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Abstract

The assumption that data samples are independent and identically distributed (iid)
is standard in many areas of statistics and machine learning. Nevertheless, in
some settings, such as social networks, infectious disease modeling, and reasoning
with spatial and temporal data, this assumption is false. An extensive literature
exists on making causal inferences under the iid assumption [17, 11, 26, 21], even
when unobserved confounding bias may be present. But, as pointed out in [19],
causal inference in non-iid contexts is challenging due to the presence of both
unobserved confounding and data dependence. In this paper we develop a general
theory describing when causal inferences are possible in such scenarios. We use
segregated graphs [20], a generalization of latent projection mixed graphs [28],
to represent causal models of this type and provide a complete algorithm for non-
parametric identification in these models. We then demonstrate how statistical
inference may be performed on causal parameters identified by this algorithm.
In particular, we consider cases where only a single sample is available for parts
of the model due to full interference, i.e., all units are pathwise dependent and
neighbors’ treatments affect each others’ outcomes [24]. We apply these techniques
to a synthetic data set which considers users sharing fake news articles given the
structure of their social network, user activity levels, and baseline demographics
and socioeconomic covariates.

1 Introduction

The assumption of independent and identically distributed (iid) samples is ubiquitous in data analysis.
In many research areas, however, this assumption simply does not hold. For instance, social media
data often exhibits dependence due to homophily and contagion [19]. Similarly, in epidemiology,
data exhibiting herd immunity is likely dependent across units. Likewise, signal processing and
sequence learning often consider data that are spatially [8] or temporally [23] dependent.

In causal inference, dependence in data often manifests as interference wherein some units’ treatments
may causally affect other units’ outcomes [3, 9]. Herd immunity is a canonical example of interfer-
ence since other subjects’ vaccination status causally affects the likelihood of a particular subject
contracting a disease. Even under the iid assumption, making causal inferences from observed data is
difficult due to the presence of unobserved confounding. This difficulty is worsened when interference
is present, as described in detail in [19]. In general, these difficulties prevent identification of causal
parameters of interest, making estimation of these parameters from data an ill-posed problem. An
extensive literature on identification of causal parameters (under the iid assumption) has been devel-
oped. The g-formula [17] identifies any interventional distribution in directed acylcic graph-based
(DAG) causal models without latent variables. Pearl showed that in certain cases identification is
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possible even in the presence of unobserved confounding via the front-door criterion [11]. These
results were generalized into a complete identification theory in hidden variable causal DAG models
via the ID algorithm [26, 21]. An extensive theory of estimation of identified causal parameters has
been developed. Some approaches are described in [17, 18], although this is far from an exhaustive
list. While work on identification and estimation of causal parameters under interference exists
[3, 25, 9, 14, 13, 7, 1], no general theory has been developed up to now. In this paper, we aim to
provide this theory for a general class of causal models that permit interference.

2 A Motivating Example

To motivate subsequent developments, we introduce the following example application. Consider
a large group of internet users, belonging to a set of online communities, perhaps based on shared
hobbies or political views. For each user i, their time spent online Ai is influenced by their observed
vector of baseline factors Ci, and unobserved factors Ui. In addition, each user maintains a set of
friendship ties with other users via an online social network. The user’s activity level in the network,
Mi, is potentially dependent on the user’s friends’ activities, meaning that for users j and k, Mj

and Mk are potentially dependent. The dependence between M variables is modeled as a stable
symmetric relationship that has reached an equilibrium state. Furthermore, activity level Mi for user
i is influenced by observed factors Ci, time spent online Ai, and the time spent online Aj of any unit
j who is a friend of i. Finally, we denote user i’s sharing behavior by Yi. This behavior is influenced
by the social network activity of the unit, and possibly the unit friends’ time spent online.

A crucial assumption in our example is that for each user i, purchasing behavior Yi is causally
influenced by baseline characteristics Ci, social network activity Mi, and unobserved characteristics
Ui, but time spent online Ai does not directly influence sharing Yi, except as mediated by social
network activity of the users. While this might seem like a rather strong assumption, it is more
reasonable than standard “front-door” assumptions [12] in the literature, since we allow the entire
social network structure to mediate the influence Ai on Yi for every user.

