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1 More Discussions on the Empirical Results

In this section, we present more figures of the thresholds learned by NeuralFDR and IHW.

Fig. 5 (a-c) shows the alternative proportion, NeuralFDR’s learned threshold, and IHW’s learned
threshold for the 2D GM simulated data in Sec. 4. We can see the alternative proportion is well
recovered by NeuralFDR. To some extent, IHW also recovers the structure but not with high resolution
because its threshold is limited to have a constant threshold for each group. This causes a loss in
resolution in informative directions.

Fig. 5 (e,d) shows the learned threshold for the GTEx-2D experiment, where we recall for this
experiment, the features distance (GTEx-dist) and expression level (GTEx-exp) are used. We can see
that NeuralFDR captures the structure that the alternative proportion is large when the distance is
small and when the expression level is small. This matches the biological explanation as illustrated in
Sec 4. However, IHW does not capture such structure very well.

Fig. 5 (f) shows the learned threshold for the GTEx-PhastCons experiment. The threshold is higher
for more conserved regions but the difference is not very significant, showing that this covariate
contains less information than distance (GTEx-dist) and expression (GTEx-exp). This is consistent
with the observation that both IHW and NeuralFDR make fewer discoveries with PhastCons score
than with distance or expression. 5/19/17, 12)54 AM
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Figure 5: (a-c) Results for 2DGM: (a) the alternative proportion for 2Dslope; (b) NeuralFDR’s
learned threshold; (c) IHW’s learned weights. (d-e) Results for GTEx-2D: (d) NeuralFDR’s learned
threshold;(e) IHW’s learned weights. (f) NeuralFDR’s learned threshold for GTEx-PhastCons.

As NeuralFDR uses neural network to do functional estimation, it has some randomness across
mutiple runs. For example, the network could converge to bad local minimal. However, we show
that NeuralFDR is stable across multiple runs. Fig. 1 shows the number of discoveries in Airway
dataset in 10 parallel runs for each nominal FDR. The errorbar denotes standard deviation, i.e. 68.3%
confidence interval. The coefficient of variation (CV) for each nominal FDR is smaller than 1%
across experiments.
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Figure 6: Resutls of parallel runs for airway dataset, and it demonstrates the variation aross runs is
small

2 Implementation and Training Details

Objective function. We solve the constrained optimization problem 3 by the penalty method. We
solve this optimization problem:

maximize✓
X

i

D̃(t(✓)) � �1 max
n
gFD(�it

⇤
i
(✓)) � ↵D̃(t(✓)), 0

o
. (8)

To avoid using step function, we used sigmoid to approximate the counting. Denote the sigmoid
function as �. We define D̃ and gFD to be the following.

D̃(t((✓))) =
X

j

�(�2(t((✓); xj) � pj)) (9)

gFD(t((✓))) =
X

j

�(�2(pj � (1 � t((✓); xj)))) (10)

In cross validation process, we don’t use approximated version of D and FD. We use the actual
number of points below the threshold and above the mirrored threshold as D and FD.

Initialization. As the optimization problem is highly non-convex, a good initialization is crucial for
training. We used a smoothed version of k-mean clustering for initialization. The data is clustered
into k clusters using k-mean clustering based on the hypothesis features. An optimal threshold for
each cluster topt,k is calculated following Theorem 2. For each hypothesis, the initial value of the
threshold is set to be

tinit,i =
kX

j=1

exp(��3||xi � cj ||2)P
n

r=1 exp(��3||xi � cr||2)
topt,j (11)

where cj is the center for cluster j.

Network architecture. We used a 10-layer of MLP, each layer has 10 nodes. For activation function,
we used LeakyReLU with a slope of 0.2. In the output layer, we use a scaled version of Sigmoid
function to make sure the output is in (0, 0.5).

Implementation and Training. The algorithm is implemented in Python and the MLP is imple-
mented using PyTorch. The optimization is solved using adaptive stochastic gradient method Adagrad
[7].

For all the experiments, we split the data equally into M = 3 folds for cross validation. The learning
rate is set to be 0.01. Because the optimization is driven by density, we use a large batch size of
10000. Penalty parameter �1 is set to 20, �2 is adaptively set depending on the BH threshold for a
certain dataset, �3 is set to be 1. All hyper-parameters are not heavily tuned and work across datasets.
Training to fitting converges at around 6000 iterations and for optimizing the number of discoveries
converges at around 12000 iterations. The training is done on Nvidia Tesla K80 GPUs.

