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Let us fix some notation. For a given set A,

• conv(A) :=
{∑t

i=1 λizi : t ∈ N, zi ∈ A, λi ≥ 0,
∑t

i=1 λi = 1
}

denotes the convex hull
of A, where N is the set of positive integers.

• cone(A) :=
{
λy : y ∈ A, λ ≥ 0

}
,

• the conic hull is denoted by conv cone(A) =
{∑t

i=1 λizi : t ∈ N, zi ∈ A,λi ≥ 0
}

.
• the closure is denoted by clA.

Minkowski sum of two sets A and B is denoted by A + B, while A + {x} may be simplified to
A+x. For a subspace S, the orthogonal complement is defined as S⊥ = {y : ⟨y, x⟩ = 0 , ∀x ∈ S}.
We abuse the notation to define {x}⊥ = {y : ⟨y, x⟩ = 0}.

Consider k linear subspaces in Rn, namely S1, . . . , Sk. We term the intersection of a subspace Si

with the unit sphere as a ring Ri = Si∩Sn−1, for i = 1, . . . , k, and we define R = R1∪. . .∪Rk =
(S1 ∪ · · · ∪ Sk) ∩ Sn−1. For any x ∈ R, denote by S(x) the convex hull of union of all subspaces
Si such that x ∈ Si. The subspace S(x) can also be described as the direct sum (denoted by ⊕) of
those subspaces that contain x. Moreover, R(x) := S(x) ∩ Sd−1.

Given a set of nonzero sample points from a union of linear subspaces, we normalize them to fall
on the unit sphere, and without loss of generality, assume X =

{
x1, . . . , xN

}
⊂ Sn−1 is the set

of samples. We overload the notation to define a corresponding matrix as X = [x1, x2, · · · , xN ].
Data hull refers to the convex hull of samples,

conv(X) :=
{∑t

i=1 λixi : 0 ≤ λi ≤ 1, xi ∈ X, t = 1, . . . , N
}
.

The tangent cone at a point x ∈ conv(X) with respect to conv(X) is defined as the closed conic
hull of shifted samples,

T (x) := cl conv cone(X − {x}) = cl
{∑t

i=1 λi(xi − x) : λi ≥ 0, xi ∈ X, t = 1, . . . , N
}

where the closure operator can be omitted when x ∈ X . The linear space of a cone C is defined as
linC := C ∩ (−C).

We denote the subset of columns of X which lie on St by Xt ∈ Rn×Nt . Lower case letters represent
vectors, while specific letters such as x and x′ are reserved to represent columns of X , and x is
commonly used as the reference point. Lower case greek letters represent scalars or scalar-valued
functions.

A Details on the CSC Paradigm

Let us list a few preliminary facts regarding dβ(x, x′) = −sign(⟨x, x′⟩)βx′ − x, defined for any
β ≥ 0 and any two points x, x′ on the unit sphere. We allow sign(0) to be arbitrarily chosen as +1
or −1. In Figure 4, dβ(x, x′) is the vector connecting x to βx′. Observe that

∥dβ(x, x′)∥22 = 1 + 2β|⟨x, x′⟩|+ β2.

It is easy to verify that the intersection of x + cone(dβ(x, x′)) and the unit sphere, denoted by x′′,
is given by

x′′ := (1− a)x− aβsign(⟨x, x′⟩)x′ = x− a (x+ βsign(⟨x, x′⟩)x′) = x+ a dβ(x, x
′) (8)

where

a :=
2 + 2β|⟨x, x′⟩|

1 + 2β|⟨x, x′⟩|+ β2
∈ (0, 2] (9)

and a is a continuously decreasing function of β for β > 0. Moreover, ∥dβ(x, x′)∥22 = β2−1
1−a .
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Figure 4: An illustration for different quantities considered in Appendix A. Given x and x′, the plane
of our paper corresponds to the plane span{0, x, x′}, and the dotted circle represents the unit circle
in this plane. For a fixed value of β > 1, the intersection of x+ cone(dβ(x, x′)) and the unit sphere
is denoted by x′′ and is characterized in (8). The triangles (βx′, 0, x) and (βx′, x′, x′ + λx) are
similar, in the given order. We define λ through similarity of triangles as λ

1 = β−1
β which implies

β = 1
1−λ .

A.1 Proof of Proposition 2

Proof. First of all, notice that sign(⟨x, x′⟩)βx′ − x always lies outside of cone(R − x) for large
enough β when ⟨x, x′⟩ ̸= 0; because the following quantity,

⟨x, sign(⟨x, x′⟩)βx′ − x⟩ = β|⟨x, x′⟩|− 1,

can be made positive while ⟨x, x′′ − x⟩ = ⟨x, x′′⟩ − 1 ≤ 0 for all x′′ ∈ R. Secondly, the case of
x′ = −x is trivial.