We are interested in predicting how a counterfactual change in a set of users’ time spent online
influences their purchasing behavior. Note that solving this problem from observed data on users
as we described is made challenging both by the fact that unobserved variables causally affect both
community membership and sharing, creating spurious correlations, and because social network
membership introduces dependence among users. In particular, for realistic social networks, every
user’s activity potentially depends on every other user’s activity (even if indirectly). This implies that
a part of the data for this problem may effectively consist of a single dependent sample [24].

In the remainder of the paper we formally describe how causal inference may be performed in
examples like above, where both unobserved confounding and data dependence are present. In
section 3 we review relevant terminology and notation, give factorizations defining graphical models,
describe causal inference in models without hidden variables, and give identification theory for such
models in terms of a modified factorization. We also introduce the dependent data setting we will
consider. In section 4 we describe more general nested factorizations [16] applicable to marginals
obtained from hidden variable DAG models, and describe identification theory in causal models with
hidden variables in terms of a modified nested factorization. In section 5, we introduce causal chain
graph models [6] as a way of modeling causal problems with interference and data dependence, and
pose the identification problem for interventional distributions in such models. In section 6 we give a
sound and complete identification algorithm for interventional distributions in a large class of causal
chain graph models with hidden variables, which includes the above example, but also many others.
We describe our experiments, which illustrate how identified functionals given by our algorithm may
be estimated in practice, even in full interference settings where all units are mutually dependent, in
section 7. Our concluding remarks are found in section 8.

3 Background on Causal Inference And Interference Problems

3.1 Graph Theory

We will consider causal models represented by mixed graphs containing directed (→), bidirected
(↔) and undirected (−) edges. Vertices in these graphs and their corresponding random variables
will be used interchangeably, denoted by capital letters, e.g. V ; values, or realizations, of vertices
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Figure 1: (a) A causal model representing the effect of community membership on article sharing,
mediated by social network structure. (b) A causal model on dyads which is a variation of causal
models of interference considered in [9]. (c) A latent projection of the CG in (a) onto observed
variables. (d) The graph representing GY∗ for the intervention operation do(a1) applied to (c). (e)
The ADMG obtained by fixing M1,M2 in (c).

and variables will be denoted by lowercase letters, e.g. v; bold letters will denote sets of variables
or values e.g. V or v. We will denote the state space of a variable V or a set of variables V as
XV , and XV. Unless stated otherwise, all graphs will be assumed to have a vertex set denoted by
V. For a mixed graph G of the above type, we denote the standard genealogic sets for a variable
V ∈ V as follows: parents paG(V ) ≡ {W ∈ V|W → V }, children chG(V ) ≡ {W ∈ V|V →W},
siblings sibG(V ) ≡ {W ∈ V|W ↔ V }, neighbors nbG(V ) ≡ {W ∈ V|W − V }, ancestors
anG(V ) ≡ {W ∈ V|W → · · · → V }, descendants deG(V ) ≡ {W ∈ V|V → · · · → W}, and
non-descendants ndG(V ) ≡ V \ deG(V ). We define the anterior of V , or antG(V ), to be the set of
all vertices with a partially directed path (a path containing only→ and − edges such that no − edge
can be oriented to induce a directed cycle) into V . These relations generalize disjunctively to sets, for
instance for a set S, paG(S) =

⋃
S∈S paG(S). We also define the set pasG(S) as paG(S) \ S. Given

a graph G and a subset S of V, define the induced subgraph GS to be a graph with a vertex set S and
all edges in G between elements in S.

Given a mixed graph G, we define a district D to be a maximal set of vertices, where every vertex
pair in GD is connected by a bidirected path (a path containing only↔ edges). Similarly we define a
block B to be a maximal set of vertices, where every vertex pair in GB is connected by an undirected
path (a path containing only − edges). Any block of size at least 2 is called a non-trivial block. We
define a maximal clique as a maximal set of vertices pairwise connected by undirected edges. The set
of districts in G is denoted by D(G), the set of blocks is denoted by B(G), the set non-trivial blocks
is denoted by Bnt(G), and the set of cliques is denoted by C(G). The district of V is denoted by
disG(V ). By convention, for any V , disG(V ) ∩ deG(V ) ∩ anG(V ) ∩ antG(V ) = {V }.
A mixed graph is called segregated (SG) if it contains no partially directed cycles, and no vertex has
both neighbors and siblings, Fig. 1 (c) is an example. In a SG G, D(G) and Bnt(G) partition V. A SG
without bidirected edges is called a chain graph (CG) [5]. A SG without undirected edges is called an
acyclic directed mixed graph (ADMG) [15]. A CG without undirected edges or an ADMG without
bidirected edges is a directed acyclic graph (DAG) [10]. A CG without directed edges is called an
undirected graph (UG). Given a CG G, the augmented graph Ga is the UG where any adjacent vertices
in G or any elements in paG(B) for any B ∈ B(G) are connected by an undirected edge.

