A Supplementary Material

We now provide proofs of the theoretical results stated in the main text.

Proof of Proposition ]

Proof. Start with a p-term k-DNF defined over a set of n Boolean variables. Encode the j’th term in
the DNF formula by a vector w; € {—1,0, 1}, where

1 [’th variable appears as positive
w;; = {—1 [’thvariable appears as negative . (14)
0  [’th variable doesn’t appear

Notice that the resulting vector is k-sparse. Next, let x € {—1, 1}" encode the Boolean assignment of
the input variables, where x; = 1 encodes that the /’th variable is true and x; = —1 encodes that it is
false. Note that the j’th term of the DNF is satisfied if and only if w; - x > k. Moreover, note that
the entire DNF is satisfied if and only if

max w;-x >k , (15)
Jj€lp]
where we use [p] as shorthand for the set {1, ..., p}. We relax this definition by allowing the input x

to be an arbitrary vector in R” and allowing each w; to be any k-sparse vector in R”. By construction,
the class of models of this form is at least as powerful as the original class of p-term k-DNF Boolean
formulae. Therefore, learning this class of models is a form of improper learning of k-DNFs. O

Note that once we allow x and w; to take arbitrary real values, the threshold k in (I5) becomes
somewhat arbitrary, so we replace it with zero in our decision rule.

Proof of Proposition

Proof. By definition, the Fenchel conjugate
P P
u*(s) = sup Z sty —log [ 1+ Z exp(—t) | | .
1ER? \g=1 k=1
Equating the partial derivative with respect to each 7 to 0, we get

exp(—ty)
k= - e (16)
1+ Y7, exp(—t})

P
ty = —log (—sk (1 + Zexp(—tj)))

c=1

or equivalently,

We note from that
1

1+ Y?  exp(—1¥)
Using the convention 0log0 = 0, the form of the conjugate function in (9) can be obtained by

plugging t* = (¢]....,t}) into u*(s) and performing some simple algebraic manipulations.

=1+4+s'1.

Proposition 2] follows directly from the form of u*, especially the constraint set S; for i € I_. For
i € I4, we notice that the conjugate of £(z) = log(1 + exp(—z)) is

(B) = (=P)log(—B) + (1 + P)log(1 + B), B €[-1.0].

Then we can let the j(i)th entry of 5; € R? be B € [—1, 0] and all other entries be zero. Then we can
express £* through u* as shown in the proposition. O
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Proof of Proposition

Proof. Recall that

1 . A
OW.e.8)=—3" (yisT (W © xi —u*(s0)) + S1IWI[5.

i€[m]
Then
1
Vi ®(W, e, S)= %Z vi(sixI) 0e+ AW .
i€[m]
The proof is complete by setting Vi &(W, €, §) = 0, and solving for W'. O
Proof of Proposition 4]

Proof. In order to project a € R” onto
Ej £ {Ej e R? 1€ji € [0, 1], ||6j||1 < k},

we need to solve the following problem:

min  =||x —al|?
xer? 2

s.t. Z?’:]X;‘Sk
Viel[n]: 0<x;<1.

Our approach is to form a Lagrangian and then invoke the KKT conditions. Introducing Lagrangian
parameters A € Ry and u,v € R4, we get the Lagrangian L(x, A, u,v)

1 n n
= §||x—a||2+)t(2xi—k)—2uixi
i=1 i=1
n
+ ) vl —1)
i=1

1 n
= 5||x—a||2+Zx,~()\—u,-+v,-)

i=1
n
- k=) v .
i=1

Therefore,
VirL=0 = x*=a—- (A —-u+v) . (17)

We note that g(A,u,v) £ L(x*, A, u,v)
1
= - §||)Ll—u +|P4+a’AM —u+v)—AK —1Tv.

Using the notation b > ¢ to mean that each coordinate of vector b is at least ¢, our dual is

max g, u,v) . (18)

ZUuZv,vz
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‘We now list all the KKT conditions:

Vi e [n]: x>0 = u;=0
Vi € [n]: xi<l = v;=0
Vi € [n]: u; >0 — x;=0
Vi € [n]: v, >0 = x;=1
Vi € [n]: U; v; = 0
n
Yoxi<k = 1=0
i=1
n
A>0 = Y xi=k

i=1
We consider the two cases, (a) Z?:l xlfk < k, and (b) Z?:l xi* = k separately.

First consider ) ;_, x} < k. Then, by KKT conditions, we have the corresponding A = 0. Consider
all the sub-cases. Using (I7), we get

l. x} =0 = a; =A—u; +v; = —u; <0 (since x] < 1, therefore, by KKT conditions,
V; = O).

2.x} =1 = ai=14+1—u; +v; =14 v; > 1 (since x} > 0, therefore, u; = 0 by
KKT conditions).

33.0<x <1l = ai=x"+A—u; +v; =x].
Now consider Z?:l xi* = k. Then, we have A > 0. Again, we look at the various sub-cases.
l.x)=0 = a;, =A—u; +v; =A—u; = u; = —(a; — A). Here, u; denotes the
amount of clipping done when a; is negative.

2.xf=1= ai=14+A-uj+vi=14+1+v; = v; = —(1 + 1 —a;). Here, v;
denotes the amount of clipping done when a; > 1. Also, note that a; > 1 in this case.

33.0<xf <1l = a=x+A—-u;+v; =x7+1 = x =a; —A. Inorderto
determine the value of A, we note that since Z?zl x; = k, therefore,

dNai—2) =k = Y ai—nk=k

i=1 i=1
k k

n
1
== A:—E aj —— <maxa; — — .
n = n i n

Algorithm [2]implements all the cases and thus accomplishes the desired projection. The algorithm is
a bisection method, and thus converges linearly to a solution within the specified tolerance tol. [
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