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Abstract

This appendix provides the missing proofs in the paper. Except for the first section,
all sections match those of the main paper. Since the numberings are different, the
results from the main paper are stated again before the proofs are given.

1 Martingale Convergence Theorems

We start by stating two Martingale convergence theorems that shall be useful later. These are adapted
statements that come from [3], which contains detailed proofs. The first one is a law of large number
theorem for Martingales.

Theorem 1.1. Let St =
∑t
k=0X

k be a Martingale adapted to the filtration St. Let {ut}∞t=0 be
a nondecreasing sequence of positive numbers with limt→∞ ut = ∞. If ∃p ∈ [1, 2] such that∑∞
t=0

E[|Xt+1|p|St]
(ut)p <∞, a.s. , then

lim
t→∞

St

ut
= 0, a.s.,

The second one is Doob’s Martingale convergence theorem.

Theorem 1.2. Let St be a submartingale adapted to the filtration St, where t = 0, 1, 2, . . . . If St
is l1-bounded: supt≥0 E[|St|] <∞, then St converges almost surely to a random variable S with
E[|S|] <∞.

2 Setup and Preliminaries

2.1 Variational Coherence

Lemma 2.1. Given g : X → R, if X ∗ is a non-empty variationally coherent set, then X ∗ is a closed
and convex set of all the global minima of g.

Proof. First we show that any x∗ ∈ X ∗ is a global minimum. Pick any x ∈ X and denote z = x−x∗.
Let τ ∈ [0, 1]. We have:

df(x∗ + τz)

dτ
= 〈∇ f(x∗ + τz), z〉 =

1

τ
〈∇ f(x∗ + τz), x∗ + τz − x∗〉 ≥ 0, (2.1)
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where the last inequality follows from variational stability. Consequently, f(x∗ + τz) is increasing
in τ , thereby implying (by setting τ = 1) that f(x∗) ≤ f(x∗ + z) = f(x). Since x is arbitrary, x∗
must be a global minimum.

Next, we show that X ∗ is closed. Take any converging sequence {xj}∞j=0 in X ∗ with limj→∞ xj =

x∗. Then, for any x ∈ X , since xj ∈ X ∗, we have

〈∇ f(x), x− xj〉 ≥ 0,∀j = 0, 1, . . .

It follows that
lim
j→∞
〈∇ f(x), x− xj〉 = 〈∇ f(x), x− x∗〉 ≥ 0,∀x ∈ X ,

thereby implying x∗ ∈ X ∗. Since {xj}∞j=0 is any sequence in X ∗, X ∗ contains all its limit points
and is therefore closed.

To see that X ∗ is convex, take any x∗, z∗ ∈ X ∗ and any τ ∈ [0, 1]. For any x ∈ X , we have

〈∇ f(x), x− (τx∗ + (1− τ)z∗)〉 = (2.2)
τ〈∇ f(x), x− x∗〉+ (1− τ)〈∇ f(x), x− z∗〉 ≥ 0, (2.3)

thereby establishing that τx∗ + (1− τ)z∗ ∈ X ∗.
Finally, to see that X ∗ contains all global minima, assume that z∗ /∈ X ∗ is a global minimum. Per
Equation 2.1, and per the definition of variational stability, we have

df(x∗ + τz)

dτ
= 〈∇ f(x∗ + τz), z〉 =

1

τ
〈∇ f(x∗ + τz), x∗ + τz − x∗〉 > 0,

when x∗ + τz /∈ X ∗. By setting τ = 1, z = z∗ − x∗, we then havef(z∗) > f(x∗), a contradiction
that z∗ is a minimum.

2.2 Examples of Variational Coherence

As an example optimization problem that is nearly convex but not quasi-convex, fix any d > 1,
consider:

min
x∈[0,1]d

d∑
i=1

√
1 + xi.

It can be easily checked that g(x) =
∑d
i=1

√
1 + xi is not quasi-convex: for example, take d = 2,

x = (0, 1), z = (1, 0), we have g(0.5x + 0.5z) > max{g(x), g(z)}. On the other hand, to see it
is nearly convex, take X∗ = {0}. It follows that 〈∇ f(x),x − 0〉 =

∑d
i=1

xi

2
√

1+xi
> 0,∀x ∈

[0, 1]d − {0},

3 Recurrence of SMD

Lemma 3.1. Let h : X → R be a regularizer with respect to ‖ · ‖ that is K-strongly convex. Then:

1. F (x, y) ≥ 1
2K‖C(y)− x‖2,∀x ∈ X ,∀y ∈ Rn.

2. F (x, ỹ) ≤ F (x, y) + 〈ỹ − y, C(y)− x〉+ 1
2K ‖ỹ − y‖

2
∗,∀x ∈ X ,∀ỹ, y ∈ Rn.