3.2 Graphical Models

A graphical model is a set of distributions with conditional independences represented by structures
in a graph. The following (standard) definitions appear in [5]. A DAG model, or a Bayesian network,
is a set of distributions associated with a DAG G that can be written in terms of a DAG factorization:
p(V) =

∏
V ∈V p(V |paG(V )). A UG model, or a Markov random field, is a set of distributions asso-

ciated with a UG G that can be written in terms of a UG factorization: p(V) = Z−1
∏

C∈C(G) ψC(C),
where Z is a normalizing constant. A CG model is a set of distributions associated with a CG G that
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can be written in terms of the following two level factorization: p(V) =
∏

B∈B(G) p(B|paG(B)),
where for each B ∈ B(G), p(B|paG(B)) = Z(paG(B))−1

∏
C∈C((GB∪paG(B))a);C6⊆paG(B) ψC(C).

3.3 Causal Inference and Causal Models

A causal model of a DAG is also a set of distributions, but on counterfactual random variables.
Given Y ∈ V and A ⊆ V \ {Y }, a counterfactual variable, or ‘potential outcome’, written as Y (a),
represents the value of Y in a hypothetical situation where a set of treatments A is set to values a
by an intervention operation [12]. Given a set Y, define Y(a) ≡ {Y}(a) ≡ {Y (a) | Y ∈ Y}. The
distribution p(Y(a)) is sometimes written as p(Y|do(a)) [12].

Causal models of a DAG G consist of distributions defined on counterfactual random variables of
the form V (a) where a are values of paG(V ). In this paper we assume Pearl’s functional model for
a DAG G with vertices V, where V (a) are determined by structural equations fV (a, εV ), which
remain invariant under any possible intervention on a, with εV an exogenous disturbance variable
which introduces randomness into V even after all elements of paG(V ) are fixed. Under Pearl’s
model, the distribution p({εV |V ∈ V}) is assumed to factorize as

∏
V ∈V p(εV ). This implies that

the sets of variables {{V (aV ) | aV ∈ XpaG(V )} | V ∈ V} are mutually independent [12]. The
atomic counterfactuals in the above set model the relationship between paG(V ), representing direct
causes of V , and V itself. From these, all other counterfactuals may be defined using recursive
substitution. For any A ⊆ V \ {V }, V (a) ≡ V (apaG(V )∩A, {paG(V ) \A}(a)). For example, in
the DAG in Fig. 1 (b), Y1(a1) is defined to be Y1(a1, U1, A2(U2)). Counterfactual responses to
interventions are often compared on the mean difference scale for two values a, a′, representing cases
and controls: E[Y (a)]− E[Y (a′)]. This quantity is known as the average causal effect (ACE).

A causal parameter is said to be identified in a causal model if it is a function of the observed data
distribution p(V). Otherwise the parameter is said to be non-identified. In any causal model of a
DAG G, all interventional distributions p(V \A|do(a)) are identified by the g-formula [17]:

p(V \A|do(a)) =
∏

V ∈V\A

p(V |paG(V ))
∣∣
A=a

(1)

Note that the g-formula may be viewed as a modified (or truncated) DAG factorization, with terms
corresponding to elements in A missing.

3.4 Modeling Dependent Data

So far, the causal and statistical models we have introduced assumed data generating process that
produce independent samples. To capture examples of the sort we introduced in section 2, we must
generalize these models. Suppose we analyze data with M blocks with N units each. It is not
necessary to assume that blocks are equally sized for the kinds of problems we consider, but we make
this assumption to simplify our notation. Denote the variable Y for the i’th unit in block j as Y ji . For
each block j, let Yj ≡ (Y j1 , . . . , Y

j
N ), and let Y ≡ (Y1, . . . ,YM ). In some cases we will not be

concerned with units’ block memberships. In these cases we will accordingly omit the superscript
and the subscript will index the unit with respect to all units in the network.

