
A Dirichlet Mixture Model of Hawkes Processes for
Event Sequence Clustering — Supplementary File

Hongteng Xu∗
School of ECE

Georgia Institute of Technology
hongtengxu313@gmail.com

Hongyuan Zha
College of Computing

Georgia Institute of Technology
zha@cc.gatech.edu

1 The Proof of Local Identifiability

Before proving the local identifiability of our DMHP model, we first introduce some key concepts.
A temporal point process is a random process whose realization consists of a list of discrete events
in time {ti} with ti ∈ [0, T]. Here [0, T] is the time interval of the process. It can be equivalently
represented as a counting process, N = {N(t)|t ∈ [0, T]}, where N(t) records the number of
events before time t. A multi-dimensional point process with C types of event is represented by
C counting processes {Nc}Cc=1 on a probability space (Ω,F,P). Nc = {Nc(t)|t ∈ [0, T]}, where
Nc(t) is the number of type-c events occurring at or before time t. Ω = [0, T] × C is the sample
space. C = {1, ..., C} is the set of event types. F = (F(t))t∈R is the filtration representing the set of
events sequence the process can realize until time t. P is the probability measure.

Hawkes process is a kind of temporal point processes having self-and mutually-triggering patterns.
The triggering of historical events on current ones in a Hawkes process can be modeled as branch
processes [1, 7]. As a result, Hawkes Process can be represented as a superposition of many
non-homogeneous Poisson process. Due to the superposition theorem of Poisson processes, the
superposition of the individual processes is equivalent to the point process with summation of
their intensity function. Given this we can break the counting process associated to each addition
to the intensity function (or associated to each event): N(t) =

∑n
i=0N

i(t), where N0(t) is the
counting process associated to the baseline intensity µ(t) and N i(t) is the non-homgenous Poisson
process for the i-th branch. Similarly, we can write the intensity function of Hawkes process as
λ(t) =

∑n
i=0 λ

i(t), where λi(t) is the intensity of the i-th branch.

Definition 1.1. Two parameter points Θ1 and Θ2 are said to be observationally equivalent if
p(s; Θ1) = p(s; Θ2) for all samples s’s in sample space.
Definition 1.2. A parameter point Θ0 is said to be locally identifiable if there exists an open neigh-
borhood of Θ0 containing no other Θ in the parameter space which is observationally equivalent.
Definition 1.3. Let I(Θ) be a matrix whose elements are continuous functions of Θ everywhere in
the parameter space. The point Θ0 is said to be a regular point of the matrix if there exists an open
neighborhood of Θ0 in which I(Θ) has constant rank.

The information matrix I(Θ) is defined as

I(Θ) = Es
[
∂ log p(s; Θ)

∂Θ

∂ log p(s; Θ)

∂Θ>

]
= Es

[
1

p2(s; Θ)

∂p(s; Θ)

∂Θ

∂p(s; Θ)

∂Θ>

]
,

The local identifiability of our DMHP model is based on the following two theorems.
Theorem 1.1. [4] The information matrix I(Θ) is positive definite if and only if there does not exist
a nonzero vector of constants w such that w> ∂p(s;Θ)

∂Θ = 0 for all samples s’s in sample space.

∗Corresponding author.

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.

Theorem 1.2. [5] Let Θ0 be a regular point of the information matrix I(Θ). Then Θ0 is locally
identifiable if and only if I(Θ0) is nonsingular.

To our DMHP model, the log-likelihood function is composed with differentiable functions of Θ.
Therefore, the elements of information matrix I(Θ) are continuous functions w.r.t. Θ in the parameter
space. According to Theorems 1.1 and 1.2, our Theorem holds if and only if to each vector ∂p(s;Θ)

∂Θ

w.r.t. a point Θ, there does not exist a nonzero vector of constants w such that w> ∂p(s;Θ)
∂Θ = 0 for

all event sequences s ∈ F.

