
Supplemental Materials: Results on Torch
The following comparison is based on the implementation using Torch.

We provide results for the experiment of D-PSGD and EASGD. For this set of experiments we use
a 32-layer residual network and CIFAR-10 dataset. We use up to 16 machines, and each machine
includes two Xeon E5-2680 8-core processors and a NVIDIA K20 GPU. Worker machines are
connected in a logical ring as described in Theorem 3. Connections between D-PSGD nodes are
made via TCP socks, and EASGD uses MPI for communication. Because D-PSGD do not have a
centralized model, we average all models from different machines as our final model to evaluate. In
practical training, this only needs to be done after the last epoch with an all-reduce operation. For
EASGD, we evaluate the central model on the parameter server.

One remarkable feature of this experiment is that we use inexpensive Gigabit Ethernet to connect
all machines, and we are able to practically observe network congestion with centralized parameter
server approach, even with a relatively small (ResNet-32) model. Although in practice, network
with much higher bandwidth are available (e.g., InfiniBand), we also want to use larger model or
more machines, so that network bandwidth can always become a bottleneck. We practically show
that D-PSGD has better scalability than centralized approaches when network bandwidth becomes a
constraint.

Comparison to EASGD Elastic Averaging SGD (EASGD) [Zhang et al., 2015] is an improved
parameter server approach that outperforms traditional parameter server [Dean et al., 2012]. It makes
each node perform more exploration by allowing local parameters to fluctuate around the central
variable. We add ResNet-32 [He et al., 2016] with CIFAR-10 into the EASGD’s Torch experiment
code5 and also implement our algorithm in Torch. Both algorithms run at the same speed on a single
GPU so there is no implementation bias. Unlike the previous experiment which uses high bandwidth
PCI-e or 10Gbits network for inter-GPU communication, we use 9 physical machines (1 as parameter
server) with a single K20 GPU each, connected by inexpensive Gigabit Ethernet. For D-PSGD
we use a logical ring connection between nodes as in Theorem 3. For EASGD we set moving rate
β = 0.9 and use its momentum variant (EAMSGD). For both algorithms we set learning rate to
0.1, momentum to 0.9. τ = {1, 4, 16} is a hyper-parameter in EASGD controlling the number of
mini-batches before communicating with the server.

0 50 100 150 200
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ai

ni
ng

 L
os

s

D-PSGD, 8 machines
EAMSGD, = 1, 8 machines
EAMSGD, = 4, 8 machines
EAMSGD, = 16, 8 machines

(a) Iteration vs Training Loss

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Time (s) 1e4

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ai

ni
ng

 L
os

s

D-PSGD, 8 machines
EAMSGD, = 1, 8 machines
EAMSGD, = 4, 8 machines
EAMSGD, = 16, 8 machines

(b) Time vs Training Loss

Figure 4: Convergence comparison between D-PSGD and EAMSGD (EASGD’s momentum variant).

Figure 4 shows that D-PSGD outperforms EASGD with a large margin in this setting. EASGD with
τ = 1 has good convergence, but its large bandwidth requirement saturates the network and slows
down nodes. When τ = 4, 16 EASGD converges slower than D-PSGD as there is less communication.
D-PSGD allows more communication in an efficient way without reaching the network bottleneck.
Moreover, D-PSGD is synchronous and shows less convergence fluctuation comparing with EASGD.

Accuracy comparison with EASGD We have shown the training loss comparison between D-PSGD
and EASGD, and we now show additional figures comparing training error and test error in our
experiment, as in Figure 5 and 6. We observe similar results as we have seen in section 6; D-PSGD
can achieve good accuracy noticeably faster than EASGD.

5https://github.com/sixin-zh/mpiT.git

12

0 50 100 150 200
Epoch

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Tr
ai

ni
ng

 E
rr

or

D-PSGD, 8 machines
EAMSGD, = 1, 8 machines
EAMSGD, = 4, 8 machines
EAMSGD, = 16, 8 machines

(a) Iteration vs Training Error

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Time (s) 1e4

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Tr
ai

ni
ng

 E
rr

or

D-PSGD, 8 machines
EAMSGD, = 1, 8 machines
EAMSGD, = 4, 8 machines
EAMSGD, = 16, 8 machines

(b) Time vs Training Error

Figure 5: Training Error comparison between D-PSGD and EAMSGD (EASGD’s momentum variant)

0 50 100 150 200
Epoch

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Te
st

 E
rr

or

D-PSGD, 8 machines
EAMSGD, = 1, 8 machines
EAMSGD, = 4, 8 machines
EAMSGD, = 16, 8 machines

(a) Iteration vs Test Error

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Time (s) 1e4

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Te
st

 E
rr

or

D-PSGD, 8 machines
EAMSGD, = 1, 8 machines
EAMSGD, = 4, 8 machines
EAMSGD, = 16, 8 machines

(b) Time vs Test Error

Figure 6: Test Error comparison between D-PSGD and EAMSGD (EASGD’s momentum variant)

Scalability of D-PSGD In this experiment, we run D-PSGD on 1, 4, 8, 16 machines and compare
convergence speed and error. For experiments involving 16 machines, each machine also connects to
one additional machine which has the largest topological distance on the ring besides its two logical
neighbours. We found that this can help information flow and get better convergence.

In Figure 10, 11 and 12 we can observe that D-PSGD scales very well when the number of machines
is growing. Also, comparing with the single machine SGD, D-PSGD has minimum overhead; we
measure the per-epoch training time only increases by 3% comparing to single machine SGD, but
D-PSGD’s convergence speed is much faster. To reach a training loss of 0.2, we need about 80 epochs
with 1 machine, 20 epochs with 4 machines, 10 epochs with 8 machines and only 5 epochs with 16
machines. The observed linear speedup justifies the correctness of our theory.