Proof. To prove the first claim, let p = C(y). It follows from standard convex analysis [5] that
y ∈ ∂h(p) (y is a subgradient of h(p) if and only if p = C(y)). By definition:

F (x, y) = h(x)+h∗(y)−〈y, x〉 == h(x)+〈y, C(y)〉−h(C(y))−〈y, x〉 = h(x)−h(p)−〈y, x−p〉.
(3.1)

Since y ∈ ∂h(p), and h is K-strongly convex, we have that ∀t ∈ (0, 1]:

h(p) + t〈y, x− p〉 ≤ h(p+ t(x− p))
≤ th(x) + (1− t)h(p)− 1

2Kt(1− t)‖p− x‖
2
, (3.2)
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thereby leading to the bound
1
2K(1− t)‖p− x‖2 ≤ h(x)− h(p)− 〈y, x− p〉 = F (x, y), (3.3)

for all t ∈ (0, 1]. The claim then follows by letting t→ 0+ in (3.3).

For the second claim, we start by citing here a useful result in [6] (Theorem 12.60): For a proper,
lower semi-continuous and convex function f : Rn → R̄, where R̄ = [−∞,∞] and a value σ > 0,
f∗ is σ-strongly convex (with respect to norm ‖ · ‖∗) if and only if f is differentiable and satisfies:

f(x̃) ≤ f(x) + 〈∇f(x), x̃− x)〉+
1

2σ
‖x̃− x‖2,∀x, x̃.

Next, we note that in our case, h is K-strongly convex with respect to norm ‖ · ‖i and since h is
proper, lower semi-continuous and convex, it follows that (h∗)∗ = h (Theorem 11.1 in [6]). Further,
it can be easily checked that h∗ is proper, lower semi-continuous and convex (since it is a point-wise
maximum of affine functions per its definition), it therefore follows that the K-strong convexity of
(h∗)∗ (with respect to ‖ · ‖∗∗ = ‖ · ‖) implies that h∗ is differentiable and satisfies:

h∗(ỹ) ≤ h∗(y) + 〈ỹ − y,∇h∗(y)〉+
1

2K
‖ỹ − y‖2∗,∀y, ỹ (3.4)

= h∗(y) + 〈ỹ − y, C(y)〉+
1

2K
‖ỹ − y‖2∗,∀y, ỹ (3.5)

where the equality follows because∇h∗(y) = C(y).

Therefore, upon substituting the preceding inequality into the definition of Fenchel coupling, we
have:

F (x, ỹ) = h(x) + h∗(ỹ)− 〈ỹ, x〉 (3.6)

≤ h(x) + h∗(y) + 〈ỹ − y,∇h∗(y)〉+
1

2K
‖ỹ − y‖2∗ − 〈ỹ, x〉 (3.7)

= F (x, y) + 〈ỹ − y, C(y)− x〉+
1

2K
‖ỹ − y‖2∗, (3.8)

thereby establishing the claim.

Assumption 1. G(x, ξ) is continuously differentiable in x for almost all ξ ∈ Ω.
Assumption 2. ∇G(x; ξ) has bounded second moments and is Lipschitz continuous in the mean:
E[‖∇G(x; ξ)‖2∗] <∞ for all x ∈ X and E[∇G(x; ξ)] is Lipschitz on X .1

Assumption 3. The mirror map C is regular: if C(yt)→ x, then F (x, yt)→ 0.
Theorem 3.2. Under Assumptions 1–3, for any ε > 0, δ > 0 and any xt, the (random) iterates Xt

generated in Algorithm 1 enter both B(X ∗, ε) and B̃(X ∗, δ) infinitely often almost surely.

Proof. We break the proof into 3 steps.