We are interested in counterfactual responses to interventions on A, treatments on all units in
all blocks. For any a ∈ XA, define Y ji (a) to be the potential response of unit i in block j to a
hypothetical treatment assignment of a to A. We define Yj(a) and Y(a) in the natural way as
vectors of responses, given a hypothetical treatment assignment to a, either for units in block j or for
all units, respectively. Let a(j) be a vector of values of A, where values assigned to units in block j
are free variables, and other values are bound variables. Furthermore, for any ãj ∈ XAj , let a(j)[ãj ]
be a vector of values which agrees on all bound values with a(j), but which assigns ãj to all units in
block j (e.g. which binds free variables in a(j) to ãj).

A commonly made assumption is interblock non-interference, also known as partial interference in
[22, 25], where for any block j, treatments assigned to units in a block other than j do not affect
the responses of any unit in block j. Formally, this is stated as (∀j,a(j),a′(j), ãj),Yj(a(j)[ãj ]) =
Yj(a′(j)[ãj ]). Counterfactuals under this assumption are written in a way that emphasizes they only
depend on treatments assigned within that block. That is, for any a(j), Yj(a(j)[ãj ]) ≡ Yj(ãj).
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In this paper we largely follow the convention of [9], where variables corresponding to distinct units
within a block are shown as distinct vertices in a graph. As an example, Fig. 1 (b) represents a causal
model with observed data on multiple realizations of dyads or blocks of two dependent units [4]. Note
that the arrow from A2 to Y1 in this model indicates that the treatment of unit 2 in a block influences
the outcome of unit 1, and similarly for treatment of unit 1 and outcome of unit 2. In this model, a
variation of models considered in [9], the interventional distributions p(Y2|do(a1)) = p(Y2|a1) and
p(Y1|do(a2)) = p(Y1|a2) even if U1, U2 are unobserved.

4 Causal Inference with Hidden Variables

If a causal model contains hidden variables, only data on the observed marginal distribution is avail-
able. In this case, not every interventional distribution is identified, and identification theory becomes
more complex. However, just as identified interventional distributions were expressible as a truncated
DAG factorization via the g-formula (1) in fully observed causal models, identified interventional
distributions are expressible as a truncated nested factorization [16] of a latent projection ADMG
[28] that represents a class of hidden variable DAGs that share identification theory. In this section
we define latent projection ADMGs, introduce the nested factorization with respect to an ADMG in
terms of a fixing operator, and re-express the ID algorithm [27, 21] as a truncated nested factorization.

4.1 Latent Projection ADMGs

Given a DAG G(V∪H), where V are observed and H are hidden variables, a latent projection G(V)
is the following ADMG with a vertex set V. An edge A→ B exists in G(V) if there exists a directed
path from A to B in G(V ∪H) with all intermediate vertices in H. Similarly, an edge A↔ B exists
in G(V) if there exists a path without consecutive edges→ ◦ ← from A to B with the first edge on
the path of the form A← and the last edge on the path of the form→ B, and all intermediate vertices
on the path in H. As an example of this operation, the graph in Fig. 1 (c) is the latent projection of
Fig. 1 (a). Note that a variable pair in a latent projection G(V) may be connected by both a directed
and a bidirected edge, and that multiple distinct hidden variable DAGs G1(V ∪H1) and G2(V ∪H2)
may share the same latent projection ADMG.

4.2 The Nested Factorization

The nested factorization of p(V) with respect to an ADMG G(V) is defined on kernel objects derived
from p(V) and conditional ADMGs derived from G(V). The derivations are via a fixing operation,
which can be causally interpreted as a single application of the g-formula on a single variable (to
either a graph or a kernel) to obtain another graph or another kernel.

4.2.1 Conditional Graphs And Kernels

A kernel qV(V|W) is a mapping from values in W to normalized densities over V [5]. In other
words, kernels act like conditional distributions in the sense that

∑
v∈V qV(v|w) = 1,∀w ∈W.

Conditioning and marginalization in kernels are defined in the usual way. For A ⊆ V, we define
q(A|W) ≡

∑
V\A q(V|W) and q(V \A|A,W) ≡ q(V|W)/q(A|W).

