)[dH2 — o0o. Hence, in or-

tradiction since the LHS in the above equation diverges, \3“
(1
der for the updates in eq. to lead to a divergent \B(H )[dH, we necessarily require that

cos(e'®4) = Re(e 1% ) = 2cos<d>%oo @~ 95 [d]> > 0.

This completes the proof of the lemma. O

D Computing Rp(3): Proofs of Lemmas in Section

In this appendix we prove the lemmas in Section[5 that compute the form of induced bias of linear
networks in the space of predictors. Recall that for linear predictors parameterized as 3 = P(w),

Rp (/6) = minw:P(w):ﬁ HWH%
Lemma 5. For fully connected networks of any depth L > 0,

. 2
Rpyu(B) = min _[Iwl3 = LIBIIT" = monotone(|]2)

Proof. Recall that for fully connected networks of any depth L > 0 with parameters
w = [w; € RPi— XDZ]ILA, the equivalent linear predictor given by P, (W) = wiwa ... Wr.

We first show that Rp,,,, (8) > LB~

Letw*(8) = [w} (ﬂ)]le be the minimizer of miny.p,,,, (w)=g |wl|3, so that B = Pr.u(w*(8)) =

wi(B) - w5(8)...wi(B) and Rp,,, (8) = [[w*(B)3 = X2, [lwi(8)[13. We then have,

18I = 1wi(B) - w3(B) ... wi(B)F" < w7 w3 (B)|F" ... [wh(B)IIY*
(@ 1 & 1
< 7 2 Wi (B)I3= £ Rpyu(B). (83)
=1

where (a) follows as arithmetic mean is greater than the geometric mean.

Next, we show that Rp, ,, (8) < L8|
Given any unit norm vectors z; € RP* forl = 1,2, ..., L, consider W = [W;], defined as

1 .
181 el ifl=1
Wi =3 181 sz if1=2,3,...,L 1
18Il 2y ifi=1L

This ensures that Py, (W) = W1Wz ... W, = B and |[W]3 = LHﬂH;/L, and hence

R(B)= min |[|w|3 < [[w]3 = L||BIIY". (84)

WPy (w)=0

Combining eq. (83) and eq. (84). we get Ry, (8) = L|8]13/" O

The proofs of the lemmas for computing R (w) for diagonal and convolutional networks are similar
to those of fully connected network.

Lemma 6. For a depth-L diagonal network with parameters w = [w; € RP ]zL—p we have

(w2 = L||B]2)" = monotone(||B]|s..).

2/L

R’Pdiag ('6) - w:’Pd‘rni(ri’V):ﬁ|

Proof. Recall that for an L-layer linear diagonal networks with parameters w = [w; € RP] || the
equivalent linear predictor is given by Pg;qq(W) = diag(wy )diag(ws) . .. diag(wp_1)wr.
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Let w*(3) = [w
and Rp,,,,(B)

IE

(B)]f, be the minimizer of minW:Pdiag(W):ﬂHWH%, 50 that B = Psag (w*(B))
[w*(8)|3. We then have,

D-1 D-1 L 1 D-1 L
Y18l =Y T Iwi(8) ) & > _IwiB)d?
d=0 d=0 I=1 d:O =1
1
= 7w @5 = ER%W B), (85)

where (a) again follows as arithmetic mean is greater than the geometric mean.

Similar to the case of fully connected networks, we now choose W = [W;] that satisfies Pg;qq(W) = 3

and |w||3 = LH,@HZZ This would ensure that,

Rpsiny (B) = min [wli3 < W13 = LB

We can check that these properties are satisfied by choosing W as follows: ford = 0,1,...D — 1, let
w1 [d] = sign(8D) |8Vt and W, [d] = |B'D|/= forl = 2,3,..., L.
Combining this argument with eq. [85|concludes the proof. O

For convolutional networks, the argument is the exactly the same as that for diagonal network adapted
for complex vectors.

Lemma 7. For a depth—L convolutional network with parameters w = [w; € RP ] lL—l’ we have

R (8) = min _[[wl3 = LIBI; = monotone(|B].)

W:Peonwv (W)=

Proof. Denote the Fourier basis coefficients of w; € RP and B = Peone (w) € RP in polar form as
Wi = [Wi|e'?m e CP, B =|Ble% e CP,
where |w;|, |3| € R? and g, ¢z € [0, 27)P are the vectors with magnitudes and phases, respec-
tively, of wy, B
From Lemma the Fourier basis representation of 3 = Peon, (W) is given by
B = diag(W,)diag(Wy) ... diag(W1 1)W1, = Paiag(W),

where we have overloaded the notation Pg;44 to denote the mapping of diagonal networks in complex
vector fields, and W = [w;]L_,. We thus have ford = 0,1,...,D — 1,

L
Bld]| =[] Wild]l, and ¢pld] (Z(ﬁwl >mod2w.
=1

From orthonormality of discrete Fourier transformation, we have for all w, ||w||3 = ||W||3. Thus,
RPepn,(B) = min  [w[i=__min [&]3. (86)
wW:Peony (W)=8 B:B=Pins (W)

We can now adapt the proof of diagonal networks here. Let w*(8) = [w;(8) € CP]L, be the
minimizer of ming 5 _» w)||w||2, so that 3 = Piiag(W*(8)) and Rp,,,., (8) = |[Ww*(83)||3, and

L L
d)|"+ = Z[[ d)|+ < %}Zml(ﬁ)[d] ?

= =1
[%*(@)3 _ 1
Ol _ 1r,,,.(8). (87

MG
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Similar to the diagonal networks, we can choose the parameters in the Fourier domain W= [%l €
CP] to ensure that Py;q, (W) = B and |W||3 = L||B]|7)* as follows: ford = 0,1,...D — 1, let

2/L

1ld) = ¢ld) |Bld)| 7" and W,[d) = [Bld]] ", V1 > 1.

This gives us

Rp.,..(B)= min W[} <|W|3 < L|B|);.
W:Pgiag(W)=8
Combining this with eq. [87|concludes the proof. O

E Background Results

Theorem 11 (Stolz—Cesaro theorem, proof in Theorem 1.22 of [Muresan| [2009]). Assume that
{ar}?2 | and {by}32 | are two sequences of real numbers such that {by, }3° | is strictly monotonic
and diverging (i.e., monotone increasing with by, — oo, or monotone decreasing with by, — —o0).

Additionally, if limp,_ o ‘ZZE:Z: = L exists, then limy,_, o z—’; exists and is equal to L.
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