1. Denote v(x) = −Eξt+1∼Π[∇G(x, ξt+1)]. Per Assumption 2, we have
Eξt+1∼Π[‖∇G(x, ξt+1)‖∗] < ∞, since finite second moments directly imply finite
first moments. This implies:

v(x) = −∇Eξt+1∼Π[G(x, ξt+1)] = −g(x),

where v(x) is also continuous on X per Assumption 1. Denote also ṽt(x) = −∇G(x, ξt+1),
we have E[‖ṽt(x)‖∗] < ∞ and E[‖ṽt(x)‖∗] is a continuous function on X . The gradient
update in Algorithm 1 can be rewritten as:

Yt+1 = Yt + αt {v(Xt) + ṽt(Xt)− v(Xt)} . (3.9)

Note that the first term v(Xt) is the “ideal" gradient and the second term ṽt(Xt)− v(Xt) is
a martingale difference adapted to ξ0, . . . , ξt because:

1In the above, gradients are treated as elements of the dual space V∗ of V and ‖v‖∗ = sup{〈v, x〉 : ‖x‖ ≤ 1}
denotes the dual norm of v ∈ V∗. We also note that∇G(x; ξ) refers to the gradient of G(x; ξ) with respect to
x; since Ω need not have a differential structure, there is no danger of confusion.
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(a) Under the above notation and bounded first moment conclusions, it follows:

E[‖ṽt(Xt)− v(Xt)‖∗] ≤ E[‖ṽt(Xt)‖∗] + E[‖v(Xt)‖∗] (3.10)
≤ sup
x∈X

E[‖ṽt(x)‖∗] + sup
x∈X
‖v(x)‖∗ <∞, (3.11)

where the last inequality follows from X is compact.
(b) The martingale difference property holds:

E[ṽt(Xt)−v(Xt) | ξ0, . . . , ξt] = E[ṽt(Xt) | ξ0, . . . , ξt]−v(Xt) = v(Xt)−vt(Xt) = 0,

where the first equality follows from the fact that Xt is adapted to ξ0, . . . , ξt and the
second equality follows from the definition of ṽt and the independence of ξt’s.

Furthermore, this martingale has uniformly bounded conditional second moments:

∀t,E[‖ṽt(Xt)− v(Xt)‖2∗ | ξ0, . . . , ξt] ≤ V∗ <∞, a.s., (3.12)

for some V∗. This can be seen by noting that per Assumption 2, E[‖ṽt(x)‖2∗] =
Eξt+1∼Π[‖∇G(x, ξt+1)‖2∗] <∞ and per Assumption 1, E[‖ṽt(x)‖2∗] is a continuous func-
tion on the compact set X and therefore bounded:

B , sup
x∈X

E[‖ṽt(x)‖2∗]. (3.13)

Further, by Jensen’s inequality, we have

sup
x∈X
‖v(x)‖2∗ = sup

x∈X
‖E[∇G(x, ξt+1)]‖2∗ ≤ sup

x∈X
E[‖∇G(x, ξt+1)‖2∗] = B, (3.14)

where the last inequality follows from Equation 3.13. Consequently, for every t:

E[‖ṽt(Xt)− v(Xt)‖2∗ | ξ0, . . . , ξt] ≤ 2
{
E[‖ṽt(Xt)‖2∗ | ξ0, . . . , ξt] + E[‖v(Xt)‖2∗ | ξ0, . . . , ξt]

}
(3.15)

= 2
{
E[‖ṽt(Xt)‖2∗ | ξ0, . . . , ξt] + ‖v(Xt)‖2∗

}
≤ 2(B +B) = 4B =, V∗, (3.16)

thereby establishing Equation 3.12.

2. Per the previous claim, denote the martingale difference by ξ̃t+1 , ṽt(Xt)− vt(Xt). We
can rewrite Equation (4.6) as:

Yt+1 = Yt + αt

{
v(Xt) + ξ̃t+1

}
. (3.17)

Using Fenchel coupling as a Lyapunov function and various martingale convergence results,
we establish that unless Xt enters B(X ∗, ε) infinitely often, the Fenchel coupling values
will diverge to −∞, in which case it contradicts the fact that it is always non-negative (first
claim in Lemma 3.1).

Let Yt, Xt be the iterates generated in Algorithm 1. Fix an arbitrary ε > 0. Assume for
contradiction purposes that Xt enters visits B(X ∗, ε) a finite number of times and hence let
t0−1 be the last timeXt is inB(X ∗, ε): ∀t ≥ t0, Xt ∈ X −B(X ∗, ε). SinceX −B(X ∗, ε)
is a compact set and v(x) = −∇g(x) is continuous in x (from the previous step) and since
〈∇v(x), x− x∗〉 = −〈∇g(x), x− x∗〉 < 0,∀x ∈ X , x /∈ X ∗ by variational coherence, it
follows that there exists a cmax(ε) < 0 such that

〈∇v(x), x− x∗〉 ≤ cmax(ε),∀x ∈ X −B(X ∗, ε). (3.18)