Notes for GTEx dataset. For GTEx dataset, the whole dataset is very large, so we filtered the
p-values to get only hypothesis with p < 0.005 or p > 0.995, where the second part is for mirroring
estimation. We also scale the network output to operate only in [0, 0.005].
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3 Asymptotic FDR Control Under Weak Dependence

Besides the i.i.d. case, NeuralFDR also controls FDR asymptotically under weak dependence [13, 21].
Extending the weak dependence definition in [13] from discrete groups to continuous features X, the
data are defined to be under weak dependence if the CDF of (Pi, Xi) for the null and the alternative
proportion converge almost surely to their true values respectively. The linkage disequilibrium (LD)
in GWAS and the correlated genes in RNA-Seq can be addressed by such dependence structure.

Definition 3. (Weak dependence) For the data {(Pi,Xi, Hi)}ni=0 with the marginal distribution
described by (4), let F0(p,x) and F1(p,x) be the cumulative density function of the distributions
over (Pi,Xi) defined as P(Pi  p,Xi  x, Hi = 0), P(Pi  p,Xi  x, Hi = 1) respectively,
where the inequality for vectors are element-wise. The data is under weak dependence if 8(p,x),

1

n

nX

i=1

I{Pip,Xix,Hi=0}
a.s.! F0(p,x),

nX

i=1

I{Pip,Xix,Hi=1}
a.s.! F1(p,x).

Theorem 3. (FDP control under weak dependence) Under weak dependence, NeuralFDR with
weight clipping controls FDR asymptotically. The weight clipping refers to clamping the weights to a
bounded set after each gradient update when training the neural network [2].

Proof. (Proof of theorem 3.) Partition the space of (p,x) into k small boxes B1, · · · , Bk. Un-
der the weak dependence assumption Def. 3, the proportion of elements in each box Bj ,
1
n

P
n

i=1 I{(Pi,Xi)2Bj}, converges uniformly to its true value, both for the CV set and the testing set.
As k ! 1, the boxes become smaller. Then for the family of Lipschitz continuous thresholds, their
corresponding mirror estimates can be uniformly approximated by the proportion of elements in the
boxes above the mirrored threshold. Hence, as k ! 1, the mirror estimates converge uniformly to
their true values for the family of Lipschitz continuous thresholds. Since NeuralFDR with weight
clipping produces Lipschitz continuous thresholds, regardless of the value of L, the mirror estimates
on the CV set and on the testing set will converge to their true values. Hence the difference of the
mirror estimates on the CV set and on the testing set will converge to zero, giving that NeuralFDR
controls FDR asymptotically.

Remark 5. (Lipschitz continuity) In the i.i.d. case, we do not need Lipschitz continuity because
for any L learned thresholds based on the training data, their concentration on the CV data can
be characterized by the concentration inequality and the union bound due to the i.i.d. structure.
Therefore a FDR control guarantee can be established. For the weakly dependent case, however, the
convergence rate is hard to characterize. All we have is a point-wise almost surely convergence, with
rate unknown. Hence, we first establish a uniform convergence for the k boxes, or in other words
simple functions with a fixed resolution depending on k, and use them to approximate the learned
threshold. In this case, since we have no idea what the convergence rate of the L learned thresholds
will be like, we seek a uniform approximation of the family of learned thresholds. Then this family
should have some nice properties regarding the continuity in order for the approximation to be true,
and Lipschitz continuity is one of the options.

4 Proofs of the Theoretical Results

4.1 Proof of Lemma 1

Proof. (Proof of Lemma 1) 8x, given Xi = x and Hi = 0, Pi ⇠ Unif(0, 1). Then the joint
distribution fPXH(p,x, 0) is also uniform w.r.t. p. We have

P((Pi, Xi) 2 C(t), Hi = 0) = P((Pi, Xi) 2 CM (t), Hi = 0).
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Then

E[dFD(t)] =
nX

i=1

P((Pi, Xi) 2 CM (t))

=
nX

i=1

P((Pi, Xi) 2 CM (t), Hi = 0) +
nX

i=1

P((Pi, Xi) 2 CM (t), Hi = 1)

=
nX

i=1

P((Pi, Xi) 2 C(t), Hi = 0) +
nX

i=1

P((Pi, Xi) 2 CM (t), Hi = 1)

= E[FD(t)] +
nX

i=1

P((Pi, Xi) 2 CM (t), Hi = 1).

