
Leveraging the Exact Likelihood of Deep Latent
Variable Models – Appendices

Pierre-Alexandre Mattei
Department of Computer Science

IT University of Copenhagen
pima@itu.dk

Jes Frellsen
Department of Computer Science

IT University of Copenhagen
jefr@itu.dk

Appendix A. Proof of Theorem 1

Theorem 1. For all i∗ ∈ {1, ..., n} and w ∈ Rd \ {0}, we have limk→+∞ `
(
θ
(i∗,w)
k

)
= +∞.

Proof. Let i∗ ∈ {1, ..., n} and w ∈ Rd \ {0}. To avoid notational overload, we denote θk = θ
(i∗,w)
k

in the remainder of this proof. We will show that the contribution log pθk
(xi∗) of the i∗-th observation

explodes while all other contributions remain bounded below.

A first useful remark is the fact that, since z is continuous and has zero mean and w ∈ Rd \ {0}, the
univariate random variable wT z is continuous and has zero mean. Therefore P(wT z ≤ 0) > 0 and
P(wT z ≥ 0) > 0.

Regarding the i∗-th observation, we have for all k ∈ N∗,

pθk
(xi∗) =

∫
Rd

N (xi∗ |xi∗ ,Σθk
(z))p(z)dz (1)

≥
∫
wT z≤0

N (xi∗ |xi,Σθk
(z))p(z)dz (2)

≥
∫
wT z≤0

|2πΣθk
(z)|−1/2p(z)dz. (3)

Let z ∈ Rd such that wT z ≤ 0. The function

ϕ : α 7→ α tanh
(
αwT z

)
− α,

is strictly decreasing on R+. Indeed, its derivative is equal to

ϕ′(α) = tanh(αwT z)− 1 + (1− tanh2(αwT z))αwT , (4)

which is strictly negative because the image of the hyperbolic tangent function is ]− 1, 1[. Moreover,

lim
α→∞

α tanh
(
αwT z

)
− α = −∞.

Therefore, the sequence (|2πΣθk
(z)|−1/2)k≥1 is strictly increasing and diverges to +∞ for all

z ∈ Rd such that wT z ≤ 0. Therefore , the monotone convergence theorem combined with
the fact that P(wT z ≤ 0) > 0 insure that the right hand side of (1) diverges to +∞, leading to
p(xi∗ |µθi∗ ,Σθk

)→ +∞.
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Regarding the other contributions, let j 6= i∗. Since P(wT z > 0) > 0, there exists ε > 0 such that
P(wT z ≥ ε) > 0. We have

pθk
(xj) ≥

∫
wT z≥ε

N (xj |xi∗ ,Σθk
(z))p(z)dz

=

∫
wT z≥ε

exp
(

−||xj−xi∗ ||22
2 exp(αk tanh(αkwT z)−αk)

)
(2π exp (αk tanh (αkwT z)− αk))

p/2
p(z)dz

=
1

(2π)p/2

∫
wT z≥ε

exp

(
−||xj − xi∗ ||22

2 exp (αk tanh (αkwT z)− αk)

)
p(z)dz

≥ 1

(2π)p/2
exp

(
−||xj − xi∗ ||22

2 exp (αk tanh (αkε)− αk)

)
P(wT z ≥ ε),

and, since limα→∞ α tanh (αε)− α = 0, we will have

lim inf
k→∞

pθk
(xj) ≥

P(wT z ≥ ε)
(2π)p/2

exp

(
−||xj − xi∗ ||22

2

)
,

therefore
lim inf
k→∞

pθk
(xj) > 0.

By combining all contributions, we end up with limk→+∞ `(θk) = +∞.

Appendix B. Proof of Proposition 1

Proposition 1. For all k ∈ N∗, i∗ ∈ {1, ..., n}, and w ∈ Rd \ {0}, the distribution p
θ
(i∗,w)
k

is
spherically symmetric and unimodal around xi∗ .

Proof. Let k ∈ N∗, i∗ ∈ {1, ..., n}, and w ∈ Rd \ {0}. To avoid notational overload, we denote
θk = θ

(i∗,w)
k . We have, for all x ∈ Rp,

p
θ
(i∗,w)
k

(x) =

∫
Rd

N (x|xi∗ ,Σθk
(z))p(z)dz =

∫
Rd

N (x− xi∗ |0p,Σθk
(z)), p(z)dz.