A conditional acyclic directed mixed graph (CADMG) G(V,W) is an ADMG in which the nodes are
partitioned into W, representing fixed variables, and V, representing random variables. Variables
in W have the property that only outgoing directed edges may be adjacent to them. Genealogic
relationships generalize from ADMGs to CADMGs without change. Districts are defined to be
subsets of V in a CADMG G, e.g. no element of W is in any element of D(G).

4.2.2 Fixability and Fixing

A variable V ∈ V in a CADMG G is fixable if deG(V ) ∩ disG(V ) = ∅. In other words, V is fixable
if paths V ↔ · · · ↔ B and V → · · · → B do not both exist in G for any B ∈ V \ {V }. Given
a CADMG G(V,W) and V ∈ V fixable in G, the fixing operator φV (G) yields a new CADMG
G′(V \ {V }|W ∪ {V }), where all edges with arrowheads into V are removed, and all other edges
in G are kept. Similarly, given a CADMG G(V,W), a kernel qV(V|W), and V ∈ V fixable in G,
the fixing operator φV (qV;G) yields a new kernel q′V\{V }(V \ {V }|W ∪ {V }) ≡ qV(V|W)

qV(V | ndG(V ),W) .
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Note that fixing is a probabilistic operation in which we divide a kernel by a conditional kernel. In
some cases this operates as a conditioning operation, in other cases as a marginalization operation,
and in yet other cases, as neither, depending on the structure of the kernel being divided.

For a set S ⊆ V in a CADMG G, if all vertices in S can be ordered into a sequence σS = 〈S1, S2, . . . 〉
such that S1 is fixable in G, S2 in φS1

(G), etc., S is said to be fixable in G, V\S is said to be reachable
in G, and σS is said to be valid. A reachable set C is said to be intrinsic if GC has a single district.
We will define φσS

(G) and φσS
(q;G) via the usual function composition to yield operators that fix

all elements in S in the order given by σS.

The distribution p(V) is said to obey the nested factorization for an ADMG G if there exists a set
of kernels {qC(C | paG(C)) | C is intrinsic in G} such that for every fixable S, and any valid σS,
φσS

(p(V);G) =
∏

D∈D(φσS (G)) qD(D|pasG(D)). All valid fixing sequences for S yield the same
CADMG G(V \ S,S), and if p(V) obeys the nested factorization for G, all valid fixing sequences
for S yield the same kernel. As a result, for any valid sequence σ for S, we will redefine the operator
φσ , for both graphs and kernels, to be φS. In addition, it can be shown [16] that the above kernel set
is characterized as:

{qC(C | paG(C)) | C is intrinsic in G} = {φV\C(p(V);G) | C is intrinsic in G}.
Thus, we can re-express the above nested factorization as stating that for any fixable set S, we have
φS(p(V);G) =

∏
D∈D(φS(G)) φV\D(p(V);G). Since fixing is defined on CADMGs and kernels,

the definition of nested Markov models generalizes in a straightforward way to a kernel q(V|W)
being in the nested Markov model for a CADMG G(V,W). This holds if for every S fixable in
G(V,W), φS(q(V|W);G) =

∏
D∈D(φS(G)) φV\D(q(V|W);G).

An important result in [16] states that if p(V ∪H) obeys the factorization for a DAG G with vertex
set V ∪H, then p(V) obeys the nested factorization for the latent projection ADMG G(V).

4.3 Identification in Hidden Variable Causal DAGs

For any disjoint subsets Y,A of V in a latent projection G(V) representing a causal DAG G(V∪H),
define Y∗ ≡ anG(V)V\A(Y). Then p(Y|do(a)) is identified in G if and only if every set D ∈
D(G(V)Y∗) is reachable (in fact, intrinsic). Moreover, if identification holds, we have [16]:

p(Y|do(a)) =
∑

Y∗\Y

∏
D∈D(G(V)Y∗ )

φV\D(p(V);G(V))|A=a. (2)

In other words, p(Y|do(a)) is only identified if it can be expressed as a factorization, where every
piece corresponds to a kernel associated with a set intrinsic in G(V). Moreover, no piece in this
factorization contains elements of A as random variables, just as was the case in (1). In fact, (2)
provides a concise formulation of the ID algorithm [27, 21] in terms of the nested Markov model in
which the observed distribution in the causal problem lies. For a full proof, see [16].