Assume that there exists a nonzero w such that w> ∂p(s;Θ)
∂Θ = 0 for all s ∈ F. We have the

following counter-evidence: Considering the simplest case — the mixture of two Poisson processes
(or equivalently, two 1-dimensional Hawkes processes whose impact functions φ(t) ≡ 0), we can
write its likelihood given a sequence with N events in [0, T] as

p(sN ; Θ) = πλN1 exp(−Tλ1) + (1− π)λN2 exp(−Tλ2) = Λ1 + Λ2,

where Θ = [π, λ1, λ2]>, λ1 6= λ2. According to our assumption, we have

w>
∂p(sN ; Θ)

∂Θ
= w>

 Λ1

π −
Λ2

1−π
(Nλ1
− T)Λ1

(Nλ2
− T)Λ2

 = 0,

Denote the time stamp of the last event as tN , we can generate new event sequences {sN+n}∞n=1 via
adding n events in (tN , T], and

w>
∂p(sN+n; Θ)

∂Θ
= w>

 λn1
Λ1

π − λ
n
2

Λ2

1−π
((N + n)− Tλ1)λn−1

1 Λ1

((N + n)− Tλ2)λn−1
2 Λ2

 .
w> ∂p(sN+n;Θ)

∂Θ = 0 for n = 0, ...,∞ requires w ≡ 0 or all ∂p(sN+n;Θ)
∂Θ are coplanar. How-

ever, according to the formulation above, for arbitrary three different n1, n2, n3 ∈ {0, ...,∞},∑3
i=1 αi

∂p(sN+ni
;Θ)

∂Θ = 0 holds if and only if α1 = α2 = α3 = 0.2 Therefore, w ≡ 0, which
violates the assumption above.

Such a counter-evidence can also be found in more general case, i.e., mixtures of multiple multi-
dimensional Hawkes processes because Hawkes process is a superposition of many non-homogeneous
Poisson process. As a result, according to Theorems 1.1 and 1.2, each point Θ in the parameter
space is regular point of I(Θ) and the I(Θ) is nonsingular, and thus, our DMHP model is locally
identifiable.

2 The Selection of Basis Functions

In our work, we apply Gaussian basis functions to our model. We use the basis selection method
in [9] to decide the bandwidth and the number of basis functions. In particular, we focus on
the impact functions having Fourier transformation. The representation of impact function, i.e.,
φcc′(t) =

∑D
d=1 acc′gd(t), can be explained as a sampling process, where {adcc′}Dd=1 can be viewed

as the discretized samples of φcc′(t) in [0, T] and each gd(t) = κω(t, td) is sampling function with
cut-off frequence ω and center td. Given training sequences S = {sn = {(ti, ci)}Mn

i=1}Nn=1, we can
estimate λ(t) empirically via a Gaussian-based kernel density estimator:

λ(t) =
∑N

n=1

∑Mn

i=1
Gh(t− ti). (1)

HereGh(t−ti) = exp(− (t−ti)2
2h2) is a Gaussian kernel with the bandwidth h. Instead of computing (1),

we directly apply Silverman’s rule of thumb [6] to set optimal h = (4σ̂5

3
∑

nMn
)0.2, where σ̂ is the

standard deviation of time stamps {ti}. Applying Fourier transform, we compute an upper bound for

2The derivation is simple. Interested reader can try the case with n1 = 0, n2 = 1, n3 = 3

2

the spectral of λ(t) as

|λ̂(ω)| =
∣∣∣∣∫ ∞
−∞

λ(t)e−jωtdt

∣∣∣∣ =

∣∣∣∣∑N

n=1

∑Mn

i=1

∫ ∞
−∞

e−
(t−ti)

2

2h2 e−jωtdt

∣∣∣∣
≤
∑N

n=1

∑Mn

i=1

∣∣∣∣∫ ∞
−∞

e−
(t−ti)

2

2h2 e−jωtdt

∣∣∣∣ =
∑N

n=1

∑Mn

i=1

∣∣∣e−jωtie−ω2h2

2

√
2πh2

∣∣∣
≤
∑N

n=1

∑Mn

i=1

∣∣e−jωti∣∣ ∣∣∣e−ω2h2

2

√
2πh2

∣∣∣ =

(∑N

n=1
Mn

√
2πh2

)
e−

ω2h2

2 .

