
Supplementary Material
A Proof of Proposition 2.1
We’re trying to prove the following proposition:
Proposition A.1. One-sided Huber ψ0 yields an unbiased M-estimator for F = (1 − ε)Φ + εH
if and only if the contamination H belongs to Hκ = {H : H(x) = 0 for x < κ and I(H) < ∞}.
Further, ψ0 minimizes the worst case asymptotic variance in F , i.e.

ψ0 = arg inf
ψ∈Ψ

sup
F∈F

V (ψ, F ).

First, note that F = (1− ε)Φ + εH yields an unbiased M-estimator for ψ0 if and only if

0 =EF [ψ0(y)] = (1− ε)EΦ[ψ(y)] + εEH [ψ0(y)],

=(1− ε)
{∫ κ

−∞
yφ(y)dy + κ

∫ ∞
κ

φ(y)dy

}
+ ε

{∫ κ

−∞
yh(y)dy + κ

∫ ∞
κ

h(y)dy

}
,

=(1− ε) {−φ(κ) + κ− κΦ(κ)}+ ε

{∫ κ

−∞
yh(y)dy + κ

∫ ∞
κ

h(y)dy

}
.

Using Φ(κ) + φ(κ)/κ = 1/(1− ε) for the first term on the right hand side, we obtain

0 =

∫ κ

−∞
(κ− y)h(y)dy,

which is satisfied if and only if the support of H is [κ,∞).

For the variance calculations, we use that one sided Huber estimator of ψ0 is unbiased for the class
of distributions F = (1 − ε)Φ + εHκ. We calculate the variance for ψ0 for some F ∈ F using
EF [ψ2

0 ]/E[ψ′0]2. The numerator can be written as

EF [ψ2
0 ] =(1− ε)EΦ[ψ2

0 ] + εEH [ψ2
0 ],

= (1− ε)
{∫ κ

−∞
y2φ(y)dy + κ2

∫ ∞
κ

φ(y)dy

}
+ εκ2,

= (1− ε)
{

Φ(κ)− κφ(κ)− κ2Φ(κ)
}

+ κ2,

= (1− ε)Φ(κ).

Similarly for the denominator, we write

EF [ψ′0]2 = {(1− ε)EΦ[ψ′0] + εEH [ψ′0]}2 ,

=

{
(1− ε)

∫ κ

−∞
φ(y)dy

}2

= (1− ε)2Φ(κ)2.

Therefore the asymptotic variance is given as

V (ψ0, F ) = [(1− ε)Φ(κ)]−1,

which is constant over the contamination classHκ.

Now, define a distribution F0 by its density f0 satisfying −d log(f0)/dt = ψ0:

f0(y) =

{
(1− ε)φ(y), if y < κ

(1− ε)φ(κ) exp(−κy + κ2), if y ≥ κ (1)

First, we need to check whether F0 ∈ F . It is easy to check that f0 (and the corresponding
contamination) is a distribution, i.e. it integrates to 1 by the condition Φ(κ) + φ(κ)/κ = 1/(1− ε).
Then, ∀F ∈ F , we have

V (ψ0, F ) = V (ψ0, F0). (2)
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Moreover, a straightforward application of Cauchy-Schwartz inequality yields

V (ψ, F0) =
EF0

[ψ2]

EF0
[ψ′]2

≥ 1

I(F0)

with equality only if ψ ∝ f ′0/f0. Combining this with the previous result, we obtain

sup
F∈F

V (ψ0, F ) = V (ψ0, F0) = inf
ψ
V (ψ, F0).

Finally, note that the left equality is in fact weaker than the statement in (2), and one can verify that
the Fisher information is given as I(F0) = (1− ε)Φ(κ).

B Proof of Proposition 3.1
We consider the following objective

β∗ = argminf(β) :=

n∑
i=1

ρ0(yi − 〈xi, β〉, κ). (3)

Setting:

• Assume that for some S ⊂ [n] and ∆S > 0 such that yi − 〈xi,β∗〉 ≤ κ − ∆S for
i ∈ S ⊂ [n]. (Including more indeces in S results in smaller ∆S).