0 50 100 150 200
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ai

ni
ng

 L
os

s

Momentum SGD, 1 machine
D-PSGD, 4 machines
D-PSGD, 8 machines
D-PSGD, 16 machines

(a) Iteration vs Training Loss

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Time (s) 1e4

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ai

ni
ng

 L
os

s

Momentum SGD, 1 machine
D-PSGD, 4 machines
D-PSGD, 8 machines
D-PSGD, 16 machines

(b) Time vs Training Loss

Figure 7: Training Loss comparison between D-PSGD on 1, 4, 8 and 16 machines

Generalization ability of D-PSGD In our previous experiments we set the learning rate to fixed 0.1.
To complete Residual network training, we need to decrease the learning rate after some epochs. We
follow the learning rate schedule in ResNet paper [He et al., 2016], and decrease the learning rate

13

0 50 100 150 200
Epoch

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Tr
ai

ni
ng

 E
rr

or

Momentum SGD, 1 machine
D-PSGD, 4 machines
D-PSGD, 8 machines
D-PSGD, 16 machines

(a) Iteration vs Training Error

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Time (s) 1e4

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Tr
ai

ni
ng

 E
rr

or

Momentum SGD, 1 machine
D-PSGD, 4 machines
D-PSGD, 8 machines
D-PSGD, 16 machines

(b) Time vs Training Error

Figure 8: Training Error comparison between D-PSGD on 1, 4, 8 and 16 machines

0 50 100 150 200
Epoch

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Te
st

 E
rr

or

Momentum SGD, 1 machine
D-PSGD, 4 machines
D-PSGD, 8 machines
D-PSGD, 16 machines

(a) Iteration vs Test Error

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Time (s) 1e4

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Te
st

 E
rr

or

Momentum SGD, 1 machine
D-PSGD, 4 machines
D-PSGD, 8 machines
D-PSGD, 16 machines

(b) Time vs Test Error

Figure 9: Test Error comparison between D-PSGD on 1, 4, 8 and 16 machines

to 0.01 at epoch 80. We observe training/test loss and error, as shown in figure 10, 11 and 12. For
D-PSGD, we can tune a better learning rate schedule, but parameter tuning is not the focus of our
experiments; rather, we would like to see if D-PSGD can achieve the same best ResNet accuracy as
reported by the literature.

0 50 100 150 200
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ai

ni
ng

 L
os

s

Momentum SGD, 1 machine
D-PSGD, 4 machines
D-PSGD, 8 machines
D-PSGD, 16 machines

(a) Iteration vs Training Loss

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Time (s) 1e4

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ai

ni
ng

 L
os

s

Momentum SGD, 1 machine
D-PSGD, 4 machines
D-PSGD, 8 machines
D-PSGD, 16 machines

(b) Time vs Training Loss

Figure 10: Training Loss comparison between D-PSGD on 1, 4, 8 and 16 machines

The test error of D-PSGD after 160 epoch is 0.0715, 0.0746 and 0.0735, for 4, 8 and 16 machines,
respectively. He et al. [2016] reports 0.0751 error for the same 32-layer residual network, and we can
reliably outperform the reported error level regardless of different numbers of machines used. Thus,
D-PSGD does not negatively affect (or perhaps helps) generalization.

Network utilization During the experiment, we measure the network bandwidth on each machine.
Because every machine is identical on the network, the measured bandwidth are the same on each
machines. For experiment with 4 and 8 machines, the required bandwidth is about 22 MB/s. With 16
machines the required bandwidth is about 33 MB/s because we have an additional link. The required
bandwidth is related to GPU performance; if GPU can compute each minibatch faster, the required

14

0 50 100 150 200
Epoch

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Tr
ai

ni
ng

 E
rr

or

Momentum SGD, 1 machine
D-PSGD, 4 machines
D-PSGD, 8 machines
D-PSGD, 16 machines

(a) Iteration vs Training Error

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Time (s) 1e4

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Tr
ai

ni
ng

 E
rr

or

Momentum SGD, 1 machine
D-PSGD, 4 machines
D-PSGD, 8 machines
D-PSGD, 16 machines

(b) Time vs Training Error

Figure 11: Training Error comparison between D-PSGD on 1, 4, 8 and 16 machines

0 50 100 150 200
Epoch

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Te
st

 E
rr

or

Momentum SGD, 1 machine
D-PSGD, 4 machines
D-PSGD, 8 machines
D-PSGD, 16 machines

(a) Iteration vs Test Error

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Time (s) 1e4

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Te
st

 E
rr

or

Momentum SGD, 1 machine
D-PSGD, 4 machines
D-PSGD, 8 machines
D-PSGD, 16 machines

(b) Time vs Test Error

Figure 12: Test Error comparison between D-PSGD on 1, 4, 8 and 16 machines

bandwidth also increases proportionally. Considering the practical bandwidth of Gigabit Ethernet is
about 100 ~120 MB/s, Our algorithm can handle a 4 ~5 times faster GPU (or GPUs) easily, even with
an inexpensive gigabit connection.

Because our algorithm is synchronous, we desire each node to compute each minibatch roughly within
the same time. If each machine has different computation power, we can use different minibatch sizes
to compensate the speed difference, or allow faster machines to make more than 1 minibatch before
synchronization.