(2)

Then, we can compute the upper bound of the absolute sum of the spectral higher than a certain
threshold ω0 as∫ ∞
ω0

|λ̂(ω)|dω ≤
(∑N

n=1
Mn

√
2πh2

)∫ ∞
ω0

e−
ω2h2

2 dω = π

(∑N

n=1
Mn

)(
1− 1√

2
erf(ω0h)

)
,

where erf(x) = 1√
π

∫ x
−x e

−t2dt.

Therefore, give a bound of residual ε, we can find an ω0 guaranteeing
∫∞
ω0
|λ̂(ω)|dω ≤ ε, or

erf(ω0h) ≥
√

2 −
√

2ε
π
∑N

n=1Mn
. The proposed basis functions {gd(t)}Dd=1 are selected — each

gd(t) is a Gaussian function with cut-off frequency ω0 and center (d−1)T
D , where D = dTω0

π e. In
summary, we propose Algorithm 1 to select basis functions.

Algorithm 1 Selecting basis functions
1: Input: S = {sn}Nn=1, residual’s upper bound ε.
2: Output: Basis functions {gd(t)}Dd=1.

3: Compute
(∑N

n=1Mn

√
2πh2

)
e−

ω2h2

2 to bound |λ̂(ω)|.

4: Find the smallest ω0 satisfying
∫∞
ω0
|λ̂(ω)|dω ≤ ε.

5: The Gaussian basis functions {gd(t)}Dd=1 are with cut-off frequency ω0 and centers { (d−1)T
D }Dd=1,

where D = dTω0

π e.

3 The Details of Learning Algorithm

3.1 Nested EM Framework

We consider a variational distribution having the following factorization:

q(Z,π,µ,A) = q(Z)q(π,µ,A) = q(Z)q(π)
∏

k
q(µk)q(Ak). (3)

An nested EM algorithm can be used to optimize (3).

Update Responsibility (E-step). In each outer iteration, the logarithm of the optimized factor q∗(Z)
is approximated as

log q∗(Z)

=Eπ,µ,A[log p(S,Z,π,µ,A)] + C

=Eπ[log p(Z|π)] + Eµ,A[log p(S|Z,µ,A)] + C

=
∑

n,k
znk

(
E[log πk] + E[log HP(sn|µk,Ak)]

)
+ C

=
∑

n,k
znk

(
E[log πk] + E[

∑
i
log λkci(ti)−

∑
c

∫ Tn

0

λkc (s)ds]
)

+ C

≈
∑

n,k
znk

(
E[log πk] +

∑
i

(
logE[λkci(ti)]−

Var[λkci(ti)]
2E2[λkci(ti)]

)
−
∑

c
E[

∫ Tn

0

λkc (s)ds]
)

+C

=
∑

n,k
znk log ρnk + C.

(4)

3

where C is a constant, and each term E[log λkc (t)] is approximated via its second-order Taylor

expansion logE[λkc (t)]− Var[λk
c (t)]

2E2[λk
c (t)]

[8]. Then, we have

log ρnk

=E[log πk] +
∑
i

(
log(E[λkci(ti)])−

Var[λkci(ti)]
2E2[λkci(ti)]

)
−
∑
c

E[

∫ Tn

0

λkc (s)ds]

=E[log πk] +
∑
i

(
log(E[µkci] +

∑
j<i,d

E[akcicjd]gd(τij))−
Var[µkci] +

∑
j<i,d Var[akcicjd]g

2
d(τij)

2(E[µkci] +
∑
j<i,d E[akcicjd]gd(τij))

2

)
−
∑
c

(TnE[µkc] +
∑
i,d

E[akccid]Gd(Tn − ti))

