
Appendix

A. Derivation of fixed point equations

Inference in LDA requires estimating the distribution over θ and z. Using the Bayes rule, this posterior
can be written as follows:

p(θ, z|w, α, β) = p(θ, z, w|α, β)
p(w|α, β)

(15)

To perform variational approximation, we approximate this LDA posterior with the PGM as shown in
Figure 1b.

The joint distribution for the approximate PGM is given by:

q(θ, z) = q(θ)

N∏
i=1

qi(zi) (16)

We want to tune the approximate distribution to resemble the true posterior as much as possible. To
this end, we minimize the KL divergence between the two distributions. Alternatively, this can be
seen as minimizing the variational free energy of the Mean-Field inference algorithm [30]:

min
{q}
{DKL( q(θ, z) || p(θ, z|w,α, β) )} (17)

Substituting the expression for KL-divergence, we get

min
{q}

∫
θ

∫
· · ·
∫
{zi}

q(θ, z) log
q(θ, z)

p(θ, z|w,α, β)
dθ {dzi} (18)

Using the Bayes formulation given in equation(2) and observing that p(w|α, β) is a constant, we can
write

min
{q}

∫
θ

∫
· · ·
∫
{zi}

q(θ, z) [ log q(θ, z)− log p(θ, z, w|α, β) ] dθ {dzi} (19)

Substituting the probability densities given in equations (1) and (3), the following minimization
expression is obtained:

min
{q}

∫
θ

∫
{zi}

{
q(θ)

N∏
i=1

qi(zi)

}{
log

(
q(θ)

N∏
i=1

qi(zi)

)

− log

(
p(θ|α)

N∏
i=1

p(zi|θ)p(wi|zi, β)

) }
dθ {dzi}

(20)

Pulling logarithms inwards we can convert products to summations. We then move integrals inward.
In some cases, integrals add up to 1 ( e.g.,

∫
θ
q(θ) dθ = 1). In some cases, inner sums can be pulled

outwards. The result consists of simple integrals:

min
{q}

{ ∫
θ

q(θ) log q(θ) dθ +

N∑
i=1

∫
zi

qi(zi) log qi(zi) dzi −
∫
θ

q(θ) log p(θ|α) dθ

−
N∑
i=1

∫∫
θ,zi

q(θ)qi(zi) log p(zi|θ) dθ dzi −
N∑
i=1

∫
zi

qi(zi) log p(wi|zi, β) dzi
} (21)

We denote the expression given in equation(21) by min
{q}

(L). To minimize the functional equation

given by L, we take the functional derivatives of L with respect to q(θ) and qi(zi) and equate them
to zero.

Solving for
(

δL
δq(θ) = 0

)
, we get the first fixed point equation:

log q(θ) = log p(θ|α) +
N∑
i=1

∫
zi

qi(zi) log p(zi|θ) dzi − 1 (22)

12



Similarly, solving for δL
δqi(zi)

= 0, we get the second fixed point equation:

log qi(zi) = log p(wi|zi, β) +
∫
θ

q(θ) log p(zi|θ)dθ − 1 (23)

Note that this derivation is different from the classical variational approximation derivations, where
the EM algorithm is eventually used to iteratively approximate the posterior.

B. Architecture choices of CoNN-sLDA model

In this section we report on our experiments to optimize the algorithmic and architectural hyperpa-
rameters. We use the ‘MultiSent’ dataset for our analysis.

B.1 Varying Hilbert Space Embeddings dimension

Figure 5: Varying Hilbert space embeddings dimension along the x-axis and the AUC values on
y-axis. We also compare with the cost sensitive learning version, denoted by AUC (IMB) for every
dimension choice. The depth of neural networks for both the embeddings µθ and µzi is a single fully
connected layer.