Industrial benchmark

In this section, we evaluate the effectiveness of our algorithm on IBM Watson Natural Language
Classifier (NLC) workload. IBM Watson Natural Language Classifier (NLC) service, IBM’s most
popular cognitive service offering, is used by thousands of enterprise-level clients around the globe.
The NLC task is to classify input sentences into a target category in a predefined label set. NLC has
been extensively used in many practical applications, including sentiment analysis, topic classification,
and question classification. At the core of NLC training is a CNN model that has a word-embedding
lookup table layer, a convolutional layer and a fully connected layer with a softmax output layer.
NLC is implemented using the Torch open-source deep learning framework.

Methodology We use two datasets in our evaluation. The first dataset Joule is an in-house customer
dataset that has 2.5K training samples, 1K test samples, and 311 different classes. The second dataset
Yelp, which is a public dataset, has 500K training samples, 2K test samples and 5 different classes.
The experiments are conducted on an IBM Power server, which has 40 IBM P8 cores, each core
is 4-way SMP with clock frequence of 2GHz. The server has 128GB memory and is equipped
with 8 K80 GPUs. DataParallelTable (DPT) is a NCCL-basedNvidia module in Torch that can
leverage multiple GPUs to carry out centralized parallel SGD algorithm. NCCL is an all-reduce
based implementation. We implemented the decentralized SGD algorithm in the NLC product.
We now compare the convergence rate of centralized SGD (i.e. DPT) and our decentralized SGD
implementation.

15

Convergence results and test accuracy First, we examine the Joule dataset. We use 8 nodes and
each node calculates with a mini-batch size of 2 and the entire run passes through 200 epochs.
Figure 13 shows that centralized SGD algorithm and decentralized SGD algorithm achieve similar
training loss (0.96) at roughly same convergence rate. Figure 14 shows that centralized SGD
algorithm and decentralized SGD algorithm achieve similar testing error (43%). In the meantime, the
communication cost is reduced by 3X in decentralized SGD case compared to the centralized SGD
algorithm. Second, we examine the Yelp dataset. We use 8 nodes and each node calculates with a
mini-batch size of 32 and the entire run passes through 20 epochs. Figure 13 shows that centralized
SGD algorithm and decentralized SGD algorithm achieve similar training loss (0.86). Figure 14
shows that centralized SGD algorithm and decentralized SGD algorithm achieve similar testing error
(39%).

0

1

2

3

4

5

6

1 21 41 61 81 101 121 141 161 181

Tr
ai
ni
ng

	lo
ss

Epoch

Joule	Training	Loss	Comparison

Centralized Decentralized

Figure 13: Training loss on Joule dataset

0

0.2

0.4

0.6

0.8

1

1.2

1 11 21 31 41 51 61 71 81 91 10
1

11
1

12
1

13
1

14
1

15
1

16
1

17
1

18
1

19
1

Te
st
	E
rr
or

Epoch

Joule	Test	Error	Comparison

Centralized Decentralized

Figure 14: Test error on Joule dataset

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Tr
ai
ni
ng

	L
os
s

Epoch

Yelp	Training	Loss	Comparison

Centralized Decentralized

Figure 15: Training loss on Yelp dataset

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Te
st
	E
rr
or

Epoch

Yelp	Test	Error	Comparison

Centralized Decentralized

Figure 16: Test error on Yelp dataset

16

Supplemental Materials: Proofs
We provide the proof to all theoretical results in this paper in this section.
Lemma 4. Under Assumption 1 we have∥∥∥∥1nn −W kei

∥∥∥∥2 ≤ ρk, ∀i ∈ {1, 2, . . . , n}, k ∈ N.

Proof. Let W∞ := limk→∞W k. Note that from Assumption 1-2 we have 1n
n = W∞ei,∀i since

W is doubly stochastic and ρ < 1. Thus∥∥∥∥1nn −W kei

∥∥∥∥2 =‖(W∞ −W k)ei‖2

6‖W∞ −W k‖2‖ei‖2

=‖W∞ −W k‖2

6ρk,

where the last step comes from the diagonalizability of W , completing the proof.

Lemma 5. We have the following inequality under Assumption 1:

E‖∂f(Xj)‖2 6
n∑
h=1

3EL2

∥∥∥∥∑n
i′=1 xj,i′

n
− xj,h

∥∥∥∥2 + 3nς2 + 3E
∥∥∥∥∇f (Xj1n

n

)
1>n

∥∥∥∥2 ,∀j.
Proof. We consider the upper bound of E‖∂f(Xj)‖2 in the following:

E‖∂f(Xj)‖2

63E
∥∥∥∥∂f(Xj)− ∂f

(
Xj1n
n

1>n

)∥∥∥∥2
+ 3E

∥∥∥∥∂f (Xj1n
n

1>n

)
−∇f

(
Xj1n
n

)
1>n

∥∥∥∥2
+ 3E

∥∥∥∥∇f (Xj1n
n

)
1>n

∥∥∥∥2
(Assumption 1-3)

6 3E
∥∥∥∥∂f(Xj)− ∂f

(
Xj1n
n

1>n

)∥∥∥∥2
F

+ 3nς2

+ 3E
∥∥∥∥∇f (Xj1n

n

)
1>n

∥∥∥∥2
(Assumption 1-1)

6
n∑
h=1

3EL2

∥∥∥∥∑n
i′=1 xj,i′

n
− xj,h

∥∥∥∥2 + 3nς2 + 3E
∥∥∥∥∇f (Xj1n

n

)
1>n

∥∥∥∥2 .
This completes the proof.