Next denote R = maxx∈X ‖x‖ and βt ,
α2

t

2K and note that
∑∞
t=1 βt <∞. Following the

notation in the previous step, B̃ , maxx∈X ‖v(x)‖2∗ < ∞. Using Lemma 3.1, we have
∀t ≥ t0 and ∀x∗ ∈ X ∗:
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F (x∗, Yt+1) = F (x∗, Yt + αt(v(Xt) + ξ̃t+1)) (3.19)

≤ F (x∗, Yt) + αt〈v(Xt) + ξ̃t+1, C(Yt)− x∗〉+ βt‖v(Xt) + ξ̃t+1‖2∗ (3.20)

= F (x∗, Yt) + αt〈v(Xt), Xt − x∗〉+ αt〈ξ̃t+1, Xt − x∗〉+ βt‖v(Xt) + ξ̃t+1‖2∗ (3.21)

≤ F (x∗, Yt) + αtcmax(ε) + αt〈ξ̃t+1, Xt − x∗〉+ 2βt

{
‖v(Xt)‖∗ + ‖ξ̃t+1‖2∗

}
(3.22)

≤ F (x∗, Yt0) + (

t∑
k=t0

αk)cmax(ε) +

t∑
k=t0

αk〈ξ̃k+1, Xk − x∗〉+ 2

t∑
k=t0

βk

{
‖v(Xk)‖2∗ + ‖ξ̃k+1‖2∗

}
(3.23)

= F (x∗, Yt0) + (

t∑
k=t0

αk)

{
cmax(ε) +

t∑
k=t0

αk∑t
k=t0 αk

〈ξ̃k+1, Xk − x∗〉

}
(3.24)

+ 2

t∑
k=t0

βk

{
‖v(Xk)‖2∗ + ‖ξ̃k+1‖2∗

}
(3.25)

= F (x∗, Yt0) + (

t∑
k=t0

αk)

{
cmax(ε) +

t∑
k=t0

αk∑t
k=t0 αk

〈ξ̃k+1, Xk − x∗〉

}
(3.26)

+ 2

t∑
k=t0

βk‖ξ̃k+1‖2∗ + 2

t∑
k=t0

βkB̃. (3.27)

Next, note that
∑t
k=t0 α

k〈ξ̃k+1, (Xk − x∗)〉 is a martingale adapted to F t+1 =

σ(ξ̃1, . . . , ξ̃t+1) (the filtration generated by the random variables ξ̃1, . . . , ξ̃t+1) because

E[αk〈ξ̃t+1, Xt − x∗〉|F t] = αk〈E[ξ̃t+1|F t], Xt − x∗〉 = 0,

where the first equality follows since Xt is adapted to F t. Furthermore, setting p = 2 and
ut =

∑t
k=t0 αk (the first t0 terms of ut can be set arbitrarily and are not essential), it is

clear that ut is increasing and limt→∞ ut =∞. It then follows that
∞∑
t=0

E[|αtξ̃t+1|p | F t]
(ut)p

≤
∞∑
t=0

(αt)
2V∗

(ut)2
≤ V∗

∞∑
t=0

(αt)
2

(
∑t
k=t0 αk)2

<∞, a.s.,

where the last inequality follows from the fact that αt is square-summable. Consequently,
by Theorem 1.1,

t∑
k=t0

αk∑t
k=t0 αk

〈ξ̃k+1, Xk − x∗〉 → 0, a.s., t→∞.

Since
∑∞
k=t0 αk = −∞, we therefore have

(

t∑
k=t0

αk)

{
cmax(ε) +

t∑
k=t0

αk∑t
k=t0 αk

〈ξ̃k+1, Xk − x∗〉

}
→ −∞, a.s., t→∞.

Finally, note that since ‖ · ‖∗ is a norm and hence convex, St =
∑t
k=t0 βk‖ξ̃k+1‖2∗ is a

submartingale adapted to F t+1. We check that St is l1-bounded:

E[St] =

t∑
k=t0

βkE[‖ξ̃k+1‖2∗] ≤
t∑

k=t0

βkV∗ < V∗

∞∑
k=t0

βk <∞,∀t,

where the first inequality follows from Equation 3.12.

Consequently, by Theorem 1.2, it follows that St → S, a.s., t→∞, with S finite almost
surely. This then leads to the following statement (which holds almost surely):

(

t∑
k=t0

αk)

{
cmax(ε) +

t∑
k=t0

αk∑t
k=t0 αk

〈ξ̃k+1, Xk − x∗〉

}
+ 2

t∑
k=t0

βk‖ξ̃k+1‖2∗ → −∞.
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Finally, Equation (3.26) then implies that F (x∗, yt) → −∞, which contradicts the first
statement in Lemma 3.1. The claim therefore follows.

