
Appendix A Optimality of Polynomial Code in Latency and Communication
Load

In this section we prove the optimality of polynomial code for distributed matrix multiplication in
terms of computation latency and communication load. Specifically, we provide the proof of Theorem
2 and Theorem 3.

A.1 Proof of Theorem 2

Consider an arbitrary computation strategy, we denote its computation latency by T . By definition, T
is given as follows:

T = min{ t ≥ 0 | C is decodable given results from all workers in { i | Ti ≤ t } }, (1)

where Ti denotes the computation time of worker i. To simplify the discussion, we define

S(t) = { i | Ti ≤ t } (2)

given T0, T1, ..., TN−1.

As proved in Section 3.3, if C is decodable at any time t, there must be at least mn workers finishes
computation. Consequently, we have

T = min{ t ≥ 0 | C is decodable given results from all workers in S(t) }
= min{ t ≥ 0 | C is decodable given results from all workers in S(t) and |S(t)| ≥ mn }
≥ min{ t ≥ 0 | |S(t)| ≥ mn }. (3)

On the other hand, we consider the latency of polynomial code, denoted by Tpoly. Recall that for the
polynomial code, the output C is decodable if and only if at least mn workers finishes computation,
i.e., |S(t) ≥ mn|. We have

Tpoly = min{ t ≥ 0 | |S(t)| ≥ mn }. (4)

Hence, T ≥ Tpoly always holds true, which proves Theorem 2.

A.2 Proof of Theorem 3

Recall that in Section 3.3 we have proved that if the input matrices are sampled based on a certain
distribution, then decoding the output C requires that the entropy of the entire message received by
the server is at least rt log2 q. Consequently, it takes at least rt log2 q bits deliver such messages,
which lower bounds the minimum communication load.

On the other hand, the polynomial code requires delivering rt elements in Fq in total, which achieves
this minimum communication load. Hence, the minimum communication load L∗ equals rt log2 q.

Appendix B Proof of Theorem 4

In this section, we formally describe a computation strategy, which achieves the recovery threshold
stated in Theorem 4. Consider a distributed convolution problem with two input vectors

a = [a0 a1 ... am−1], b = [b0 b1 ... bn−1], (5)

where the ai’s and bi’s are vectors of length s. We aim to compute c = a ∗ b using N workers.
In previous literature [1], the computation strategies were designed so that the master can recover
all intermediate values aj ∗ bk’s. This is essentially the same computing framework used in the
distributed matrix multiplication problem, so by naively applying the polynomial code (specifically
the (1,m)-polynomial code using the notation in Definition 2), we can achieve the corresponding
optimal recovery threshold in computing all aj ∗ bk’s.

However, the master does not need to know each individual ai ∗ bj in order to recover the output c.
To customize the coding design so as to utilize this fact, we recall the general class of computation

1

strategies stated in Definition 2: Given design parameters α and β, the (α, β)-polynomial code lets
each worker i store two vectors

ãi =

m−1∑
j=0

ajx
jα
i , b̃i =

n−1∑
j=0

bjx
jβ
i , (6)

where the xi’s are N distinct values assigned to the N workers.

Recall that in the polynomial code designed for matrix multiplication, we picked values of α, β such
that, in the local product, all coefficients aj ∗ bk are preserved as individual terms with distinct
exponents on xi. The fact that no two terms were combined leaves enough information to the master,
so that it can decode any individual coefficient value from the intermediate result. Now that decoding
all individual values is no longer required in the problem of convolution, we can design a new
variation of the polynomial code to further improve recovery threshold, using design parameters
α = β = 1. In other words, each worker stores two vectors

ãi =

m−1∑
j=0

ajx
j
i , b̃i =

n−1∑
j=0

bjx
j
i . (7)

After computing the convolution product of the two locally stored vectors, each worker i returns

ãi ∗ b̃i =
m−1∑
j=0

n−1∑
k=0

aj ∗ bkxj+ki , (8)

which is essentially the value of the following degree m+ n− 2 polynomial at point x = xi.

h(x) =

m+n−2∑
j=0

min{j,n−1}∑
k=max{0,j−m+1}

aj−k ∗ bkxji . (9)

Using this design, instead of recovering all aj ∗ bk’s, the server can only recover a subspace of their
linear combinations. Interestingly, we can still recover c using these linear combinations, because it is
easy to show that, if two values are combined in the same term of vector

∑min{j,n−1}
k=max{0,j−m+1} aj−k∗bk,

then they are also combined in the same term of c.

Consequently, after receiving the computing results from any m + n − 1 workers, the server can
recover all the coefficients of h(x), which allows recovering c, which prove that this computation
strategy achieves a recovery threshold of m+ n− 1.

Similar to distributed matrix multiplication, this decoding process can be viewed as interpolating
degree m + n − 2 polynomials of Fq for s times. Consequently, the decoding complexity is
O(s(m+ n) log2(m+ n) log log(m+ n)), which is almost-linear to the input size s(m+ n).
Remark 1. Similar to distributed matrix multiplication, we can also extend this computation strategy
to the scenario where the elements of input vectors are real or complex numbers, by quantizing all
input values, embedding them into a finite field, and then directly applying our distributed convolution
algorithm.

Appendix C Order-Wise Characterization of Kconv

Now we prove Theorem 5, which characterizes the optimum recovery threshold Kconv within a factor
of 2. The upper bound K∗conv ≤ Kconv-poly directly follows from Theorem 4, hence we focus on
proving the lower bound of K∗conv. We first prove the following inequality.

K∗conv ≥ max{m,n}. (10)
Let a be any fixed non-zero vector, and b be sampled from Fsnq uniformly at random. We can be
easily show that the operation of convolving with a is invertible, and thus the entropy of c , a ∗ b
equals that of b, which is sn log2 q. Note that each worker i returns ãi ∗ b̃i, whose entropy is at most
H(ãi) +H(b̃i) = s log2 q. Using a cut-set bound around the master, we can show that at least n
results from the workers need to be collected, and thus we have K∗ ≥ n.

Similarly we have K∗ ≥ m, hence K∗ ≥ max{m,n}. Thus we can show that the gap between the
upper and lower bounds is no larger than 2: K∗ ≥ max{m,n} ≥ m+n

2 > m+n−1
2 =

Kconv-poly

2 .

2

References

[1] S. Dutta, V. Cadambe, and P. Grover, “Coded convolution for parallel and distributed computing
within a deadline,” arXiv preprint arXiv:1705.03875, 2017.

3