Proof to Theorem 1. We start form f
(
Xk+11n

n

)
:

Ef
(
Xk+11n

n

)
=Ef

(
XkW1n

n
− γ ∂F (Xk; ξk)1n

n

)
(Assumption 1-2)

= Ef
(
Xk1n
n
− γ ∂F (Xk; ξk)1n

n

)

17

6Ef
(
Xk1n
n

)
− γE

〈
∇f

(
Xk1n
n

)
,
∂f(Xk)1n

n

〉
+
γ2L

2
E
∥∥∥∥∑n

i=1∇Fi(xk,i; ξk,i)
n

∥∥∥∥2 . (7)

Note that for the last term we can split it into two terms:

E
∥∥∥∥∑n

i=1∇Fi(xk,i; ξk,i)
n

∥∥∥∥2 =E
∥∥∥∥∑n

i=1∇Fi(xk,i; ξk,i)−
∑n
i=1∇fi(xk,i)

n
+

∑n
i=1∇fi(xk,i)

n

∥∥∥∥2
=E

∥∥∥∥∑n
i=1∇Fi(xk,i; ξk,i)−

∑n
i=1∇fi(xk,i)

n

∥∥∥∥2
+ E

∥∥∥∥∑n
i=1∇fi(xk,i)

n

∥∥∥∥2
+ E

〈∑n
i=1∇Fi(xk,i; ξk,i)−

∑n
i=1∇fi(xk,i)

n
,

∑n
i=1∇fi(xk,i)

n

2
〉

=E
∥∥∥∥∑n

i=1∇Fi(xk,i; ξk,i)−
∑n
i=1∇fi(xk,i)

n

∥∥∥∥2
+ E

∥∥∥∥∑n
i=1∇fi(xk,i)

n

∥∥∥∥2
+ E

〈∑n
i=1 Eξk,i∇Fi(xk,i; ξk,i)−

∑n
i=1∇fi(xk,i)

n
,

∑n
i=1∇fi(xk,i)

n

2
〉

=E
∥∥∥∥∑n

i=1∇Fi(xk,i; ξk,i)−
∑n
i=1∇fi(xk,i)

n

∥∥∥∥2
+ E

∥∥∥∥∑n
i=1∇fi(xk,i)

n

∥∥∥∥2 .
Then it follows from (7) that

Ef
(
Xk+11n

n

)
6Ef

(
Xk1n
n

)
− γE

〈
∇f

(
Xk1n
n

)
,
∂f(Xk)1n

n

〉
+
γ2L

2
E
∥∥∥∥∑n

i=1∇Fi(xk,i; ξk,i)−
∑n
i=1∇fi(xk,i)

n

∥∥∥∥2
+
γ2L

2
E
∥∥∥∥∑n

i=1∇fi(xk,i)
n

∥∥∥∥2 . (8)

For the second last term we can bound it using σ:

γ2L

2
E
∥∥∥∥∑n

i=1∇Fi(xk,i; ξk,i)−
∑n
i=1∇fi(xk,i)

n

∥∥∥∥2
=
γ2L

2n2

n∑
i=1

E‖∇Fi(xk,i; ξk,i)−∇fi(xk,i)‖2

+
γ2L

n2

n∑
i=1

n∑
i′=i+1

E〈∇Fi(xk,i; ξk,i)−∇fi(xk,i),∇Fi′(xk,i′ ; ξk,i′)−∇fi′(xk,i′)〉

=
γ2L

2n2

n∑
i=1

E‖∇Fi(xk,i; ξk,i)−∇fi(xk,i)‖2

18

+
γ2L

n2

n∑
i=1

n∑
i′=i+1

E〈∇Fi(xk,i; ξk,i)−∇fi(xk,i),Eξk,i′∇Fi′(xk,i′ ; ξk,i′)−∇fi′(xk,i′)〉

=
γ2L

2n2

n∑
i=1

E‖∇Fi(xk,i; ξk,i)−∇fi(xk,i)‖2

6
γ2L

2n
σ2,

where the last step comes from Assumption 1-3.

Thus it follows from (8):

Ef
(
Xk+11n

n

)
6Ef

(
Xk1n
n

)
− γE

〈
∇f

(
Xk1n
n

)
,
∂f(Xk)1n

n

〉
+
γ2L

2

σ2

n

+
γ2L

2
E
∥∥∥∥∑n

i=1∇fi(xk,i)
n

∥∥∥∥2
=Ef

(
Xk1n
n

)
− γ − γ2L

2
E
∥∥∥∥∂f(Xk)1n

n

∥∥∥∥2 − γ

2
E
∥∥∥∥∇f (Xk1n

n

)∥∥∥∥2 + γ2L

2

σ2

n

+
γ

2
E
∥∥∥∥∇f (Xk1n

n

)
− ∂f(Xk)1n

n

∥∥∥∥2︸ ︷︷ ︸
=:T1

, (9)

where the last step comes from 2〈a, b〉 = ‖a‖2 + ‖b‖2 − ‖a− b‖2.

We then bound T1:

T1 =E
∥∥∥∥∇f (Xk1n

n

)
− ∂f(Xk)1n

n

∥∥∥∥2
6
1

n

n∑
i=1

E
∥∥∥∥∇fi(∑n

i′=1 xk,i′

n

)
−∇fi(xk,i)

∥∥∥∥2
(Assumption 1-1)

6
L2

n

n∑
i=1

E
∥∥∥∥∑n

i′=1 xk,i′

n
− xk,i

∥∥∥∥2︸ ︷︷ ︸
=:Qk,i

, (10)

where we define Qk,i as the squared distance of the local optimization variable on the i-th node from
the averaged local optimization variables on all nodes.