=E[log πk] +
∑
i

(
log(

√
π

2
βkci +

∑
j<i,d

σkcicjdgd(τij))−
4−π

2 (βkci)
2 +

∑
j<i,d(σ

k
cicjd

gd(τij))
2

2(
√

π
2β

k
ci +

∑
j<i,d σ

k
cicjd

gd(τij))2

)
−
∑
c

(Tn

√
π

2
βkc +

∑
i,d

σkccidGd(Tn − ti)),

where Gd(t) =
∫ t

0
gd(s)ds and τij = ti− tj . The second equation above is based on the prior that all

of the parameters are independent to each other. The term E[log πk] = ψ(αk)− ψ(
∑
k αk), where

ψ(·) is the digamma function.3 Then, the responsibility rnk is calculated as

rnk = E[znk] =
ρnk∑
j ρnj

, and Nk =
∑

n
rnk. (5)

It should be noted that here we increase q∗(Z) via maximizing its upper bound in each iteration
because the difference between q∗(Z) and its upper bound is bounded tightly. In particular, q∗(Z)
in (4) involves E[log λkci(ti)], which is approximated via Jensen’s inequality as logE[λkci(ti)]. It
actually is the first order Talyor expansion of E[log λkci(ti)]. The second order term is bounded well
and the higher order terms can be ignored. We prove the rationality of our relaxation in the appendix.

Update Parameters (M-step). The optimal factor q∗(π,µ,A) is

log q∗(π,µ,A)

=
∑
k

log(p(µk)p(Ak)) + EZ [log p(Z|π)] + log p(π) +
∑
n,k

rnk log HP(sn|µk,Ak) + C. (6)

We can estimate the parameters of Hawkes processes via:

max
µ,A

log(p(µ)p(A)) +
∑

n,k
rnk log HP(sn|µk,Ak).

Here, we need to use an iterative method to solve the above optimization problem. Specifically, we
initialize µ and A via the expectations of their distributions (used in E-step), i.e., µ =

√
π
2B and

A = Σ. Applying the Jensen’s inequality, we obtain the surrogate function of the objective function:

log(p(µ)p(A)) +
∑
n,k

rnk log HP(sn|µk,Ak)

=
∑
c,k

[
logµkc −

1

2
(
µkc
βkc

)2

]
−
∑

c,c′,d,k

akcc′d
σkcc′d

+
∑
n,k

rnk

[∑
i

log λkci(ti)−
∑
c

∫ Tn

0

λkc (s)ds

]

≥
∑
c,k

[
logµkc −

1

2
(
µkc
βkc

)2

]
−
∑

c,c′,d,k

akcc′d
σkcc′d

+
∑
n,k

rnk

[∑
i

(
pkii log

µkci
pii

+
∑
j<i,d

pkijd log
akcicjdgd(τij)

pijd

)

−
∑
c

Tnµ
k
c −

∑
c,i,d

akccidGd(Tn − ti)
]

= Q,

3Denote the gamma function as Γ(t) =
∫∞
0
xt−1e−xdx, the digamma function is defined as ψ(t) =

d
dt

ln Γ(t).

4

where pkii =
µk
ci

λk
ci

(ti)
, and pkijd =

akcicjd
gd(τij)

λk
ci

(ti)
. Setting ∂Q

∂µk
c

= 0 and ∂Q
∂ak

cc′d
= 0, we have

µ̂kc =
−b+

√
b2 − 4ac

2a
, âkcc′d =

∑
n rnk

∑
i:ci=c

∑
j:cj=c′ p

k
ijd

1/σkcc′d +
∑
n rnk

∑
i:ci=c′

Gd(Tn − ti)
. (7)

where a = 1
(βk

c)2
, b =

∑
n rnkTn, c = −1−

∑
n rnk

∑
i:ci=c

pkii. After repeating several such inner

iterations, we can get optimal µ̂, Â, and update distributions as

Σk = Âk, Bk =
√

2/πµ̂k. (8)

The distribution of clusters can be estimated via πk = Nk

N .

3.2 Update The Number of Clusters K via MCMC

In the case of infinite mixture model, we can apply the Markov chain Monte Carlo (MCMC) [2,10,11]
to update K via merging or splitting clusters.

