
Appendix

Figure App.1: Log variance of the gradient estimator for the single layer linear model on the MNIST
generative modeling task (left) and on the structured prediction task (right).

Figure App.2: Training variational lower bound for the single layer linear model on the MNIST
generative modeling task (left) and on the structured prediction task (right). We plot 5 trials over
different random initializations for each method with the median trial highlighted.

Figure App.3: Log variance of the gradient estimator for the single layer linear model (left), the two
layer linear model (middle), and the single layer nonlinear model (right) on the Omniglot generative
modeling task.

A Control Variates

Suppose we want to estimate Ex[f(x)] for an arbitrary function f . The variance of the naive Monte
Carlo estimator Ex[f(x)] ⇡ 1

k

P
i f(x

i
), with x1, ..., xn ⇠ p(x), can be reduced by introducing a

control variate g(x). In particular,

E[f(x)] ⇡
 
1

k

X

i

f(xi
)� ⌘g(xi

)

!
+ ⌘ E[g(x)]]

is an unbiased estimator for any value of ⌘. We can choose ⌘ to minimize the variance of the estimator
and it is straightforward to show that the optimal one is

⌘ =

Cov(f, g)

Var(g)
,
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Figure App.4: Training variational lower bound for the single layer linear model (left), the two
layer linear model (middle), and the single layer nonlinear model (right) on the Omniglot generative
modeling task. We plot 5 trials over different random initializations for each method with the median
trial highlighted.

MNIST gen. NVIL MuProp REBAR (0.1) REBAR Concrete (0.1)

Linear 1 layer �112.5 ± 0.1 �111.7 ± 0.1 �111.7 ± 0.2 �111.6 ± 0.03 �111.3 ± 0.1
Linear 2 layer �99.6 ± 0.1 �99.07 ± 0.02 �99 ± 0.1 �98.8 ± 0.03 �99.62 ± 0.09
Nonlinear �102.2 ± 0.1 �101.5 ± 0.3 �101.4 ± 0.2 �101.1 ± 0.1 �102.8 ± 0.2

Omniglot gen.

Linear 1 layer �117.44 ± 0.03 �117.09 ± 0.06 �116.93 ± 0.03 �116.83 ± 0.02 �117.23 ± 0.04
Linear 2 layer �109.98 ± 0.09 �109.55 ± 0.02 �109.12 ± 0.07 �108.99 ± 0.06 �109.95 ± 0.04
Nonlinear �110.4 ± 0.2 �109.58 ± 0.09 �109 ± 0.1 �108.72 ± 0.06 �110.64 ± 0.08

MNIST struct. pred.

Linear 1 layer �69.15 ± 0.02 �64.31 ± 0.01 �65.75 ± 0.02 �65.244 ± 0.009 �65.53 ± 0.01
Linear 2 layer �68.88 ± 0.04 �63.68 ± 0.02 �65.525 ± 0.004 �61.74 ± 0.02 �66.89 ± 0.04
Nonlinear layer �54.01 ± 0.03 �47.58 ± 0.04 �47.34 ± 0.02 �46.44 ± 0.03 �47.09 ± 0.02

Table App.1: Mean training variational lower bound over 5 trials with different random initializations
and standard error of the mean. We report trials using the best performing learning rate for each task.

MNIST gen. NVIL MuProp REBAR (0.1) REBAR Concrete (0.1)

Linear 1 layer �108.35 ± 0.06 �108.03 ± 0.07 �107.74 ± 0.09 �107.65 ± 0.08 �107 ± 0.1
Linear 2 layer �96.54 ± 0.04 �96.07 ± 0.05 �95.47 ± 0.08 �95.67 ± 0.04 �95.63 ± 0.05
Nonlinear �100 ± 0.1 �100.66 ± 0.08 �100.48 ± 0.09 �100.69 ± 0.08 �99.54 ± 0.06

Omniglot gen.