In order to bound T1 we bound Qk,i’s as the following:

Qk,i =E
∥∥∥∥∑n

i′=1 xk,i′

n
− xk,i

∥∥∥∥2
=E

∥∥∥∥Xk1n
n
−Xkei

∥∥∥∥2
=E

∥∥∥∥Xk−1W1n − γ∂F (Xk−1; ξk−1)1n
n

− (Xk−1Wei − γ∂F (Xk−1; ξk−1)ei)

∥∥∥∥2
=E

∥∥∥∥Xk−11n − γ∂F (Xk−1; ξk−1)1n
n

− (Xk−1Wei − γ∂F (Xk−1; ξk−1)ei)

∥∥∥∥2

=E

∥∥∥∥∥∥X01n −
∑k−1
i=0 γ∂F (Xi; ξi)1n

n
−

X0W
kei −

k−1∑
j=0

γ∂F (Xj ; ξj)W
k−j−1ei

∥∥∥∥∥∥
2

19

=E

∥∥∥∥∥∥X0

(
1n
n
−W kei

)
−
k−1∑
j=0

γ∂F (Xj ; ξj)

(
1n
n
−W k−j−1ei

)∥∥∥∥∥∥
2

(Assumption 1-4)
= E

∥∥∥∥∥∥
k−1∑
j=0

γ∂F (Xj ; ξj)

(
1n
n
−W k−j−1ei

)∥∥∥∥∥∥
2

=γ2E

∥∥∥∥∥∥
k−1∑
j=0

∂F (Xj ; ξj)

(
1n
n
−W k−j−1ei

)∥∥∥∥∥∥
2

62γ2 E

∥∥∥∥∥∥
k−1∑
j=0

(∂F (Xj ; ξj)− ∂f(Xj))

(
1n
n
−W k−j−1ei

)∥∥∥∥∥∥
2

︸ ︷︷ ︸
=:T2

+ 2γ2 E

∥∥∥∥∥∥
k−1∑
j=0

∂f(Xj)

(
1n
n
−W k−j−1ei

)∥∥∥∥∥∥
2

︸ ︷︷ ︸
=:T3

. (11)

For T2, we provide the following upper bounds:

T2 =E

∥∥∥∥∥∥
k−1∑
j=0

(∂F (Xj ; ξj)− ∂f(Xj))

(
1n
n
−W k−j−1ei

)∥∥∥∥∥∥
2

=

k−1∑
j=0

E
∥∥∥∥(∂F (Xj ; ξj)− ∂f(Xj))

(
1n
n
−W k−j−1ei

)∥∥∥∥2

6
k−1∑
j=0

E‖∂F (Xj ; ξj)− ∂f(Xj)‖2
∥∥∥∥1nn −W k−j−1ei

∥∥∥∥2

6
k−1∑
j=0

E‖∂F (Xj ; ξj)− ∂f(Xj)‖2F
∥∥∥∥1nn −W k−j−1ei

∥∥∥∥2
(Lemma 4,Assumption 1-3)

6 nσ2
k−1∑
j=0

ρk−j−1

6
nσ2

1− ρ
.

For T3, we provide the following upper bounds:

T3 =E

∥∥∥∥∥∥
k−1∑
j=0

∂f(Xj)

(
1n
n
−W k−j−1ei

)∥∥∥∥∥∥
2

=

k−1∑
j=0

E
∥∥∥∥∂f(Xj)

(
1n
n
−W k−j−1ei

)∥∥∥∥2︸ ︷︷ ︸
=:T4

+
∑
j 6=j′

E
〈
∂f(Xj)

(
1n
n
−W k−j−1ei

)
, ∂f(Xj′)

(
1n
n
−W k−j′−1ei

)〉
︸ ︷︷ ︸

=:T5

20

To bound T3 we bound T4 and T5 in the following: for T4,

T4 =

k−1∑
j=0

E
∥∥∥∥∂f(Xj)

(
1n
n
−W k−j−1ei

)∥∥∥∥2

6
k−1∑
j=0

E‖∂f(Xj)‖2
∥∥∥∥1nn −W k−jei

∥∥∥∥2
(Lemmas 4 and 5)

6 3

k−1∑
j=0

n∑
h=1

EL2Qj,h

∥∥∥∥1nn −W k−j−1ei

∥∥∥∥2 + 3nς2
1

1− ρ

+ 3

k−1∑
j=0

E
∥∥∥∥∇f (Xj1n

n

)
1>n

∥∥∥∥2 ∥∥∥∥1nn −W k−j−1ei

∥∥∥∥2 .
We bound T5 using two new terms T6 and T7:

T5 =

k−1∑
j 6=j′

E
〈
∂f(Xj)

(
1n
n
−W k−j−1ei

)
, ∂f(Xj′)

(
1n
n
−W k−j′−1ei

)〉

6
k−1∑
j 6=j′

E
∥∥∥∥∂f(Xj)

(
1n
n
−W k−j−1ei

)∥∥∥∥∥∥∥∥∂f(Xj′)