5 Chain Graphs For Causal Inference With Dependent Data

We generalize causal models to represent settings with data dependence, specifically to cases where
variables may exhibit stable but symmetric relationships. These may correspond to friendship ties in
a social network, physical proximity, or rules of infectious disease spread. These stand in contrast to
causal relationships which are also stable, but asymmetric. We represent settings with both of these
kinds of relationships using causal CG models under the Lauritzen-Wermuth-Freydenburg (LWF)
interpretation. Though there are alternative conceptions of chain graphs [2], we concentrate on LWF
CGs here. This is because LWF CGs yield observed data distributions with smooth parameterizations.
In addition, LWF CGs yield Markov properties where each unit’s friends (and direct causes) screen
the unit from other units in the network. This sort of independence is intuitively appealing in many
network settings. Extensions of our results to other CG models are likely possible, but we leave them
to future work.

LWF CGs were given a causal interpretation in [6]. In a causal CG, the distribution p(B|paG(B)) for
each block B is determined via a computer program that implements a Gibbs sampler on variables
B ∈ B, where the conditional distribution p(B|B \ {B},paG(B)) is determined via a structural
equation of the form fB(B \ {B},paG(B), εB). This interpretation of p(B|paG(B)) allows the
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implementation of a simple intervention operation do(b). The operation sets B to b by replacing the
line of the Gibbs sampler program that assigns B to the value returned by fB(B \ {B},paG(B), εB)
(given a new realization of εB), with an assignment of B to the value b. It was shown [6] that in a
causal CG model, for any disjoint Y,A, p(Y|do(a)) is identified by the CG version of the g-formula
(1): p(Y|do(a)) =

∏
B∈B(G) p(B \A|pa(B),B ∩A)|A=a.

In our example above, stable symmetric relationships inducing data dependence, represented by
undirected edges, coexist with hidden variables. To represent causal inference in this setting, we
generalize earlier developments for hidden variable causal DAG models to hidden variable causal CG
models. Specifically, we first define a latent projection analogue called the segregated projection for a
large class of hidden variable CGs using segregated graphs (SGs). We then define a factorization for
SGs that generalizes the nested factorization and the CG factorization, and show that if a distribution
p(V ∪ H) factorizes given a CG G(V ∪ H) in the class, then p(V) factorizes according to the
segregated projection G(V). Finally, we derive identification theory for hidden variable CGs as a
generalization of (2) that can be viewed as a truncated SG factorization.

5.1 Segregated Projections Of Latent Variable Chain Graphs

Fix a chain graph CG G and a vertex set H such that for all H ∈ H, H does not lie in B ∪ paG(B),
for any B ∈ Bnt(G). We call such a set H block-safe.

Definition 1 Given a CG G(V ∪H) and a block-safe set H, define a segregated projection graph
G(V) with a vertex set V. Moreover, for any collider-free path from any two elements V1, V2 in V,
where all intermediate vertices are in H, G(V) contains an edge with end points matching the path.
That is, we have V1 ← ◦ . . . ◦ → V2 leads to the edge V1 ↔ V2, V1 → ◦ . . . ◦ → V2 leads to the
edge V1 → V2, and in G(V).

As an example, the SG in Fig. 1 (c) is a segregated projection of the hidden variable CG in Fig. 1 (a).
While segregated graphs preserve conditional independence structure on the observed marginal of a
CG for any H [20], we chose to further restrict the set H in order to ensure that the directed edges in
the segregated projection retain an intuitive causal interpretation of edges in a latent projection [28].
That is, whenever A→ B in a segregated projection, A is a causal ancestor of B in the underlying
causal CG. SGs represent latent variable CGs, meaning that they allow causal systems that model
feedback that leads to network structures, of the sort considered in [6], but simultaneously allow
certain forms of unobserved confounding in such causal systems.

5.2 Segregated Factorization

The segregated factorization of an SG can be defined as a product of two kernels which themselves
factorize, one in terms of a CADMG (a conditional graph with only directed and bidirected arrows),
and another in terms of a conditional chain graph (CCG) G(V,W), a CG with the property that the
only type of edge adjacent to any element W of W is a directed edge out of W . A kernel q(V|W) is
said to be Markov relative to the CCG G(V,W) if q(V|W) = Z(W)

−1 ∏
B∈B(G) q(B|paG(B)),

and q(B|paG(B)) = Z(paG(B))−1
∏

C∈C((GB∪paG(B))a);C6⊆paG(B) ψC(C), for each B ∈ B(G).