• Let maxi ‖xi‖2 ≤ k.
•
∑
i∈S xix

T
i � λSI. This assumption is reasonable when n is large and consequently there

are many samples in the quadratic regime.
• λmax and λmin are the largest and smallest eigenvalues of XTX , respectively.

For β in the ball centered around β∗ with radius ∆S/k, we have for ∀i ∈ S,

yi − 〈xi,β〉 =yi − 〈xi,β∗〉+ 〈xi,β∗ − β〉
≤κ−∆S + ‖xi‖2 ‖β∗ − β‖2
≤κ.

Therefore, when the iterates β get close to the true minimizer, ∀i ∈ S, residual corresponding to
sample i falls into the quadratic region. This implies that the Hessian satisfies

∇2f(β) =
∑

i : yi−〈xi,β〉≤κ

xix
T
i �

∑
i∈S

xix
T
i � λSI, (4)

which says that in the ball B = {β : ‖β − β∗‖2 ≤ ∆/k}, the objective function f is λS-strongly
convex. Strong convexity implies smoothness, i.e., ∇2f � γSI for ∀β ∈ B. In this regime, the
following calculation is standard.

Assuming that the current iterate is β, our approach takes a step of the following form,

β+ = β − (XTX)−1∇f(β). (5)

By γS-smoothness, we can write

f(β+) ≤f(β) + 〈∇f(β),β+ − β〉+
γS
2

∥∥β+ − β
∥∥2

2

≤f(β)− 〈∇f(β), (XTX)−1∇f(β)〉+
γS
2

∥∥(XTX)−1∇f(β)
∥∥2

2

≤f(β)− 1

λmax
‖∇f(β)‖22 +

γS
2λ2

min
‖∇f(β)‖22

=f(β)−
{

1

λmax
− γS

2λ2
min

}
‖∇f(β)‖22 .

By λS-strong convexity

f(β′) ≥f(β) + 〈∇f(β),β′ − β〉+
λS
2

∥∥β′ − β
∥∥2

2

≥f(β)− 1

2λS
‖∇f(β)‖22 .
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The second inequality follows from setting β′ = β − 1/λmin∇f(β) which is the minimizer of the
right hand side of the first line. Choosing β′ = β∗ above yields

1

2λS
‖∇f(β)‖22 ≥ f(β)− f(β∗).

Using this and the smoothness inequality, we write

f(β+)− f(β∗) ≤f(β)− f(β∗)−
{

1

λmax
− γS

2λ2
min

}
‖∇f(β)‖22

≤f(β)− f(β∗)− 2λS

{
1

λmax
− γS

2λ2
min

}
(f(β)− f(β∗))

=

{
1− 2

λS
λmax

+
γSλS
λ2

min

}
(f(β)− f(β∗))

This is linear convergence with coefficient 1− 2 λS

λmax
+ γSλS

λ2
min

and the following condition must hold

λmax

λ2
min

<
2

γS
.

C Properties and Empirical Performance of the Fixed-point Solver in
Algorithm 1

C.1 Connection of the fixed-point method Newton’s method

For a convex function f : Rp → R, unconstrained Newton update on the parameter β ∈ Rp reads

βt+1 = βt −
[
∇2

βf(βt)
]−1∇βf(βt).

In our algorithm, we can easily see that

∇2
βf(βt) =

1

µ

∑
i∈St

xix
T
i and ∇βf(βt) = − 1

µ

∑
i∈St

xi(yi − 〈xi,βt〉)−
∑

i∈[n]\St

xi,

where St = {i ∈ [n] : yi − 〈βt,xi〉 ≤ µ}.
Replacing the Hessian with XTX =

∑n
i=1 xix

T
i , we can write the update as

βt+1 =βt +
[
XTX

]−1

∑
i∈St

xi(yi − 〈xi,βt〉) + µ
∑

i∈[n]\St

xi

 ,
=βt +

[
XTX

]−1

∑
i∈St

xiyi −
∑
i∈St

xix
T
i β

t + µ
∑

i∈[n]\St

xi

 ,
=βt +

[
XTX

]−1

∑
i∈St

xiyi −XTXβt +
∑

i∈[n]\St

xi〈xi,βt〉+ µ
∑

i∈[n]\St

xi

 ,
=
[
XTX

]−1

∑
i∈St

xiyi +
∑

i∈[n]\St

xi{〈xi,βt〉+ µ}

 ,
which reduces to our algorithm.