(
1n
n
−W k−j′−1ei

)∥∥∥∥
6
k−1∑
j 6=j′

E‖∂f(Xj)‖
∥∥∥∥1nn −W k−j−1ei

∥∥∥∥ ‖∂f(Xj′)‖
∥∥∥∥1nn −W k−j′−1ei

∥∥∥∥
6
k−1∑
j 6=j′

E‖∂f(Xj)‖
∥∥∥∥1nn −W k−j−1ei

∥∥∥∥ ‖∂f(Xj′)‖
∥∥∥∥1nn −W k−j′−1ei

∥∥∥∥
6
k−1∑
j 6=j′

E
‖∂f(Xj)‖2

2

∥∥∥∥1nn −W k−j−1ei

∥∥∥∥∥∥∥∥1nn −W k−j′−1ei

∥∥∥∥
+

k−1∑
j 6=j′

E
‖∂f(Xj′)‖2

2

∥∥∥∥1nn −W k−j−1ei

∥∥∥∥∥∥∥∥1nn −W k−j′−1ei

∥∥∥∥
Lemma 4
6

k−1∑
j 6=j′

E
(
‖∂f(Xj)‖2

2
+
‖∂f(Xj′)‖2

2

)
ρk−

j+j′
2 −1

=

k−1∑
j 6=j′

E(‖∂f(Xj)‖2)ρk−
j+j′

2 −1

Lemma 5
6 3

k−1∑
j 6=j′

(
n∑
h=1

EL2Qj,h + E
∥∥∥∥∇f (Xj1n

n

)
1>n

∥∥∥∥2
)
ρk−

j+j′
2 −1

︸ ︷︷ ︸
=:T6

+

k−1∑
j 6=j′

3nς2ρk−1−
j+j′

2

︸ ︷︷ ︸
=:T7

,

where T7 can be bounded using ς and ρ:

T7 =6nς2
k−1∑
j>j′

ρk−1−
j+j′

2

=6nς2
(
ρk/2 − 1

) (
ρk/2 −√ρ

)(√
ρ− 1

)2 (√
ρ+ 1

)
21

≤6nς2 1(
1−√ρ

)2 ,
and we bound T6:

T6 =3

k−1∑
j 6=j′

(
n∑
h=1

EL2Qj,h + E
∥∥∥∥∇f (Xj1n

n

)
1>n

∥∥∥∥2
)
ρk−

j+j′
2 −1

=6

k−1∑
j=0

(
n∑
h=1

EL2Qj,h + E
∥∥∥∥∇f (Xj1n

n

)
1>n

∥∥∥∥2
)

k−1∑
j′=j+1

√
ρ
2k−j−j′−2

66

k−1∑
j=0

(
n∑
h=1

EL2Qj,h + E
∥∥∥∥∇f (Xj1n

n

)
1>n

∥∥∥∥2
) √

ρk−j−1

1−√ρ
.

Plugging T6 and T7 into T5 and then plugging T5 and T4 into T3 yield the upper bound for T3:

T3 63

k−1∑
j=0

n∑
h=1

EL2Qj,h

∥∥∥∥1nn −W k−j−1ei

∥∥∥∥2

+ 3

k−1∑
j=0

E
∥∥∥∥∇f (Xj1n

n

)
1>n

∥∥∥∥2 ∥∥∥∥1nn −W k−j−1ei

∥∥∥∥2

+ 6

k−1∑
j=0

(
n∑
h=1

EL2Qj,h + E
∥∥∥∥∇f (Xj1n

n

)
1>n

∥∥∥∥2
) √

ρk−j−1

1−√ρ

+
3nς2

1− ρ
+

6nς2(
1−√ρ

)2
63

k−1∑
j=0

n∑
h=1

EL2Qj,h

∥∥∥∥1nn −W k−j−1ei

∥∥∥∥2

+ 3

k−1∑
j=0

E
∥∥∥∥∇f (Xj1n

n

)
1>n

∥∥∥∥2 ∥∥∥∥1nn −W k−j−1ei

∥∥∥∥2

+ 6

k−1∑
j=0

(
n∑
h=1

EL2Qj,h + E
∥∥∥∥∇f (Xj1n

n

)
1>n

∥∥∥∥2
) √

ρk−j−1

1−√ρ

+
9nς2(

1−√ρ
)2 ,

where the last step we use the fact that 1
1−ρ ≤

1
(1−√ρ)2 .

Putting the bound for T2 and T3 back to (11) we get the bound for Qk,i:

Qk,i 6
2γ2nσ2

1− ρ
+ 6γ2

k−1∑
j=0

n∑
h=1

EL2

∥∥∥∥∑n
i′=1 xj,i′

n
− xj,h

∥∥∥∥2 ∥∥∥∥1nn −W k−j−1ei

∥∥∥∥2

+ 6γ2
k−1∑
j=0

E
∥∥∥∥∇f (Xj1n

n

)
1>n

∥∥∥∥2 ∥∥∥∥1nn −W k−j−1ei

∥∥∥∥2

+ 12γ2
k−1∑
j=0

(
n∑
h=1

EL2

∥∥∥∥∑n
i′=1 xj,i′

n
− xj,h

∥∥∥∥2 + E
∥∥∥∥∇f (Xj1n

n

)
1>n

∥∥∥∥2
) √

ρk−j−1

1−√ρ

+
18γ2nς2

(1−√ρ)2

22

Lemma 4
6

2γ2nσ2

1− ρ
+

18γ2nς2

(1−√ρ)2

+ 6γ2
k−1∑
j=0

n∑
h=1

EL2Qj,hρ
k−j−1

+ 6γ2
k−1∑
j=0

E
∥∥∥∥∇f (Xj1n

n

)
1>n

∥∥∥∥2 ρk−j−1
+ 12γ2

k−1∑
j=0

(
n∑
h=1

EL2Qj,h + E
∥∥∥∥∇f (Xj1n

n

)
1>n

∥∥∥∥2
) √

ρk−j−1

1−√ρ

=
2γ2nσ2

1− ρ
+

18γ2nς2

(1−√ρ)2

+ 6γ2
k−1∑
j=0

E
∥∥∥∥∇f (Xj1n

n

)
1>n

∥∥∥∥2
(
ρk−j−1 +

2
√
ρk−j−1

1−√ρ

)