The density of x is therefore a decreasing function of ||x− xi||2, hence the spherical symmetry and
the unimodality. Note that there are several different definitions for multivariate unimodality (see
e.g. Dharmadhikari and Joag-Dev, 1988). Here, we mean that the only local maximum of the density
is at xi.

Appendix C. Proof of Theorem 2

Theorem 2. Assume that (Φ(·|η))η∈H is the family of multivariate Bernoulli distributions or the
family of Gaussian distributions with the spectral constraint of Proposition 2. The likelihood of
the corresponding nonparametric mixture model is maximised for a finite mixture model of k ≤ n
distributions from the family (Φ(·|η))η∈H .

Proof. Let us assume that there are L ≤ n distinct observations x̃1, ..., x̃L. Following Lindsay
(1983), let us consider the trace of the likelihood curve

Γ = {(Φ(x̃l|η))l≤L |η ∈ H}.

We will use the following theorem, which describes maximum likelihood estimators of nonparametric
mixtures under some topological conditions.

Theorem (Lindsay, 1983, Theorem 3.1). If Γ is compact, then the likelihood of the corresponding
nonparametric mixture model is maximised for a finite mixture model of k ≤ n distributions from the
family (Φ(·|η))η∈H .

This theorem allows us to treat both cases:
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Bernoulli observation model. Since H = [0, 1]p is compact and the function η 7→ (Φ(x̃l|η))l≤L
is continuous, Γ is compact and Lindsay’s theorem can be directly applied.

Gaussian observation model. The parameter space H is not compact in this case, but we can
get around this problem using a compactification argument similar to the one of van der Vaart and
Wellner (1992). Consider the Alexandroff compactification H ∪ {∞} of the parameter space (Kelley,
1955, p. 150). Because of the definition of H , we have limη→∞ Φ(x̃l|η) = 0 for all l ∈ {1, ..., L}.
Therefore, we can continuously extend the function η 7→ (Φ(x̃l|η)))l≤L from H to H ∪ {∞} using
the conventions Φ(x̃l|∞) = 0 for all l ∈ {1, ..., L}. The space {(Φ(x̃l|η))l≤L |η ∈ H ∪ {∞}} is
therefore compact, and we can use Lindsay’s theorem to deduce that the nonparametric maximum
likelihood estimator for the compactified parameter space H ∪{∞} is a finite mixture of distributions
from (Φ(·|η))η∈H∪{∞}. However, this finite mixture can only contain elements from (Φ(·|η))η∈H .
Indeed, if any mixture component were associated with η =∞, the likelihood could be improved by
emptying said component. Therefore, the maximum likelihood estimator found using the compactified
space is also the maximum likelihood estimator of the original space, which allows us to conclude.

Appendix D. Proof of Theorem 3

Theorem 3. Assume that

1. (Φ(·|η))η∈H is the family of multivariate Bernoulli distributions or the family of Gaussian
distributions with the spectral constraint of Proposition 2.

2. The decoder has universal approximation abilities : for any compact C ⊂ Rd and continuous
function f : C → H , for all ε > 0, there exists θ such that ||f − fθ ||∞ < ε.1

Then, for all ε > 0, there exists θ such that

`(Ĝ) ≥ `(θ) ≥ `(Ĝ)− ε.

Proof. The left hand side of the inequality directly comes from the first assumption and Theorem 2.
We will now prove the right hand side.

Let ε > 0. Since the logarithm is continuous, there exists δ > 0 such that

0 ≤ u ≤ δ =⇒
n∑
i=1

log(pĜ(xi)− u) ≥ `(Ĝ)− ε. (5)

We will show that pĜ(xi) and pθ(xi) can be made closer than δ for all i ≤ n.

Theorem 2 insures that Ĝ is a finite mixture, so there exist some (π1, ..., πK) ∈ ∆K and η1, ...,ηK ∈
H such that

∀x ∈ X , pĜ(x) =

K∑
k=1

πkΦ(x|ηk).

We will partition the domain of integration of the latent variable into several parts:

• an infinite part of very small prior mass,

• a compact set of high prior mass over which we can apply the universal approximation
property.