3. Using the regularity of the mirror map, we show that B̃(X ∗, δ) always contains an open ball
within it:

∀δ > 0,∃ε(δ) > 0, B(X ∗, ε) ⊂ B̃(X ∗, δ). (3.28)

Since Xt enters B(X ∗, ε) infinitely often almost surely, it must therefore enter B̃(X ∗, δ)
infinitely often, almost surely.

Assume for contradiction purposes no B(X ∗, ε) is contained in B̃(X ∗, δ), which means that
for any δ > 0,∃yl, such that dist(Q(yl),−X ∗) = δ but Fλ(X ∗, yl) ≥ ε. This produces a
sequence {yl}∞l=0 such that C(yl)→ X ∗ but Fλ(X ∗, yl) ≥ ε, ∀l. This contradicts with the
fact that the choice map C(·) is λ-Fenchel coupling conforming: by definition it holds that
if C(yt)→ x, then Fλ(x, yt)→ 0 and since X ∗ is closed, we have C(yt)→ X ∗ implies
Fλ(X ∗, yt)→ 0. Consequently, the claim follows.

4 Global Convergence Results

We consider here again the problem:

minimize g(x),

subject to x ∈ X , (Opt)

We seek to prove the following:
Theorem 4.1. Consider an optimization problem Opt that is variationally coherent. Let xt be the
iterates generated by SMD (Algorithm 1). Under Assumptions 1–3, if ∇ g(x) is locally Lipschitz
continuous on X , then dist(xt,X ∗)→ 0 almost surely as t→∞, irrespective of Y0.
Remark 4.1. We repeat the 6 main ingredients here again.

1. We consider the following ordinary differential equation (ODE) approximation of SMD:

ẏ = v(x),

x = C(y),

where following the previous notation v(x) = −∇ g(x). We verify that the ODE admits
a unique solution for y(t) for any initial condition. Consequently, this solution induces a
semiflow2, which we denote Φt(y): it is the state at time t given it starts at y initially. Note
that we have used y as the initial point (as opposed to y0) to indicate that the semiflow
representing the solution trajectory should be viewed as a function of the initial point y.

2. We now relate the iterates generated by SMD to the above ODE’s solution. Connect linearly
the SMD iterates Y1, Y2, . . . , Yk, . . . at times 0, α1, α1 +α2, . . . ,

∑k−1
i=0 αi, . . . respectively

to form a continuous, piecewise affine (random) curve Y (t). We then show that Y (t) is
almost surely an asymptotic pseudotrajectory of the semi-flow Φ induced by the above ODE.

3. Having characterized the relation between the SMD trajectory (affine interpolation of the
discrete SMD iterates) and the ODE trajectory (the semi-flow), we now turn to studying
the latter (the semiflow given by the ODE trajectory). A desirable property of Φt(y) is that
the distance F (x∗,Φt(y)) between the optimal solution x∗ and the dual variable Φt(y) (as
measured by Fenchel coupling) can never increase as a function of t. We refer to this as the
monotonicity property of Fenchel coupling under the ODE trajectory, to be contrasted to the
discrete-time dynamics, where such monotonicity is absent (even when perfect information
on the gradient is available). More formally, we show that ∀y,∀0 ≤ s ≤ t,

F (x∗,Φs(y)) ≥ F (x∗,Φt(y)). (4.1)

2A crucial point to note is that since C may not be invertible, there may not exist a unique solution for x(t).
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4. Continuing on the previous point, not only the distance F (x∗,Φt(y)) can never increase as
t increases, but also, provided that Φt(y) is not too close to x∗, F (x∗,Φt(y)) will decrease
no slower than linearly. This suggests that either Φt(y) is already close to x∗ (and hence
x(t) = C(Φt(y)) is close to x∗), or their distance will be decreased by a meaningful amount
in (at least) the ensuing short time-frame. We formalize this discussion as follows:

∀ε > 0,∀y,∃s > 0, F (x∗,Φs(y)) ≤ max{ε
2
, F (x∗, y)− ε

2
}. (4.2)