We now show, given p(V) and an SG G(V), how to construct the appropriate CADMG and CCG,
and the two corresponding kernels. Given a SG G, let district variables D∗ be defined as

⋃
D∈D(G) D,

and let block variables B∗ be defined as
⋃

B∈Bnt(G) B. Since D(G) and Bnt(G) partition V in a SG,
B∗ and D∗ partition V as well. Let the induced CADMG Gd of a SG G be the graph containing
the vertex sets D∗ as V and pasG(D

∗) as W, and which inherits all edges in G between D∗, and
all directed edges from pasG(D

∗) to D∗ in G. Similarly, let the induced CCG Gb of G be the graph
containing the vertex set B∗ as V and pasG(B

∗) as W, and which inherits all edges in G between
B∗, and all directed edges from paG(B

∗) to B∗. We say that p(V) obeys the factorization of a SG
G(V) if p(V) = q(D∗|pasG(D∗))q(B∗|paG(B∗)), q(B∗|paG(B∗)) is Markov relative to the CCG
Gb, and q(D∗|pasG(D∗)) is in the nested Markov model of the CADMG Gd.

The following theorem gives the relationship between a joint distribution that factorizes given a
hidden variable CG G, its marginal distribution, and the corresponding segregated factorization. This
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theorem is a generalization of the result proven in [16] relating hidden variable DAGs and latent
projection ADMGs. The proof is deferred to the appendix.

Theorem 1 If p(V ∪H) obeys the CG factorization relative to G(V ∪H), and H is block-safe then
p(V) obeys the segregated factorization relative to the segregated projection G(V).

6 A Complete Identification Algorithm for Latent Variable Chain Graphs

With Theorem 1 in hand, we are ready to characterize general non-parametric identification of
interventional distributions in hidden variable causal chain graph models, where hidden variables
form a block-safe set. This result can be viewed on the one hand as a generalization of the CG
g-formula derived in [6], and on the other hand as a generalization of the ID algorithm (2).

Theorem 2 Assume G(V ∪H) is a causal CG, where H is block-safe. Fix disjoint subsets Y,A of
V. Let Y∗ = antG(V)V\A Y. Then p(Y|do(a)) is identified from p(V) if and only if every element

in D(G̃d) is reachable in Gd, where G̃d is the induced CADMG of G(V)Y∗ .

Moreover, if p(Y|do(a)) is identified, it is equal to

∑
Y∗\Y

 ∏
D∈D(G̃d)

φD∗\D(q(D∗|paG(V)(D
∗));Gd)

 ∏
B∈B(G̃b)

p(B \A| paG(V)Y∗
(B),B ∩A)

∣∣∣∣∣∣
A=a

where q(D∗|paG(V)(D
∗)) = p(V)/(

∏
B∈Bnt(G(V)) p(B|paG(V)(B)), and G̃b is the induced CCG

of G(V)Y∗ .

To illustrate the application of this theorem, consider the SG G in Fig. 1 (c), where we are interested
in p(Y2|do(a1, a2)). It is easy to see that Y∗ = {C1, C2,M1,M2, Y2} (see GY∗ in Fig. 1 (d))
with B(GY∗) = {{M1,M2}} and D(GY∗) = {{C1}, {C2}, {Y2}}. The chain graph factor of the
factorization in Theorem 2 is p(M1,M2|A1 = a1, A2, C1, C2). Note that this expression further
factorizes according to the (second level) undirected factorization of blocks in a CCG. For the
three district factors {C1}, {C2}, {Y2} in Fig. 1 (d), we must fix variables in three different sets
{C2, A1, A2, Y1, Y2}, {C1, A1, A2, Y1, Y2}, {C1, C2, A1, Y1, A2} in Gd, shown in Fig. 1 (e). We
defer the full derivation involving the fixing operator to the supplementary material. The resulting
identifying functional for p(Y2|do(a1, a2)) is:∑

{C1,C2,M1,M2}

p(M1,M2|a1, a2, C1, C2)
∑
A2

p(Y2|a1, A2,M2, C2)p(A2|C2)p(C1)p(C2) (3)