D Initialization routine for EXTRACT
We initialize EXTRACT also using robust estimation. First, we preprocess the movie matrix, and then
we estimate cell sources one by one using Algorithm ??. We list below the steps to our initialization
routine in detail:
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1. Spatially band-pass filter the movie, with the spatial kernel determined by an estimated
average cell radius. Band-pass filtering is meant to smooth the activity enough to improve
SNR, but also to get rid of any fluctuations in the low spatial frequency regime (such as
large fluctuating background).

2. In a while loop:
(a) Compute the maximum image of the movie in time dimension, and spot the maximum.

Initialize a cell in the maximum location with a gaussian image kernel.
(b) Use 1-component robust regression with the one-sided huber loss to estimate temporal

and spatial bases in an alternating fashion. We solve each regression problem using the
Newton’s method since the hessian is a scalar and can be computed fast; furthermore,
non-negativity constraint amounts to simple thresholding in this 1-component case.
This step is typically very fast.

(c) Add the found cell to the initialization set, and subtract the outer product of its image
and trace from the pre-processed movie.

(d) Continue until found maximums are lower than a set SNR, or number of found cells
exceed a threshold.

We dispose of the pre-processed movie after intitialization in order not to introduce artifacts from
spatial filtering, and stay consistent with the original calcium activity profile.

E Reproducing the Controlled Crosstalk Experiment with More Iterations
We carried out an experiment to reproduce Figure 3d when each algorithm is run for up to 6 iterations.
Result is shown in Figure 1. The AUC gap between EXTRACT and CNMF is consistent with that
seen in Figure 3d, and the gap looks even more pronounced for low fraction of initialized cells. This
is an expected outcome and confirms the deterioration effect when using alternating estimation, which
could be detrimental for non-robust estimators.
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Figure 1: Reproducing the result in Figure 3d in the main text for 6 iterations.

F Reproducing Experimental Results under Different SNR Regimes
We re-ran the results in Figure 2d (see Figure 2) and Figure 3c (see Figure 3) from the main text. For
the overlapping cells scenario, EXTRACT has increasingly better comparative performance agains
CNMF with increasing SNR. For the experiment where we compare algorithms with and without
neuropil, we observe somewhat intriguing outcomes. Particularly, CNMF deteriorates much faster
than the other two algorithms with neuropil contamination when the SNR is decreased. EXTRACT
keeps its relative performance with varying SNR, and all algorithms perform similar between neuropil
and no neuropil cases when SNR is high.

G Runtime Comparison for EXTRACT, CNMF, and ICA
We compare the algorithms in the following setting: we fix the number of neurons in the FOV, and
vary the FOV size. We do this by keeping the number of pixels equal to the number of time frames,
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Figure 2: Reproducing the result in Figure 2d in the main text for different SNRs. EXTRACT
outperforms CNMF in the AUC metric at various SNR levels.

i.e. maintaining a square movie matrix. For CNMF, we use the open-sourced MATLAB codebase
maintained in the author’s github page. For ICA, we use our internal version, built on the author’s
original open-source implementation. Our internal version optimizes matrix operations to speed up
the computation of the ICA step. Consequently, the ICA mathod spends majority of its computation
time at the PCA step, particularly for computing the eigenvalues of the covariance matrix of the
movie using eigs() command. For EXTRACT, we use our MATLAB implementation which computes
robust estimation on the GPU. We use NVIDIA GTX 1080 for the experiment. We perform 10
alternating estimation iterations after initialization. We show in Figure 4 the results of running two
sets of experiments for 30 cells and 70 cells. We report the mean runtime over 10 experiments.
EXTRACT performs very similar to ICA, and the two algorithms are notably faster than CNMF. As
the size of the dataset increases, EXTRACT becomes faster than ICA.
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Figure 3: Reproducing the result in Figure 3c in the main text for different SNRs.
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Figure 4: Runtime comparison among the three algorithms. Error bars are 1 s.e.m.
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