4.2 Proof of Theorem 1

Proof. (Proof of Theorem 1) Consider fold j. Any decision rule candidate tjl may depend on the
training set Dtr(j) but is independent of the cross validation set Dcv(j). Thus assuming the first
point is not in the training set, we can define

pjl =
1

m
E[FD(tjl,Dcv(j))] = P(P1  tjl(X1), H1 = 0)

p
jl

=
1

m
E[dFD(tjl,Dcv(j))] = P(P1 � 1 � tjl(X1))

qjl =
1

m
E[D(tjl,Dcv(j))] = P(P1  tjl(X1)).

Notice that pjl  p
jl

.

Let the mirror estimate dFD(tjl,Dcv(j)) and the number of discoveries D(tjl,Dcv(j)) be the
quantities evaluated on Dcv(j). We know dFD(tjl,Dcv(j)) ⇠ Bin(m, p

jl
) and D(tij ,Dcv(j)) ⇠

Bin(m, qjl). By Lemma 2,

P
⇣
dFD(tjl,Dcv(j))  (1 � �1)mp

jl

⌘
< exp�

�21mp
jl

2
, 8 0 < �1 < 1

P (D(tjl,Dcv(j)) � (1 + �2)mqjl) < exp��22mqjl
2 + �2

, 8 �2 > 0

As \FDP (tjl,Dcv(j)) =
dFD(tjl,Dcv(j))
D(tjl,Dcv(j))

, we have

P
✓
\FDP (tjl,Dcv(j)) 

1 � �1
1 + �2

p
jl

qjl

◆
< exp�

�21mp
jl

2
+ exp��22mqjl

2 + �2
.

Consider the “bad” event rule tjl such that pjl

qjl
� 1+�2

1��1
↵ or qjl  1

1+�2
c0,

P
✓
\FDP (tjl,Dcv(j))  ↵,

D(tjl,Dcv(j))

m
� c0

◆

 P
✓
\FDP (tjl,Dcv(j))  ↵,

p
jl

qjl
� 1 + �2

1 � �1
↵

◆_
P
✓

D(tjl,Dcv(j))

m
� c0, qjl 

1

1 + �2
c0

◆

<

✓
exp��21m↵qjl

2
+ exp��22mqjl

2 + �2

◆_✓
exp��22mqjl

2 + �2

◆
= exp��21m↵qjl

2
+ exp��22mqjl

2 + �2
,

where for the second inequality we note that p
jl
� 1+�2

1��1
↵qjl > ↵qjl.

Let q = 1
1+�2

c0 and let S = {tjl :
pjl

qjl
� 1+�2

1��1
↵ or qjl  q}. We know that there are at most L

elements in S . Then by the union bound,

P
✓
9 l 2 S, s.t. \FDP (tjl,Dcv(j))  ↵,

D(tjl,Dcv(j))

m
� c0

◆
< L

 
exp�

�21↵mq

2
+ exp�

�22mq

2 + �2

!
.
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Furthermore, let the l⇤-th rule, tjl⇤ , be the rule selected for testing. Note here l⇤ is a random variable,
\FDP (tjl⇤ ,Dcv(j))  ↵, and D(tjl⇤ ,Dcv(j))

m
� c0. Therefore

P(l⇤ 2 S) = P
✓

p
jl⇤

qjl⇤
� 1 + �2

1 � �1
↵ or qjl⇤  q

◆
< L

 
exp�

�21↵mq

2
+ exp�

�22mq

2 + �2

!
.