+ 6γ2
k−1∑
j=0

n∑
h=1

EL2Qj,h

(
2
√
ρk−j−1

1−√ρ
+ ρk−j−1

)
. (12)

Till now, we have the bound for Qk,i. We continue by bounding its average Mk on all nodes, which
is defined by:

EMk :=
E
∑n
i=1Qk,i
n

(13)

(12)
6

2γ2nσ2

1− ρ
+

18γ2nς2

(1−√ρ)2

+ 6γ2
k−1∑
j=0

E
∥∥∥∥∇f (Xj1n

n

)
1>n

∥∥∥∥2
(
ρk−j−1 +

2
√
ρk−j−1

1−√ρ

)

+ 6γ2nL2
k−1∑
j=0

EMj

(
2
√
ρk−j−1

1−√ρ
+ ρk−j−1

)
.

Summing from k = 0 to K − 1 we get:

K−1∑
k=0

EMk 6
2γ2nσ2

1− ρ
K +

18γ2nς2

(1−√ρ)2
K

+ 6γ2
K−1∑
k=0

k−1∑
j=0

E
∥∥∥∥∇f (Xj1n

n

)
1>n

∥∥∥∥2
(
ρk−j−1 +

2
√
ρk−j−1

1−√ρ

)

+ 6γ2nL2
K−1∑
k=0

k−1∑
j=0

EMj

(
2
√
ρk−j−1

1−√ρ
+ ρk−j−1

)

6
2γ2nσ2

1− ρ
K +

18γ2nς2

(1−√ρ)2
K

+ 6γ2
K−1∑
k=0

E
∥∥∥∥∇f (Xk1n

n

)
1>n

∥∥∥∥2
(∞∑
i=0

ρi +
2
∑∞
i=0

√
ρi

1−√ρ

)

+ 6γ2nL2
K−1∑
k=0

EMk

(
2
∑∞
i=0

√
ρi

1−√ρ
+

∞∑
i=0

ρi

)

23

6
2γ2nσ2

1− ρ
K +

18γ2nς2

(1−√ρ)2
K

+
18

(1−√ρ)2
γ2

K−1∑
k=0

E
∥∥∥∥∇f (Xk1n

n

)
1>n

∥∥∥∥2

+
18

(1−√ρ)2
γ2nL2

K−1∑
k=0

EMk,

where the second step comes from rearranging the summations and the last step comes from the
summation of geometric sequences.

Simply by rearranging the terms we get the bound for the summation of EMk’s from k = 0 to K − 1:

(
1− 18

(1−√ρ)2
γ2nL2

)K−1∑
k=0

EMk

6
2γ2nσ2

1− ρ
K +

18γ2nς2

(1−√ρ)2
K +

18

(1−√ρ)
γ2

K−1∑
k=0

E
∥∥∥∥∇f (Xk1n

n

)
1>n

∥∥∥∥2

=⇒
K−1∑
k=0

EMk 6
2γ2nσ2

(1− ρ)
(
1− 18

(1−√ρ)2 γ
2nL2

)K +
18γ2nς2

(1−√ρ)2
(
1− 18

(1−√ρ)2 γ
2nL2

)K
+

18γ2

(1−√ρ)2
(
1− 18

(1−√ρ)2 γ
2nL2

) K−1∑
k=0

E
∥∥∥∥∇f (Xk1n

n

)
1>n

∥∥∥∥2 . (14)

Recall (10) that T1 can be bounded using Mk:

ET1 6
L2

n

n∑
i=1

EQk,i = L2EMk. (15)

We are finally able to bound the error by combining all above. Starting from (9):

Ef
(
Xk+11n

n

)
6Ef

(
Xk1n
n

)
− γ − γ2L

2
E
∥∥∥∥∂f(Xk)1n

n

∥∥∥∥2 − γ

2
E
∥∥∥∥∇f (Xk1n

n

)∥∥∥∥2
+
γ2L

2n
σ2 +

γ

2
ET1

(15)
6Ef

(
Xk1n
n

)
− γ − γ2L

2
E
∥∥∥∥∂f(Xk)1n

n

∥∥∥∥2 − γ

2
E
∥∥∥∥∇f (Xk1n

n

)∥∥∥∥2
+
γ2L

2n
σ2 +

γ

2
L2EMk.

Summing from k = 0 to k = K − 1 we get:

γ − γ2L
2

K−1∑
k=0

E
∥∥∥∥∂f(Xk)1n

n

∥∥∥∥2 + γ

2

K−1∑
k=0

E
∥∥∥∥∇f (Xk1n

n

)∥∥∥∥2

6f(0)− f∗ + γ2KL

2n
σ2 +

γ

2
L2

K−1∑
k=0

EMk

(14)
6 f(0)− f∗ + γ2KL

2n
σ2

24

+
γ

2
L2 2γ2nσ2

(1− ρ)
(
1− 18

(1−√ρ)2 γ
2nL2

)K +
γ

2
L2 18γ2nς2

(1−√ρ)2
(
1− 18

(1−√ρ)2 γ
2nL2

)K
+
γ

2
L2 18γ2

(1−√ρ)2
(
1− 18

(1−√ρ)2 γ
2nL2

) K−1∑
k=0

E
∥∥∥∥∇f (Xk1n

n

)
1>n

∥∥∥∥2

=f(0)− f∗ + γ2KL

2n
σ2

+
γ3L2nσ2

(1− ρ)
(
1− 18

(1−√ρ)2 γ
2nL2

)K +
9γ3L2nς2

(1−√ρ)2
(
1− 18

(1−√ρ)2 γ
2nL2

)K
+

9nγ3L2

(1−√ρ)2
(
1− 18

(1−√ρ)2 γ
2nL2

) K−1∑
k=0

E
∥∥∥∥∇f (Xk1n

n

)∥∥∥∥2

By rearranging the inequality above, we obtain:

=⇒

γ−γ2L
2

∑K−1
k=0 E

∥∥∥∂f(Xk)1nn

∥∥∥2 +(γ
2 −

9nγ3L2

(1−√ρ)2
(
1− 18

(1−√ρ)2
γ2nL2

)
)∑K−1

k=0 E
∥∥∇f (Xk1nn)∥∥2

γK

6
f(0)− f∗

γK
+
γL

2n
σ2 +

γ2L2nσ2

(1− ρ)
(
1− 18

(1−√ρ)2 γ
2nL2

) +
9γ2L2nς2

(1−√ρ)2
(
1− 18

(1−√ρ)2 γ
2nL2

) .
which completes the proof.

Proof to Corollary 2. Substitute γ = 1

2L+σ
√
K/n

into Theorem 1 and remove the
∥∥∥∂f(Xk)1nn

∥∥∥2
terms on the LHS. We get

D1

∑K−1
k=0 E

∥∥∇f (Xk1nn)∥∥2
K

6
2(f(0)− f∗)L

K
+

(f(0)− f∗)σ√
Kn

+
Lσ2

4nL+ 2σ
√
Kn

+
L2n

(2L+ σ
√
K/n)2D2

(
σ2

1− ρ
+

9ς2

(1−√ρ)2

)
6
2(f(0)− f∗)L

K
+

(f(0)− f∗ + L/2)σ√
Kn

+
L2n

(σ
√
K/n)2D2

(
σ2

1− ρ
+

9ς2

(1−√ρ)2

)
. (16)

We first show D1 and D2 are approximately constants when (6) is satisfied.

D1 :=

(
1

2
− 9γ2L2n

(1−√ρ)2D2

)
, D2 :=

(
1− 18γ2

(1−√ρ)2
nL2

)
.

Note that

γ2 6
(1−√ρ)2

36nL2
=⇒ D2 > 1/2,

γ2 6
(1−√ρ)2

72L2n
=⇒ D1 > 1/4.

Since

γ2 6
n

σ2K
,

25

as long as we have

n

σ2K
6
(1−√ρ)2

36nL2

n

σ2K
6
(1−√ρ)2

72L2n
,

D2 > 1/2 and D1 > 1/4 will be satisfied. Solving above inequalities we get (6).

Now with (6) we can safely replace D1 and D2 in (17) with 1/4 and 1/2 respectively. Thus

∑K−1
k=0 E

∥∥∇f (Xk1nn)∥∥2
4K

6
2(f(0)− f∗)L

K
+

(f(0)− f∗ + L/2)σ√
Kn

+
2L2n

(σ
√
K/n)2

(
σ2

1− ρ
+

9ς2

(1−√ρ)2

)
. (17)

Given (5), the last term is bounded by the second term, completing the proof.

Proof to Theorem 3. This can be seen from a simple analysis that the ρ,
√
ρ for this W are asymptot-

ically 1− 16π2

3n2 , 1− 8π2

3n2 respectively when n is large. Then by requiring (6) we need n ≤ O(K1/6).
To satisfy (5) we need n ≤ O

(
K1/9

)
when ς = 0 and n ≤ O(K1/13) when ς > 0. This completes

the proof.

We have the following theorem showing the distance of the local optimization variables converges
with a O(1/K) rate, where the “O” swallows n, ρ, σ, ς, L and f(0)− f∗, which means it is safe to
use any worker’s local result to get a good estimate to the solution:
Theorem 6. With γ = 1

2L+σ
√
K/n

under the same assumptions as in Corollary 2 we have

(Kn)−1E
K−1∑
k=0

n∑
i=1

∥∥∥∥∑n
i′=1 xk,i′

n
− xk,i

∥∥∥∥2 6nγ2
A

D2
,

where

A :=
2σ2

1− ρ
+

18ς2

(1−√ρ)2
+
L2

D1

(
σ2

1− ρ
+

9ς2

(1−√ρ)2

)
+

18

(1−√ρ)2

(
f(0)− f∗

γK
+
γLσ2

2nD1

)
.

Choosing γ in the way in Corollary 2, we can see that the consensus will be achieved in the rate
O(1/K).

Proof to Theorem 6. From (14) with γ = 1

2L+σ
√
K/n

we have∑K−1
k=0 EMk

K
6

2γ2nσ2

(1− ρ)D2
+

18γ2nς2

(1−√ρ)2D2

+
18γ2

(1−√ρ)2D2

∑K−1
k=0 E

∥∥∇f (Xk1nn)
1>n
∥∥2

K

=
2γ2nσ2

(1− ρ)D2
+

18γ2nς2

(1−√ρ)2D2

+
18γ2n

(1−√ρ)2D2

∑K−1
k=0 E

∥∥∇f (Xk1nn)∥∥2
K

26

Corollary 2
6

2γ2nσ2

(1− ρ)D2
+

18γ2nς2

(1−√ρ)2D2
+
γ2L2n

D1D2

(
σ2

1− ρ
+

9ς2

(1−√ρ)2

)
+

18γ2n

(1−√ρ)2D2

(
f(0)− f∗

γK
+
γLσ2

2nD1

)
=
nγ2

D2
A.

This completes the proof.

27