Linear 1 layer �117.59 ± 0.04 �117.64 ± 0.04 �117.68 ± 0.05 �117.65 ± 0.04 �117.65 ± 0.05
Linear 2 layer �111.43 ± 0.04 �111.22 ± 0.04 �110.97 ± 0.07 �110.83 ± 0.06 �111.34 ± 0.05
Nonlinear �116.57 ± 0.08 �117.51 ± 0.09 �118.2 ± 0.1 �118.02 ± 0.05 �116.69 ± 0.08

MNIST struct. pred.

Linear 1 layer �66.12 ± 0.03 �65.67 ± 0.01 �65.62 ± 0.04 �65.61 ± 0.02 �65.33 ± 0.02
Linear 2 layer �63.14 ± 0.02 �62.066 ± 0.009 �62.08 ± 0.05 �61.68 ± 0.05 �61.91 ± 0.03
Nonlinear �61.24 ± 0.05 �61.48 ± 0.03 �61.3 ± 0.04 �61.34 ± 0.02 �61.03 ± 0.02

Table App.2: Mean test 100-sample variational lower bound on the log-likelihood Burda et al. (2015)
over 5 random initializations with standard error of the mean. We report the best performing learning
rate for each task based on the validation set.

and it reduces the variance of the estimator by (1� ⇢(f, g)2). So, if we can find a g that is correlated
with f , we can reduce the variance of the estimator. If we cannot compute E[g], we can use a
low-variance estimator ĝ. This is the approach we take. Of course, we could define g̃ = g � ĝ, which
has zero mean, as the control variate, however, this obscures the interpretability of the control variate.

B Conditional marginalization for the control variate

In this section, we explain why the Monte Carlo gradient estimator derived from the left hand side
of Eq. 2 has much lower variance than the Monte Carlo gradient estimator derived from the right
hand side. This is because the left hand side can be seen as analytically performing a conditional
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Figure App.5: Test 100-sample variational lower bound on the log-likelihood. We computed the
bound using the inference network used during training (dash-dot line) and a separate inference
network trained in parallel on the test set (solid line). The inference network trained on the test set
gives a much tighter lower bound on the log-likelihood. However, we still observe overfitting.
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where the equality in the second line follows from the fact that when z ⇠ p(z|b), then b = H(z),
so p(z) = p(z)1(b = H(z)) = p(z)p(b|z) = p(z|b)p(b), where 1(A) is the indicator function for
event A.

A similar manipulation holds for the control variate
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where again we used the fact that when z ⇠ p(z|b), p(z) = p(z|b)p(b).

C Reparameterizations for REBAR

In this section, we describe reparameterizations for p(z) and p(z|b) when b is an categorical random
variable, including the special case of b binary. Let b be a categorical random variable represented
as a one-hot vector of 0s and 1s with probability pi > 0 that bi = 1. Note pi are normalized. Let
ui ⇠ Uniform(0, 1) be i.i.d. uniform random variables, and define the random vector z by

zi := g(ui, pi) := log pi � log(� log(ui)) (6)

We can parameterize b as H(z) where now H : Rn ! {0, 1}n is the one-hot argmax function

Hi(z) =

⇢
1 if zi � zj for j 6= i

0 otherwise

This is known as the Gumbel-Max trick (see Maddison et al. (2016); Jang et al. (2016) for a discussion
of the literature), because the zi are Gumbel random variables with location parameters log pi. The
Gumbel with location µ is a distribution with c.d.f. and density given respectively by

�µ(z) = exp(� exp(�z + µ))

�µ(z) = exp(�z + µ) exp(� exp(�z + µ))
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Thus, p(z) =
Qn

i=1

�
log pi(zi) and it has the reparameterization given by Eq. 6.