As pjl⇤ < p
jl⇤ , we have

P
✓

pjl⇤

qjl⇤
� 1 + �2

1 � �1
↵ or qjl⇤  q

◆
< L

 
exp�

�21↵mq

2
+ exp�

�22mq

2 + �2

!
. (12)

Now we move to the test data Dte(j). Again by Lemma 2, given tjl⇤ ,

P (FD(tjl⇤ ,Dte(j)) � (1 + �3)mpjl⇤ |tjl⇤) < exp��23mpjl⇤

2 + �3
, 8 �3 > 0

P
�
D(t⇤

j
,Dte(j))  (1 � �4)mqjl⇤ |tjl⇤

�
< exp��24mqjl⇤

2
, 8 0 < �4 < 1.

Then, given t⇤
j
,

P
✓

FDP (tjl⇤ ,Dte(j)) �
1 + �3
1 � �4

pij⇤

qjl⇤

���� tjl⇤
◆

< exp��23mpjl⇤

2 + �3
+ exp��24mqjl⇤

2
.

The probability that FDP is large can be decomposed as follows:

P
✓

FDP (tjl⇤ ,Dte(j)) �
1 + �2
1 � �1

1 + �3
1 � �4

↵

◆
(13)

 P
✓

FDP (tjl⇤ ,Dte(j)) �
1 + �2
1 � �1

1 + �3
1 � �4

↵

����
pjl⇤

qjl⇤
<

1 + �2
1 � �1

↵, qjl⇤ � q

◆
(14)

+ P
✓

pjl⇤

qjl⇤
� 1 + �2

1 � �1
↵ or qjl⇤  q

◆
. (15)

For the conditional probability in the first term, we have

P
✓

FDP (tjl⇤ ,Dte(j)) �
1 + �2
1 � �1

1 + �3
1 � �4

↵

����
pjl⇤

qjl⇤
<

1 + �2
1 � �1

↵, qjl⇤ � q

◆
(16)

 P
✓

FDP (t⇤
j
,Dte(j)) �

1 + �2
1 � �1

1 + �3
1 � �4

↵

����
pjl⇤

qjl⇤
=

1 + �2
1 � �1

↵, qjl⇤ � q

◆
(17)

 exp�
�23↵mq

2 + �3
+ exp�

�24mq

2
. (18)

Combining (12), (16), (13) can be written as

P
✓

FDP (tjl⇤ ,Dte(j)) �
1 + �2
1 � �1

1 + �3
1 � �4

↵

◆

< L

 
exp�

�21↵mq

2
+ exp�

�22mq

2 + �2

!
+

 
exp�

�23↵mq

2 + �3
+ exp�

�24mq

2

!
.

Finally, by union bound over all M folds,

P
✓
9 j, FDP (t⇤

j
,Dte(j)) �

1 + �2
1 � �1

1 + �3
1 � �4

↵

◆
(19)

< LM

 
exp�

�21↵mq

2
+ exp�

�22mq

2 + �2

!
+ M

 
exp�

�23↵mq

2 + �3
+ exp�

�24mq

2

!
, (20)
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for some �1, �4 2 (0, 1), �2, �3 > 0. Note that (19) also indicates that the overall FDP is smaller than
1+�2
1��1

1+�3
1��4

↵.

Now let us derive an asymptotic bound when �1, �2, �3, �4 are close to 0. In this case, we have
�1, �2, �3, �4 2 (0, 1) and (19) can be reduced to

P
✓
9 j, FDP (t⇤

j
,Dte(j)) �

1 + �2
1 � �1

1 + �3
1 � �4

↵

◆
(21)

< LM

 
exp�

�21↵mq

2
+ exp�

�22mq

3

!
+ M

 
exp�

�23↵mq

3
+ exp�

�24mq

2

!
. (22)

Let � = minj �j . Then 1+�2
1��1

1+�3
1��4

� 1 = O(�).

For some � > 0, let the four terms in (21) be equal to �

4 so that the overall probability is �. This
gives

�1 =

s
2

↵mq
log

4ML

�
, �2 =

s
3

mq
log

4ML

�
, �3 =

s
3

↵mq
log

4M

�
, �4 =

s
2

mq
log

4M

�
.

Thus � = minj �j = O(
q

M

↵n
log ML

�
), where we note that the constant q is hidden inside the big

O term and m = n

M
. This completes the proof.