Chose move type. We make a random choice to propose a combine or a split move. Let qm and
qs = 1− qm denote the probability of proposing a merge and a split move, respectively, for a current
K. Following the work in [10], we use qm = 0.5 for K ≥ 2, and qm = 0 for K = 1.

Merge move. We randomly select a pair (k1, k2) of components to merge and form a new component
k. The probability of choosing (k1, k2) is qc(k1, k2) = 1

K(K−1) . For our model, we can apply the
following deterministic transformation to get new merged parameters:

πk = πk1 + πk2 , Ak =
πk1

πk
Ak1 +

πk2

πk
Ak2 , µk =

πk1

πk
µk1 +

πk2

πk
µk2 . (9)

Then Σ andB are updated accordingly.

Split move. We randomly select a component k to split into two new components k1 and k2. The
probability of choosing component k is qs(k) = 1

K . Different from the sampling method in previous
work [2, 10, 11], the splitting of parameters is an ill-posed problem with positive constraints. Here,
we apply a simple heuristic transformation to get new splitting parameters:

πk1 = aπk, πk2 = (1− a)πk, a ∼ Be(1, 1),

Ak1 =
1

2a
Ak, Ak2 =

1

2(1− a)
Ak, µk1 =

1

2a
µk, µk2 =

1

2(1− a)
µk.

(10)

Then Σ andB are updated accordingly.

Acceptance. Given original parameters Θ and the new Θ′, we accept a merge/split move with the
probability min{1, likelihood ratio× p(Θ′)

p(Θ) }.

3.3 Computational Complexity and Acceleration

Given N training sequences of C-dimensional Hawkes processes, each of which contains I events,
we represent impact functions by D basis functions and set the maximum number of clusters to
be K. In the worst case, the computational complexity per iteration of our learning algorithm is
O(KDNI3C2). Fortunately, the exponential prior of tensorA corresponds to a sparse regularizer.
In the learning phase, we can ignore the computations involving the elements close to zero to reduce
the computational complexity. If the number of nonzero elements in each Ak is comparable to
C, then the computational complexity of our algorithm will be O(KDNI2C). Additionally, the
parallel computing techniques can also be applied to further reduce the runtime of our algorithm.
Note that the learning algorithm of MMHP discretizes each impact function into L points and
estimates them via finite element analysis. The low-rank regularizer is imposed on its parameters.
Therefore, its computational complexity per iteration is O(NI(I2C2 + L(C + I)) +C3). Similarly,
when the parameters of each Hawkes process is sparse, its computational complexity will reduce to
O(NI(IC+L(C+I))+C2). The first partO(NI(IC+L(C+I))) corresponds to the ODE-based
parameter updating while the second part O(C2) corresponds to the soft-thresholding of parameters.
According to the setting in [3, 12], generally L� I . Therefore, the computational complexity of our
algorithm is superior to that of MMHP, especially in high dimensional cases (i.e., large C).