5. Now consider an arbitrary fixed horizon T . If at time t, F (x∗,Φ0(Y (t))) is small, then
by the monotonicity property in Claim 3, F (x∗,Φh(Y (t))) will remain small on the entire
interval h ∈ [0, T ]. Since Y (t) is an asymptotic pseudotrajectory of Φ (Claim 2), Y (t+ h)
and Φh(Y (t)) should be very close for h ∈ [0, T ], at least for t large enough. This means
that F (x∗, Y (t + h)) should also be small on the entire interval h ∈ [0, T ]. This can be
made precise as follows: ∀ε, T > 0,∃τ(ε, T ) > 0 such that ∀t ≥ τ,∀h ∈ [0, T ]:

F (x∗, Y (t+ h)) < F (x∗,Φh(Y (t))) +
ε

2
, a.s.. (4.3)

6. Finally, we are ready to put the above pieces together. Claim 5 gives us a way to control
the amount by which the two Fenchel coupling functions differ on the interval [0, T ].
Claim 3 and Claim 4 together allow us to extend such control over successive intervals
[T, 2T ), [2T, 3T ), . . . , thereby establishing that, at least for t large enough, if F (x∗, Y (t))
is small, then F (x∗, Y (t+ h)) will remains small ∀h > 0. As it turns out, this means that
after long enough time, if xt ever visits B̃(x∗, ε), it will (almost surely) be forever trapped
inside the neighborhood twice that size (i.e. B̃(x∗, 2ε)). Since Theorem 3.2 ensures that
xt visits B̃(x∗, ε) infinitively often (almost surely), the hypothesis is guaranteed to be true.
Consequently, this leads to the following claim: ∀ε > 0,∃τ0 (a positive integer), such that:

F (x∗, Y (τ0 + h)) < ε,∀h ∈ [0,∞), a.s.. (4.4)

To conclude, Equation (4.4) implies that F (x∗, Yt)→ 0, a.s. as t→∞, where the SMD iterates Yt
are values at integer time points of the affine trajectory Y (τ). Per Statement 1 in Lemma 3.1, this
leads to that ‖C(Yt)− x∗‖ → 0, a.s. as t→∞, thereby establishing that Xt = C(Yt)→ x∗, a.s..

Proof. We prove in turn each of the 6 claims laid out in Remark 4.1.

1. Since h(·) is K strongly convex, by a standard result in convex analysis [5], C(·) is 1
K -

Lipschitz continuous. Since v(x) is locally lipschitz continuous by assumption and bounded
since X is compact, v(Q(·)) is locally Lipschitz continuous and bounded. Consequently,
standard results in differential equations ([2]) imply that a unique solution exists for the
ODE.

2. Connect linearly the SMD iterates Y1, Y2, . . . , Yk, . . . at times 0, α1, α1 +

α2, . . . ,
∑k−1
i=0 αi, . . . yields the following affine curve Y (t):

Y (t) = Yk + (t−
k−1∑
i=0

αi)
Yk+1 − Yk

αk
for all t ∈ [

∑k−1
i=0 αi,

∑k
i=0 αi), k = 1, 2, . . . ,

(4.5)
where we adopt the usual convention that

∑−1
i=0 α

i = 0. [1] gives sufficient conditions
that ensure a random affine trajectory to be an asymptotic pseudotrajectory of a semiflow
almost surely. We shall state one set of sufficient conditions directly in the current context
as follows.

If for some q ≥ 2, the following list of conditions are satisfied:

(a) suptE[‖ξ̃t+1‖q∗] <∞.
(b)

∑∞
n=0(αt)

1+ q
2 <∞.

(c) supt ‖xt‖ <∞.
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Then the affinely interpolated process Y (t) is an asymptotic pseudotrajectory of the semi-
flow Φ induced by the ODE almost surely:

∀T > 0, lim
t→∞

sup
0≤h≤T

‖Y (t+ h),Φh(Y (t))‖∗ = 0, a.s..

Choose q = 2, the above conditions can be easily verified: (a) was already verified in the
proof to Theorem 3.2; (b) holds since αt is square summable; (c) holds since the decision
space X is compact. Therefore the claim follows.

3. By a well-known result in variational analysis ([6]), each h(·) is differentiable and

dh∗(y)

dy
= C(y). (4.6)

Note further that since Φt(y) is the solution to the ODE (under the initial condition y), we
have dΦt(y)

dt = v(x(t)). We can thus compute the derivative of Fenchel coupling as follows:

dF (x∗,Φt(y))

dt
=

d

dt
{h(x∗)− 〈Φt(y), x∗〉+ h∗(Φt(y))} (4.7)

= 〈−dΦt(y)

dt
, x∗〉+ 〈C(Φt(y)),

dΦt(y)

dt
〉 (4.8)

= 〈−v(x(t)), x∗〉+ 〈v(x(t)), C(Φt(y))〉 (4.9)
= 〈−v(x(t)), x∗〉+ 〈v(x(t)), x(t)〉 (4.10)
= 〈v(x(t)), x(t)− x∗〉 ≤ 0, (4.11)

where the second equality follows from Equation (4.6), and the last inequality follows from
x∗ is variationally coherent. The monotonicity property therefore follows.