4.3 Proof of Theorem 2

Proof. (Proof of Theorem 2) We first identify the worse case null proportion ⇡⇤
0 . Consider any

rule t. As fPX is fixed, the probability of discovery PD(�t, fPX) is determined. For any two null
proportions ⇡0 and ⇡0

0, if 8x, ⇡0(x) � ⇡0
0(x), the probability of false discovery PFD(t, fPX, ⇡0) �

PFD(t, fPX, ⇡0
0), giving FDP (t, fPX, ⇡0) � FDP (t, fPX, ⇡0

0). Hence FDP is maximized when
⇡0(x) is maximized for each point of x. As 8x, ⇡0(x)  fP |X(1|x) and ⇡⇤

0(x) = fP |X(1|x) is
attainable, we know for any rule t, FDP is maximized with ⇡⇤

0(x). Then, problem (6) can be rewritten
as

max
t

PD(t, fPX) s.t. FDP (t, fPX, ⇡⇤
0)  ↵.

For condition (7.2), we prove by contradiction. Suppose t is the optimal rule and FDP (t, fPX, ⇡⇤
0) <

↵. Then there exists � > 1 such that FDP (�t, fPX, ⇡⇤
0)  ↵. As PD(�t, fPX) > PD(t, fPX), t

can not be the optimal rule, giving the contradiction.

For condition (7.1), we also prove by contradiction. Again suppose t is the optimal rule where (7.1)
is not met, then there exists X1,X2 ⇢ X with positive measure such that

R
X1

fPX(1,x)dx
R
X1

fPX(t(x),x)dx
<

R
X2

fPX(1,x)dx
R
X2

fPX(t(x),x)dx
.

Note that fPX(p,x) is monotonically decreasing w.r.t. p. Then there exists ✏ > 0 such that for any
✏1, ✏2 2 (0, ✏),

✏1
R
X1

fPX(1,x)dx
R
X1

R
t(x)+✏1

t(x) fPX(t(x) + ✏1,x)dp dx
<

✏2
R
X2

fPX(1,x)dx
R
X2

R
t(x)
t(x)�✏2

fPX(t(x) � ✏2,x)dp dx
. (23)

Then we can pick ✏1, ✏2 < ✏ such that
Z

X1

Z
t(x)+✏1

t(x)
fPX(p,x)dp dx =

Z

X2

Z
t(x)

t(x)�✏2

fPX(p,x)dp dx > 0 (24)

Defining a new rule t0(x) as

t0(x) =

(
t(x) + ✏1, x 2 X1
t(x) � ✏2, x 2 X2

t(x), otherwise
.
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Then for the probability of discovery,

PD(t0, fPX) =

Z

X

Z
t
0(x)

0
fPX(p,x)dp dx =

Z

X

Z
t(x)

0
fPX(p,x)dp dx

+

Z

X1

Z
t(x)+✏1

t(x)
fPX(p,x)dp dx�

Z

X2

Z
t(x)

t(x)�✏2

fPX(p,x)dp dx = PD(t, fPX).

Moreover, from (23) and (24) we also know

✏1

Z

X1

fPX(1,x)dx < ✏2

Z

X2

fPX(1,x)dx.

Then

PFD(t0, fPX, ⇡⇤
0) =

Z

X
t0(x)⇡⇤

0(x)µ(x)dx =

Z

X
t0(x)fPX(1,x)dx

=

Z

X
t(x)fPX(1,x)dx + ✏1

Z

X1

fPX(1,x)dx� ✏2

Z

X2

fPX(1,x)dx

<

Z

X
t(x)fPX(1,x)dx = PFD(t, fPX, ⇡⇤

0)

Then FDR(t0, fPX, ⇡⇤
0) < FDR(t, fPX, ⇡⇤

0) = ↵. According to condition (7.2), t0 can not be the
optimal rule. As t and t0 are both feasible and have the same discovery probability, t can not be the
optimal rule either, giving the contradiction.

4.4 Ancillary lemmas

Lemma 2. (Chernoff bound) For i.i.d. random variables X1, · · · , Xn 2 [0, 1], let X =
P

n

i=1 Xi

and let µ = E[X]. Then

P(X � (1 + �)µ) < exp� �2µ

2 + �
, 8 � > 0

P(X  (1 � �)µ) < exp��2µ

2
, 8 0 < � < 1.
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