5

20 40 60 80 100
The number of inner iterations

3.44

3.46

3.48

3.5

N
eg

at
iv

e
Lo

g-
lik

el
ih

oo
d

#104 2 Clusters

20 40 60 80 100
The number of inner iterations

5.1

5.15

5.2

N
eg

at
iv

e
Lo

g-
lik

el
ih

oo
d

#104 3 Clusters

20 40 60 80 100
The number of inner iterations

7.1

7.2

7.3

7.4

7.5

N
eg

at
iv

e
Lo

g-
lik

el
ih

oo
d

#104 4 Clusters

20 40 60 80 100
The number of inner iterations

8.3

8.4

8.5

8.6

N
eg

at
iv

e
Lo

g-
lik

el
ih

oo
d

#104 5 Clusters

Increasing Constant Decreasing OpenLoop BayesOpt

(a) Random Sparse Infectivity Matrices

20 40 60 80 100
The number of inner iterations

4.12

4.14

4.16

4.18

4.2

4.22

N
eg

at
iv

e
Lo

g-
lik

el
ih

oo
d

#104 2 Cluster

20 40 60 80 100
The number of inner iterations

6.9

7

7.1

7.2

7.3
N

eg
at

iv
e

Lo
g-

lik
el

ih
oo

d
#104 3 Cluster

20 40 60 80 100
The number of inner iterations

8.2

8.25

8.3

8.35

8.4

N
eg

at
iv

e
Lo

g-
lik

el
ih

oo
d

#104 4 Cluster

20 40 60 80 100
The number of inner iterations

1

1.01

1.02

1.03

1.04

N
eg

at
iv

e
Lo

g-
lik

el
ih

oo
d

#105 5 Cluster

Increasing Constant Decreasing OpenLoop BayesOpt

(b) Blockwise Sparse Infectivity Matrices

Figure 1: Comparison for various inner iteration allocation strategies on different synthetic data sets.

4 Experiments

4.1 More Experiments of Convergence

We test various inner iteration allocation strategies on two synthetic data sets. Both of these two data
sets have sparseA. In the first data set, the nonzero elements in A are distributed randomly, while in
the second data set, each slide ofAk, k = 1, ...,K, contain several all-zero columns and rows (i.e.
blockwise sparse tensor). The convergence curves obtained via various strategies are shown in Fig. 1,
which demonstrate that the open-loop control and the Bayesian optimization strategies outperform
heuristic strategies consistently. The results are robust to the changes of parameters’ structure and the
number of clusters. According to the derivations of algorithm and the convergence analysis above,
we give the scheme of our DMHP learning algorithm in Algorithm 2.

4.2 Synthetic Data

Fig. 2 shows the histograms of the number of clusters obtained via various methods on our two
synthetic data sets (K = 5). We can find that the distributions obtained by our method are more
concentrated to the real number of clusters.

4.3 Real-world Data

The clustering results of IPTV data are shown in Fig. 3. Compared with the results obtained via
MMHP+DPGMM, the histogram of the number of clusters obtained via our DMHP method is more
concentrated and the infectivity matrices of clusters are more structural and explainable.

References
[1] M. Farajtabar, N. Du, M. Gomez-Rodriguez, I. Valera, H. Zha, and L. Song. Shaping social

activity by incentivizing users. In NIPS, 2014.
[2] P. J. Green. Reversible jump Markov chain Monte Carlo computation and Bayesian model

determination. Biometrika, pages 711–732, 1995.
[3] D. Luo, H. Xu, Y. Zhen, X. Ning, H. Zha, X. Yang, and W. Zhang. Multi-task multi-dimensional

Hawkes processes for modeling event sequences. In IJCAI, 2015.

6

Algorithm 2 Learning DMHP
1: Input: S = {sn}Nn=1, the maximum number of clusters K, the maximum number of iteration I .
2: Output: Optimal parameters of model, α̂, Σ̂, and B̂.
3: Initialize α, Σ,B and [rnk] randomly, i = 0.
4: repeat
5: Just M-step:
6: Given [rnk], update {µ̂(1), Â(1)} via (7), calculate negative log-likelihood L(1).
7: A loop of E-step and M-step:
8: Given {α,Σ,B}, update responsibility via (5), denoted as [r2

nk] .
9: Given [r2

nk], update {µ̂(2), Â(2)} via (7), calculate negative log-likelihood L(2).
10: If L(1) < L(2)

11: Given {µ̂(1), Â(1)}, update Σ,B via (8).
12: Else
13: Update [rnk] via [r

(2)
nk].

14: Given [rnk], µ̂(2), Â(2), update α, Σ,B via (8).
15: End
16: Merge or split clusters and update Σ,B via MCMC.
17: i = i+ 1.
18: until i = I
19: α̂ = α, Σ̂ = Σ, and B̂ = B.

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50 DMHP
MMHP

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40
DMHP
MMHP

(a) Sine-like impact function
1 2 3 4 5 6 7 8 9 10

0

10

20

30

40

50 DMHP
MMHP

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40
DMHP
MMHP

(b) Piecewise constant impact function
Figure 2: The histograms of the number of clusters obtained via various methods on the two synthetic
data sets.