The compact set will be divided itself into 2K parts: one part for each mixture component and K − 1
small parts to insure the continuity of the decoder. More specifically, let e ∈]0,min{π1, ..., πK}[, let
F be the (prior) cumulative distribution function of ||z||2, and let:

1Here, the infinite norm is defined as follows. For any η ∈ H , ||η||∞ is the maximum of the absolute
values of the coordinates of η (which is well-defined because the observation model is parametric). For any
f : C → H , we note then ||f ||∞ = maxz∈C ||f(z)||∞.
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• α1 = 0,

• ∀k ∈ {2, ...,K}, αk = F−1(
∑k−1
l=1 πl),

• αk+1 = +∞,

• ∀k ∈ {1, ...,K}, βk = F−1(
∑k
l=1 πl − e).

Let C = {z ∈ Rd | ||z||2 ≤ βK}. Consider a continuous function f : C → H such that

∀z ∈ K, f(z) =


η1 if α1 ≤ ||z||2 ≤ β1
η2 if α2 ≤ ||z||2 ≤ β2
...

ηK if αK ≤ ||z||2 ≤ βK .

For example, f can be built using the Tietze extension theorem (see e.g. Kelley, 1955, p. 242)
together with the conditions of the above formula. According to the universal approximation property,
we can find decoders arbitrarily close to f . How close do they need to be? Invoking the continuity of
the functions (η 7→ Φ(xi|η))i≤n in η1, ...,ηK , there exists ∆ > 0 such that

∀l ∈ {1, ...,K}, ||ηk − η||∞ ≤ ∆ =⇒ |Φ(xi|η)− Φ(xi|ηk)| ≤ e.

We will consider now a decoder fθ such that ||f − fθ||∞ ≤ ∆.

We can write, for all i ≤ n,

pθ(xi) =

K∑
l=1

(∫
αl≤||z||2≤βl

Φ(xi|fθ(z))p(z)dz +

∫
βl≤||z||2≤αl+1

Φ(xi|fθ(z))p(z)dz

)

≥
K∑
l=1

∫
αl≤||z||2≤βl

Φ(xi|fθ(z))p(z)dz.

Using the fact that ||f − fθ||∞ ≤ ∆, we have therefore, for all i ≤ n,

pθ(xi) ≥
K∑
l=1

∫
αl≤||z||2≤βl

(Φ(xi|ηl)− e)p(z)dz

=

K∑
l=1

(Φ(xi|ηl)− e)(πl − e)

=

K∑
l=1

(
πlΦ(xi|ηl) + e2 − e(πl + Φ(xi|ηl))

)
≥

K∑
l=1

πlΦ(xi|ηl)− e

(
K∑
l=1

Φ(xi|ηl) + 1

)
.

Now, if we take e such that

e

(
K∑
l=1

Φ(xi|ηl) + 1

)
≤ δ,

for all i ≤ n, we end up with

pθ(xi) ≥ pĜ(xi)− δ.

Using (5), this eventually leads to `(θ) ≥ `(Ĝ)− ε.
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Appendix E. Implementation details

Some computational choices are common for all experiments: the prior distribution is a standard
Gaussian distribution; the chosen variational family (Ψ(·|κ))κ∈K is the family of Gaussian distri-
butions with “diagonal + rank-1” covariance (as in Rezende et al., 2014, Section 4.3); stochastic
gradients of the ELBO are computed via the path derivative estimate of Roeder et al. (2017); the
Adam optimiser (Kingma and Ba, 2014) is used with a learning rate of 10−4 and mini-batches of size
10; neural network are initialised following the heuristics of Glorot and Bengio (2010); sampling
for variational autoencoders is performed via the Distributions module of TensorFlow (Dillon et al.,
2017).

For the Frey faces data set, we used a Gaussian DLVM together with the parametrisation presented
in Section 2.1 (with d = 5 and h = 200). The architecture of the inference network follows
the same parametrisation. Constrained finite Gaussian mixtures were fit using the scikit-learn
package (Pedregosa et al., 2011). Regarding the missing data experiments, we used MLPs with ReLU
activations and 200 hidden units together with an intrinsic dimension of 50.

Appendix F. Additional imputation experiments
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Figure 1: Single imputation results (F1 score between the true and imputed values) for the two
Markov chains.
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