7 Experiments

We now illustrate how identified functionals given by Theorem 2 may be estimated from data.
Specifically we consider network average effects (N.E.), the network analogue of the average causal
effect (ACE), as defined in [3]:

NEi(a−i) =
1

N

∑
i

E[Yi(Ai = 1,A−1 = 1)]− E[Yi(Ai = 0,A−i = 0)]

in our article sharing example described in section 2, and shown in simplified form (for two units) in
Fig. 1 (a). The experiments and results we present here generalize easily to other network effects
such as direct and spillover effects [3], although we do not consider this here in the interests of
space. For purposes of illustration we consider a simple setting where the social network is a 3-
regular graph, with networks of size N = [400, 800, 1000, 2000]. Under the hidden variable CG
model we described in section 2, the above effect is identified by a functional which generalizes
(3) from a network of size 2 to a larger network. Importantly, since we assume a single connected
network of M variables, we are in the full interference setting where only a single sample from
p(M1, . . .MN |A1, . . . , AN , C1, . . . , CN ) is available. This means that while the standard maximum
likelihood plug-in estimation strategy is possible for models for Yi and Ai in (3), the strategy does
not work for the model for M . Instead, we adapt the auto-g-computation approach based on the
pseudo-likelihood and coding estimators proposed in [24], which is appropriate for full interference
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settings with a Markov property given by a CG, as part of our estimation procedure. Note that
the approach in [24] was applied for a special case of the set of causal models considered here, in
particular those with no unmeasured confounding. Here we use the same approach for estimating
general functionals in models that may include unobserved confounders between treatments and
outcomes. In fact, our example model is analogous to the model in [24], in the same way that the
front-door criterion is to the backdoor criterion in causal inference under the assumption of iid data
[12].

Our detailed estimation strategy, along with a more detailed description of our results, is described in
the appendix. We performed 1000 bootstrap samples of the 4 different networks. Since calculating
the true causal effects is intractable even if true model parameters are known, we calculate the
approximate ‘ground truth’ for each intervention by sampling from our data generating process under
the intervention 5 times and averaging the relevant effect. We calculated the (approximation of) the
bias of each effect by subtracting the estimate from the ‘ground truth.’ The ‘ground truth’ network
average effects range from −.453 to −.456. As shown in Tables 1 and 2, both estimators recover the
ground truth effect with relatively small bias. Estimators for effects which used the pseudo-likelihood
estimator for M generally have lower variance than those that used the coding estimator for M ,
which is expected due to the greater efficiency of the former. This behavior was also observed in
[24]. In both estimators, bias decreases with network size. This is also expected intuitively, although
detailed asymptotic theory for statistical inference in networks is currently an open problem, due to
dependence of samples.

95% Confidence Intervals of Bias of Network Average Effects
N 400 800 1000 2000

Estimator Coding (-.157, .103) (-.129, .106) (-.100, .065) (-.086, .051)
Pseudo (-.133, .080) (-.099, .089) (-.116, .074) (-.070, .041)

Table 1: 95% confidence intervals for the bias of each estimating method for the network average
effects. All intervals cover the approximated ground truth since they include 0

Bias of Network Average Effects
N 400 800 1000 2000

Estimator Coding -.000 (.060) -.020 (.051) -.024 (.052) -.022 (.034)
Pseudo .006 (.052) -.023 (.042) -.023 (.042) -.021 (.026)

Table 2: The biases of each estimating method for the network average effects. Standard deviation of
the bias of each estimate is given in parentheses.

8 Conclusion

In this paper, we generalized existing non-parametric identification theory for hidden variable
causal DAG models to hidden variable causal chain graph models, which can represent both causal
relationships, and stable symmetric relationships that induce data dependence. Specifically, we gave a
representation of all identified interventional distributions in such models as a truncated factorization
associated with segregated graphs, mixed graphs containing directed, undirected, and bidirected
edges which represent marginals of chain graphs.

We also demonstrated how statistical inference may be performed on identifiable causal parameters,
by adapting a combination of maximum likelihood plug in estimation, and methods based on coding
and pseudo-likelihood estimators that were adapted for full interference problems in [24]. We
illustrated our approach with an example of calculating the effect of community membership on
article sharing if the effect of the former on the latter is mediated by a complex social network of
units inducing full dependence.
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