4. For any given ε > 0, pick an ε̂ > 0 such that B(x∗, ε̂) ⊂ B̃(x∗, ε2 ) (per 3.28). By
Equation (4.11), we have

dF (x∗,Φt(y))

dt
= 〈v(x(t)), x(t)− x∗〉 < 0,∀x(t) 6= x∗.

Since X −B(x∗, ε̂) is a compact set and v(·) is a continuous function, we have

〈v(x(t)), x(t)− x∗) ≤ −aε̃,∀x(t) ∈ X −B(x∗, ε̂), (4.12)

for some positive constant aε̃.

Starting at y, by time s, there are two possibilities. The first possibility is that x(s) ∈
B̃(x∗, ε2 ). In this case, by definition,

F (x∗,Φs(y)) <
ε

2
. (4.13)

The second possibility is that x(s) /∈ B̃(x∗, ε2 ). This implies that x(t) /∈ B(x∗, ε̂),∀t ∈
[0, s], because otherwise, since B(x∗, ε̂) ⊂ B̃(x∗, ε2 ), it must be that x(s0) ∈ B̃(x∗, ε2 ) for
some s0 ∈ [0, s]. This then implies that, by the monotonicity property established in Claim
3, F (x∗,Φs(y)) ≤ F (x∗,Φs0(y)), thereby leading to x(s) ∈ B̃(x∗, ε2 ), a contradiction.

Since x(t) /∈ B̃(x∗, ε2 ),∀t ∈ [0, s], we have x(t) /∈ B(x∗, ε̃),∀t ∈ [0, s], leading to that
Equation 4.12 holds for t ∈ [0, s]. Therefore, taking s = ε

2aε̃
, we obtain:

F (x∗,Φs(y)) ≤ F (x∗, y)− aε̃s = F (x∗, y)− ε

2
. (4.14)

Equation (4.13) and Equation (4.14) together establish that:

F (x∗,Φs(y)) ≤ max{ε
2
, F (x∗, y)− ε

2
}.

8



5. Let R = supx∈X ‖x‖, which is finite since X is compact. By the definition of dual norm:

〈Y (t+ h)− Φh(Y (t+ h)), C(Φh(Y (t+ h)))− x∗〉 ≤ (4.15)
‖(Y (t+ h)− Φh(Y (t+ h))‖∗‖C(Φh(Y (t+ h)))− x∗)‖ ≤ R‖Y (t+ h)− Φh(t+ h)‖∗.

(4.16)

Fix some T > 0 and define Kλ = maxi
λi

Ki
and δ = K(

√
R2 + ε

K −R). Per Claim 3, we
have

∀T > 0, lim
t→∞

sup
0≤h≤T

‖Y (t+ h),Φh(Y (t))‖∗ = 0, a.s..

Consequently, choose τ(δ, T ) such that ‖Y (t+ h)− Φh(Y (t))‖∗ < δ, ∀t ≥ τ . Expanding
Fenchel coupling, we obtain that ∀t ≥ τ and ∀h ∈ [0, T ]:

F (x∗, Y (t+ h)) = F (x∗,Φh(Y (t)) + Y (t+ h)− Φh(Y (t))) ≤ F (x∗,Φh(Y (t)))

(4.17)

+ 〈Y (t+ h)− Φh(Y (t)), C(Φh(Y (t)))− x∗〉+
1

2K
‖Y (t+ h)− Φh(Y (t))‖2∗ (4.18)

≤ F (x∗,Φh(Y (t))) +R‖Y (t+ h)− Φh(t)‖∗ +
1

2K
‖Y (t+ h)− Φh(Y (t))‖2∗ (4.19)

≤ F (x∗,Φh(Y (t))) +Rδ +
1

2K
δ2 (4.20)

≤ F (x∗,Φh(Y (t))) +RK(

√
R2 +

ε

K
−R) +

1

2K
(K(

√
R2 +

ε

K
−R))2 (4.21)

= F (x∗,Φh(Y (t))) +
ε

2
, (4.22)

where the first inequality follows from Equation (4.16) and the last equality follows from
straightforward algebraic verification. The claim is therefore established.