The dimensionality of the Hilbert space trades off the expressive power against computation and
storage requirements of the model. In Figure 5, we show varying Hilbert space dimensions on the
x-axis and compare their AUCs. We observe a decline in AUC after Hilbert dimension of 20. We
postulate that higher Hilbert space dimensions tend to overfit the data. Empirically we found that
with lower Hilbert space dimensions we have to scale down the dropout appropriately.

As the data is imbalanced between number of positive and negative reviews, we did cost sensitive
learning in CoNN-sLDA (Imb) by adjusting the weights of the loss function for different classes and
were able to attain slight improvement.

B.2 Varying number of Iterations of update equations in Algorithm(1)

Figure(6a) shows the plot of varying number of iterations of update equations in algorithm(1) versus
the AUC obtained. We can observe the that AUC decreases and the corresponding standard deviation
increases as we increase the number of iterations. In our experience, our algorithm works well even
for a single iteration and going beyond 5 iteration gives no significant improvement in results.

B.3 Varying depth of the model

In Algorithm 1, we parameterized the embeddings µθ and µzi using deep neural networks. Here, we
analyze the results of varying the depth of the neural networks and their effect on the corresponding
AUC. Figure 6b shows a combination plot, where we visualize the AUC values for various different
combinations of depth between µθ and µzi .
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We found that two fully connected layers for embedding µzi and a single fully connected layer for
embedding µθ works well for both datasets. Deeper models tend to overfit the data. For training, we
recommend starting with a small Hilbert space dimension and batch size, then increase the number of
fully connected layers, and finally choose to unroll the model further.

(a) Varying iterations (b) Varying µθ and µzi ’s

Figure 6: (a) Unrolling the model along the x-axis and AUC on the y-axis. For the ‘MultiSent’ dataset,
we found that even using a single iteration works well. (b) Plot showing number of fully connected
layers for various combinations of µθ and µzi’s. The AUC values are shown on y-axis. We observe
that the setting where there are two fully connected layer of embedding µzi consistently gives good
results for varying layers of embedding µθ.

C. Interpretability: Getting the relevant words based on embeddings obtained

The embedding model defines a relationship between words found in documents w and topic distribu-
tions for documents µθ. Usually we calculate the topic distribution from the words in documents. For
interpretation purposes, we might wish to go the other direction: from topics µθ to words in the topic.
For instance, after running CoNN-sLDA, we get embeddings for all of the documents. We could then
cluster these to get K clusters. We might then ask how to interpret these clusters. We could take the
mean embedding of each cluster µk and recover the words that would be associated with the cluster
(e.g., SLR, aperture, resolution versus click-and-shoot, special effects). Alternatively, we could run
PCA on the embedding space to find the principle directions of variation of document topics. We
can then recover the words associated with the end-points of each distribution in order to label this
dimension (e.g., light weight versus heavy or easy-to-use versus complicated).

We show here how to define a relationship between a given µθ and the words associated with the
topic. Given the µθ from CoNN-sLDA model of a document under consideration, we want to find the
top word2vec vectors which satisfies the equation(24). If we substitute 14 into 13, we can eliminate
the dependence on word topic distributions zi.

µθ = tanh(W1 ·
N∑
i=1

{tanh(W2 · word2vec(wi) +W3.µθ )} ) (24)

The µθ terms are related by the sum of the embeddings of words in the text. The embeddings for
the same word are always the same, so we can group all embeddings for word class c together and
just keep a class weights Fc. We set to zero so that we have an equation that measures discrepancy
between current system and a consistent system. We then form an objective Jw which is a function
of topic distribution µθ and K word class weights Fc.

Jw(Fc;µθ) = tanh(W1 ·
K∑
c=1

Fc{tanh(W2 · word2vec(wc) +W3.µθ )} )− µθ (25)

Minimizing the square of Jw w.r.t. the Fc parameter will give us the weights of the words relevant to
the embeddings µθ.

F ∗c = argminFc
J2
w(Fc;µθ) (26)

We can thus find the top most commonly occurring highly weighted words corresponding to any
documents distribution embedding µθ or examine words associated with any µθ in the embedded
space.
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