[4] E. Meijer and J. Y. Ypma. A simple identification proof for a mixture of two univariate normal
distributions. Journal of Classification, 25(1):113–123, 2008.

[5] T. J. Rothenberg. Identification in parametric models. Econometrica: Journal of the Econometric
Society, pages 577–591, 1971.

[6] B. W. Silverman. Density estimation for statistics and data analysis, volume 26. CRC press,
1986.

[7] A. Simma and M. I. Jordan. Modeling events with cascades of Poisson processes. In UAI, 2010.
[8] Y. W. Teh, D. Newman, and M. Welling. A collapsed variational Bayesian inference algorithm

for latent Dirichlet allocation. In NIPS, 2006.
[9] H. Xu, M. Farajtabar, and H. Zha. Learning Granger causality for Hawkes processes. In ICML,

2016.
[10] Y. Xu, P. Müller, and D. Telesca. Bayesian inference for latent biologic structure with determi-

nantal point processes (DPP). Biometrics, 2016.
[11] Z. Zhang, K. L. Chan, Y. Wu, and C. Chen. Learning a multivariate Gaussian mixture model

with the reversible jump MCMC algorithm. Statistics and Computing, 14(4):343–355, 2004.
[12] K. Zhou, H. Zha, and L. Song. Learning triggering kernels for multi-dimensional Hawkes

processes. In ICML, 2013.