6. We start by fixing an arbitrary ε > 0. Per Claim 4, there exists an s > 0 (depending on
ε) such that Equation (4.2) holds. Set the horizon T = s. Per Claim 5, there exists a τ
(depending on both ε and T ) such that Equation (4.3) holds ∀t ≥ τ . Now, per Theorem 3.2,
xt visits B̃(x∗, δ) infinitely often3. Therefore, pick an integer τ0 ≥ τ such that xτ0 ∈
B̃(x∗, ε2 ). With this choice of τ0, we know that by definition of B̃,

F (x∗, Y (τ0)) <
ε

2
. (4.23)

Our goal is to establish that F (x∗, Y (τ0 + h)) < ε,∀h ∈ [0,∞). To that end, partition the
time [0,∞) into disjoint time intervals [0, T ), [T, 2T ), . . . , [nT, (n+ 1)T ), . . . .

Per Claim 3, the monotonicity property given in Equation (4.1) implies that:

F (x∗,Φh(Y (τ0))) ≤ F (x∗,Φ0(Y (τ0))) = F (x∗, Y (τ0)) <
ε

2
,∀h ≥ 0, (4.24)

where the equality follows from the semi-group property of a semiflow.

Per Equation (4.3), for h ∈ [0, T ), we then have:

F (x∗, Y (τ0 + h)) < F (x∗,Φh(Y (τ0))) +
ε

2
<
ε

2
+
ε

2
= ε, (4.25)

where the last inequality follows from Equation (4.24).

Now assume inductively that Equation (4.25) holds for every h ∈ [nT, (n+ 1)T ), where n
is a non-negative integer. We then have ∀h ∈ [nT, (n+ 1)T ):

F (x∗, Y (τ0 + T + h)) < F (x∗,ΦT (Y (τ0 + h))) +
ε

2
(4.26)

≤ max{ε
2
, F (x∗, Y (τ0 + h))− ε

2
}+

ε

2
≤ ε

2
+
ε

2
= ε, (4.27)

3All the statements made here are true almost surely. We will omit repeatedly saying that for convenience.
Alternatively, one can think of this as a path-by-path argument and each ensuing statement is made for a particular
sample path that comes from a probability 1 space.
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where the first inequality follows from Equation (4.3), the second inequality follows from
Equation (4.2), and the third inequality follows from the induction hypothesis F (x∗, Y (τ0 +
h)) < ε. Consequently, Equation (4.25) holds for every h ∈ [(n+ 1)T, (n+ 2)T ), thereby
completing the induction and establishing that:

F (x∗, Y (τ0 + h)) < ε,∀h ∈ [0,∞).

Theorem 4.2. Let Opt be a c-strongly variationally coherent optimization problem. Then ‖x̄T −
x∗‖2 ≤ 2

c

F (x∗,y0)+ B
2K

∑T
n=0 γ

2
n∑T

n=0 γn
, where x̄T =

∑T
n=0 γnxn∑T
n=0 γn

, K is the strong convexity coefficient of h

and B = maxx∈X ‖∇ g(x)‖2∗.

Proof. First, with some algebra, one can show the following descent inequality of Fenchel coupling:
let y+ = y + γv and x = Q(y), x+ = Q(y+), then ∀p ∈ X , 〈v, x− p〉 ≤ F (p,y)−F (p,y+)

γ +
γ‖v‖2∗

2K ,
where ‖ · ‖∗ is the dual norm of ‖ · ‖ and K is the strong convexity coefficient of the regular-
izer h. Next, applying the descent inequality to mirror descent, we obtain γn〈∇g(xn), xn −
x∗〉 ≤ F (x∗, yn)− F (x∗, yn+1) +

γ2
n‖∇g(xn)‖2∗

2K . Telescoping then yields
∑T
n=0 γn〈∇g(xn), xn −

x∗〉 ≤ F (x∗, y0) − F (x∗, yT+1) +
∑T
n=0

γ2
n‖∇g(xn)‖2∗

2K ≤ F (x∗, y0) +
∑T
n=0

γ2
nB
2K . Finally,

‖x̄T − x∗‖2 = ‖
∑T
n=0

γn∑T
n=0 γn

xn − x∗‖2 ≤
∑T

n=0 γn‖xn−x∗‖2∑T
n=0 γn

≤ 2
c

∑T
n=0 γn〈∇g(xn),xn−x∗〉∑T

n=0 γn
≤

2
c

F (x∗,y0)+ B
2K

∑T
n=0 γ

2
n∑T

n=0 γn
.
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