� has an important additive property in its location parameter that allows us to derive the distribution
p(z|b) and a reparameterization function g̃(v, b, p). We have

�

log(a+b)(z) = exp(� exp(�z)(a+ b)) = �

log a(z)�log b(z)

Let 1(A) be the indicator of event A, b = H(z), and k such that bk = 1, then the joint is
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= p(b)p(z|b)
And so we see that b has the correct categorical distribution, zk is a standard Gumbel random variable
with location parameter 0, and zi for i 6= k are Gumbel random variables with location parameter
log pi truncated at the value zk. This derivation is a special case of the Top-Down construction of A*
Sampling (Maddison et al., 2014). Maddison et al. (2014) derive a reparameterization for truncated
Gumbel random variables, which we use to define the reparameterization function g̃(v, b, p) of p(z|b)
via its ith component. Letting vi ⇠ Uniform(0, 1) and k be such that bk = 1:

g̃i(v, b, p) :=

(
� log(� log vk) if i = k

� log

⇣
� log vi

pi
� log vk)

⌘
otherwise

Let u ⇠ Uniform(0, 1), then the special case of binary b ⇠ Bernoulli(✓) reduces to
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1� u

and
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D An alternative view of REBAR

We can decompose the objective into a reparameterizable term and a residual
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where we expanded the second term similarly to REINFORCE. Importantly, the first and third terms
are reparameterizable, so we can estimate them with low variance.

E Rethinking the relaxation and a connection to MuProp

Recall that the Concrete relaxation for binary variables is

h = H(z) ⇡ ��(z) = �

✓
1

�
log

✓

1� ✓
+

1

�
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u

1� u

◆
.
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Figure App.6: Graphical model depiction of p(u
1:2

|b
1:2

). Notably, u
1:2

are independent given b
1:2

.

Since ��(z) ! 1

2

as � ! 1, this is clearly a poor approximation and will lead to an ineffective
control variate. Alternatively, consider the relaxation
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�2
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log

✓
1�✓ + log

u
1�u . As � ! 1, the relaxation converges to the mean, ✓, and

still as � ! 0, the relaxation becomes exact. Conveniently, we can think of this new relaxation as ��

with a �-dependent transformation of the parameters ✓.

Then, as � ! 1, the REBAR estimator converges to
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which is MuProp without the linear term.

F Multilayer stochastic network

The estimator for multilayer stochastic networks described in the main text requires n passes through
the network (where n is the number of layers). We present two alternatives that do not require
additional passes through the network.

Recall that we have multiple layers of stochastic units (i.e., b = {b
1

, b
2

, . . . , bn}) where p(b) factor-
izes as

p(b
1:n) = p(b

1

)p(b
2

|b
1

) · · · p(bn|bn�1

),

and similarly for the underlying Logistic random variables p(z
1:n) recalling that bi = H(zi). We

also defined a relaxed distribution q(z̃
1:n) where we replace the hard threshold function H(z) with a

continuous relaxation ��(z).

Now, we define a coupled distribution p(z
1:n, z̃1:n) such that the marginals are p(z

1:n) and q(z̃
1:n)

(see Appendix Figure App.6 for an example). Let ✓i by the parameters for the Bernoulli distribution
defining p(zi|z1:i�1

) and similarly for ˜✓i. Then, zi = g(ui, ✓i) ⇠ p(zi|z1:i�1

) where ui is a vector
of Uniform random variables. Similarly, let z̃i = g(ui, ˜✓i) where the randomness ui is shared. By
construction, the marginals are p(z

1:n) and q(z̃
1:n). The key property of this coupled distribution

is that both q(z̃
1:n) and p(z̃

1:n|b1:n) are reparameterizable. By construction z̃
1:n is a deterministic,

differentiable function of u
1:n, so it suffices to understand p(u

1:n|b1:n). By looking at the conditional
dependence structure of this distribution (Appendix Figure App.6), it is clear that it factorizes (i.e.,
p(u

1:n|b1:n) =
Q

i p(ui|bi�1:i)) and as we showed in the single layer case, these individual factors
are reparameterizable.
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Similar to the single layer case (Appendix D), we can decompose the objective
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where the first and third terms are reparameterizable. As � ! 1 this estimator converges to
a multilayer version of SimpleMuProp. This is straightforward to implement and only requires
two evaluations of f . Unfortunately, as the depth of the network increases, the continuous path
will eventually diverge from the discrete path. We could compute additional passes through the
network that transition every several layers. This would trade reduce variance at the cost of increased
computation. We leave exploring these hybrid approaches to future work.