7

15 20 25 30
0

10

20

30

40

50 DMHP
MMHP

(a) Histogram of K

Cluster 1

5 10 15

5

10

15

Cluster 2

5 10 15

5

10

15

Cluster 3

5 10 15

5

10

15

Cluster 4

5 10 15

5

10

15

Cluster 5

5 10 15

5

10

15

Cluster 6

5 10 15

5

10

15

Cluster 7

5 10 15

5

10

15

Cluster 8

5 10 15

5

10

15

Cluster 9

5 10 15

5

10

15

Cluster 10

5 10 15

5

10

15

Cluster 11

5 10 15

5

10

15

Cluster 12

5 10 15

5

10

15

Cluster 13

5 10 15

5

10

15

Cluster 14

5 10 15

5

10

15

Cluster 15

5 10 15

5

10

15

Cluster 16

5 10 15

5

10

15

Cluster 17

5 10 15

5

10

15

Cluster 18

5 10 15

5

10

15

Cluster 1

5 10 15

5

10

15

Cluster 2

5 10 15

5

10

15

Cluster 3

5 10 15

5

10

15

Cluster 4

5 10 15

5

10

15

Cluster 5

5 10 15

5

10

15

Cluster 6

5 10 15

5

10

15

Cluster 7

5 10 15

5

10

15

Cluster 8

5 10 15

5

10

15

Cluster 9

5 10 15

5

10

15

Cluster 10

5 10 15

5

10

15

Cluster 11

5 10 15

5

10

15

Cluster 12

5 10 15

5

10

15

Cluster 13

5 10 15

5

10

15

Cluster 14

5 10 15

5

10

15

Cluster 15

5 10 15

5

10

15

Cluster 16

5 10 15

5

10

15

Cluster 17

5 10 15

5

10

15

Cluster 18

5 10 15

5

10

15

Cluster 19

5 10 15

5

10

15

Cluster 20

5 10 15

5

10

15

(b) DMHP

Cluster 1

5 10 15

5

10

15

Cluster 2

5 10 15

5

10

15

Cluster 3

5 10 15

5

10

15

Cluster 4

5 10 15

5

10

15

Cluster 5

5 10 15

5

10

15

Cluster 6

5 10 15

5

10

15

Cluster 7

5 10 15

5

10

15

Cluster 8

5 10 15

5

10

15

Cluster 9

5 10 15

5

10

15

Cluster 10

5 10 15

5

10

15

Cluster 11

5 10 15

5

10

15

Cluster 12

5 10 15

5

10

15

Cluster 13

5 10 15

5

10

15

Cluster 14

5 10 15

5

10

15

Cluster 15

5 10 15

5

10

15

Cluster 16

5 10 15

5

10

15

Cluster 17

5 10 15

5

10

15

Cluster 18

5 10 15

5

10

15

Cluster 1

5 10 15

5

10

15

Cluster 2

5 10 15

5

10

15

Cluster 3

5 10 15

5

10

15

Cluster 4

5 10 15

5

10

15

Cluster 5

5 10 15

5

10

15

Cluster 6

5 10 15

5

10

15

Cluster 7

5 10 15

5

10

15

Cluster 8

5 10 15

5

10

15

Cluster 9

5 10 15

5

10

15

Cluster 10

5 10 15

5

10

15

Cluster 11

5 10 15

5

10

15

Cluster 12

5 10 15

5

10

15

Cluster 13

5 10 15

5

10

15

Cluster 14

5 10 15

5

10

15

Cluster 15

5 10 15

5

10

15

Cluster 16

5 10 15

5

10

15

Cluster 17

5 10 15

5

10

15

Cluster 18

5 10 15

5

10

15

Cluster 19

5 10 15

5

10

15

Cluster 20

5 10 15

5

10

15

(c) MMHP+DPGMM
Figure 3: Comparisons on the IPTV user data.80 Events per Sequence

0.1 0.2 0.3 0.4
Sample Percentage of Minor Cluster

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

D
is

ta
nc

e
be

tw
ee

n
C

en
te

rs

80 Events per Sequence

0.1 0.2 0.3 0.4
Sample Percentage of Minor Cluster

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

D
is

ta
nc

e
be

tw
ee

n
C

en
te

rs

40 Events per Sequence

0.1 0.2 0.3 0.4
Sample Percentage of Minor Cluster

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

D
is

ta
nc

e
be

tw
ee

n
C

en
te

rs

40 Events per Sequence

0.1 0.2 0.3 0.4
Sample Percentage of Minor Cluster

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

D
is

ta
nc

e
be

tw
ee

n
C

en
te

rs

20 Events per Sequence

0.1 0.2 0.3 0.4
Sample Percentage of Minor Cluster

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

D
is

ta
nc

e
be

tw
ee

n
C

en
te

rs
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

20 Events per Sequence

0.1 0.2 0.3 0.4
Sample Percentage of Minor Cluster

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

D
is

ta
nc

e
be

tw
ee

n
C

en
te

rs

(a) MMHP+DPGMM

80 Events per Sequence

0.1 0.2 0.3 0.4
Sample Percentage of Minor Cluster

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

D
is

ta
nc

e
be

tw
ee

n
C

en
te

rs

80 Events per Sequence

0.1 0.2 0.3 0.4
Sample Percentage of Minor Cluster

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

D
is

ta
nc

e
be

tw
ee

n
C

en
te

rs

40 Events per Sequence

0.1 0.2 0.3 0.4
Sample Percentage of Minor Cluster

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

D
is

ta
nc

e
be

tw
ee

n
C

en
te

rs

40 Events per Sequence

0.1 0.2 0.3 0.4
Sample Percentage of Minor Cluster

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

D
is

ta
nc

e
be

tw
ee

n
C

en
te

rs

20 Events per Sequence

0.1 0.2 0.3 0.4
Sample Percentage of Minor Cluster

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

D
is

ta
nc

e
be

tw
ee

n
C

en
te

rs

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

20 Events per Sequence

0.1 0.2 0.3 0.4
Sample Percentage of Minor Cluster

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

D
is

ta
nc

e
be

tw
ee

n
C

en
te

rs

(b) DMHP
Figure 4: Comparisons for various methods on F1 score of minor cluster.

8

	The Proof of Local Identifiability
	The Selection of Basis Functions
	The Details of Learning Algorithm
	Nested EM Framework
	Update The Number of Clusters K via MCMC
	Computational Complexity and Acceleration

	Experiments
	More Experiments of Convergence
	Synthetic Data
	Real-world Data