Alternatively, we can use the control variate

E
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where we train Q to minimize5
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This avoids the extra computation, and the Q-function could potentially learn to compensate for the
continuous relaxation. We leave exploring this to future work.

G Implementation details

We used Adam (Kingma & Ba, 2014) with a constant learning rate from {3⇥ 10

�5, 1⇥ 10

�4, 3⇥
10

�4, 10�3, 3⇥ 10

�3} for the linear models and from {3⇥ 10

�5, 10�4} for the nonlinear models
and decays �

1

= 0.9,�
2

= 0.999996. Higher learning rates caused training to diverge. We used
minibatches of 24 elements and optimized for 2 million steps. We centered the input to the inference
network with the training data statistics. As in (Maddison et al., 2016), all binary variables took
values in {�1, 1}. We initialized the bias of the output layer to the training data statistics as in (Burda
et al., 2015). All of the unbiased estimators used input-dependent baselines as described in (Mnih &
Gregor, 2014). We used a 10 times faster learning rate for the parameters of the baselines and control
variate scalings.

Preliminary evaluations of the REBAR and Concrete estimators over a range of � found � = 0.1 to
perform well across tasks and configurations.

G.1 MuProp

We found that the linear term in the MuProp baseline was detrimental for later layers, so we learned
an additional scaling factor to modulate the linear terms. This reduced the variance of the MuProp
learning signal beyond the algorithm described in (Gu et al., 2015).

G.2 REBAR

We learned separate control variate scalings (⌘) for each parameter group (e.g., the weights in the
first layer, the biases in first layer, etc.).

When computing the REBAR estimator, we leverage common random numbers to sample from
b, z, and z|b. Recall that z = g(u, ✓) where u is a uniform random variable, b = H(z), and

5Note that this ignores the variance contribution from the reparameterizable terms. We leave evaluating this
approach to future work.

6This large value of �2 is crucial for online estimation of the temperature. Adam uses the same gradients to
compute both the numerator and denominator for the update step. This can lead to biased updates, with greater
bias for smaller �2. This is especially severe when the distribution over gradient magnitudes is asymmetric and
heavy tailed, as is the case here.
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z|b = g̃(v, b, ✓). The expectation in Eq. 4 is over p(u, v) independently sampled from Uniform(0, 1),
however, it is possible to draw u and v from a dependent joint distribution without changing the
expected value. The key is that the first term of Eq. 4 depends only on u, the second on v and b,
the third on u, and the fourth on v and b. So, if we sample u uniformly and then generate z and b,
z will be distributed according to z|b. We can also sample from z|b by noting the point u0 where
g(u0, ✓) = 0 and sampling v uniformly and then scaling it to the interval [u0, 1] if b = 1 or [0, u0

]

otherwise. So a choice of u will determine a corresponding choice of v which produces the same
z. Importantly, v and b are independent after this generation procedure. We propose using this pair
(u, v) as the random numbers in the reparameterization trick.

G.3 Concrete

A subtle point addressed in (Maddison et al., 2016) is that the objective optimized by the method we
called Concrete and in Jang et al. (2016) is not a stochastic lower bound on the marginal log-likelihood.
The results reported in (Maddison et al., 2016; Jang et al., 2016) were similar and REBAR is most
similar to Jang et al. (2016), so we chose to compare against it. However, although the Concrete
method does not optimize a lower bound, we emphasize that we evaluated a proper stochastic lower
bound for all plots and numbers reported (including on the training set).
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