(i) Suppose x′ ∈ S(x). We claim that
{
dβ(x, x

′) := −sign(⟨x, x′⟩)βx′ − x : β ≥ 0
}
⊂ cl cone(R− x). (10)

where sign(0) can be arbitrarily chosen as +1 or −1. For any fixed β ≥ 0, define

x′′ := (1− a)x− aβsign(⟨x, x′⟩)x′ ∈ S(x) , a =
2 + 2β|⟨x, x′⟩|

1 + 2β|⟨x, x′⟩|+ β2
> 0 (11)

which, after algebraic manipulations, can be shown to satisfy x′′ ∈ S(x) ∩R as well as

dβ(x, x
′) =

1

a
(x′′ − x) ∈ cone(R− x) ∩ S(x)

which establishes the claim. Observe that 1 + 2β|⟨x, x′⟩|+ β2 = |1 + β exp(i∠x, x′)|2.

(ii) Conversely, suppose {dβ(x, x′) : β ≥ 0} ⊂ cone(R − x) ⊂ cone(Sn−1 − x). Notice that
the corresponding point on Sn−1 (hence the one on R) is unique: by the assumption, for any
β ≥ 0 there exists λ ≥ 0 and x′′ ∈ Sn−1 for which dβ(x, x′) = λ(x′′ − x). If this is satisfied
by two pairs (x1,λ1) and (x2,λ2) then λ1(x1 − x) = λ2(x2 − x) which implies

∥λ1x1 − λ2x2∥22 = ∥(λ1 − λ2)x∥22 =⇒ ⟨x1, x2⟩ = 1 =⇒ x1 = x2.

The trajectory of these unique points on Sn−1 for all β ≥ 0 is a half-circle from −x (corre-
sponding to β = 0) to x′ (corresponding to β = 1) to x (corresponding to β approaching
+∞), and is assumed to be on R. Since R is a collection of rings, x and x′ must on the same
subspace.

A.2 Proof of Proposition 3

Proof. Similar to what mentioned in the beginning of proof of Proposition 2, sign(⟨x, x′⟩)βx′ − x
always lies outside of cone(R − x) for large enough β when ⟨x, x′⟩ ̸= 0; the argument holds even
after taking the convex hull of cone(R−x). Moreover, the first part of proof of Proposition 2 applies
exactly the same, as cone(R− x) ⊂W(x).
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B Guarantees for No False Positive Declarations

B.1 Proof of Theorem 7

Proof. Since there are only a finite number N of samples x′, it is enough to show that for each
x′ ̸∈ S(x) there exists a finite value of β ≥ 0 for which dβ+ε(x, x′) ̸∈ WN (x) for any ε > 0. To
simplify the presentation, suppose sign(⟨x, x′⟩) = 1, hence dβ(x, x′) = βx′ − x.

Suppose the condition of the theorem holds: x′ ̸∈ S(x) and x′ ̸∈ WN (x). By definition, βL > 0.
First, notice that WN (x) is closed, pointed (i.e., contains no linear subspace, as N is finite and there
is no infinitesimal sequence of samples on S(x) approaching x), and full-dimensional in span(X) ⊆
Rn. Therefore,

βL(x, x
′) := inf{β > 0 : βx′ − x ̸∈WN (x)}
= sup{β > 0 : βx′ − x ∈WN (x)}

= sup{β > 0 : x′ − 1

β
x ∈WN (x)} (12)

is finite. Since the cone is full-dimensional in span(X), and x, x′ ∈ span(X), as well as −x ∈
WN (x), the line {α : x′ + αx ∈ WN (x)} is a half line in R; it is not unbounded both ways. We
show that this half line only has negative values. Contrapositively, assume that there exists α ≥ 0
for which x′ +αx ∈WN (x), while x′ ̸∈WN (x) ∋ −x. For a convex set A, denote by Π(x,A) the
orthogonal projection of x onto A, namely Π(x,A) := argminy∈A ∥x − y∥2. Using the definition
of polar cones, as well as the Moreau decomposition for cones, x′ + αx ∈WN (x) implies

0 ≥ ⟨x′ + αx,Π(x′,WN (x)◦)⟩
= ⟨Π(x′,WN (x)◦) + αx,Π(x′,WN (x)◦)⟩
= ∥Π(x′,WN (x)◦)∥22 + α⟨x,Π(x′,WN (x)◦)⟩.

On the other hand, −x ∈ WN (x) implies ⟨−x,Π(x′,WN (x)◦)⟩ ≤ 0. Therefore, from the above
equation, we get Π(x′,WN (x)◦) = 0n, which implies x′ ∈WN (x) and contradicts the assumption.
This, in conjunction with (12), establishes the claim, and βL(x, x′) exists.

Figure 5 is helpful in understanding the condition of Theorem 7. Here, the cone and the subspace
only have a trivial intersection. Therefore, Theorem 7 guarantees that there exists a finite value of β
for which dβ(x, x′) is outside of the cone, for all x′ from the green subspace.

Figure 5: A schematic with samples from two subspaces, and the cone x+WN (x) in orange, where
x belongs to the set of red samples. The green circle represents the subspace corresponding to the
green samples, shifted by x.

A list of conditions that imply the condition of Theorem 7 are given in the next lemma. These
impose restrictions on the subspaces, rather than the samples, and are easier to check.
Lemma 9. Any of the following conditions, if met for all i = j + 1, . . . , k, implies the condition of
Theorem 7:

• Si ∩WN (x) = {0}.

• Π(W⋆
N (x);Si) = Rdi (where for a given cone C, the dual cone is denoted by C⋆ = −C◦).
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• For any θ, (θ+S⊥
i )∩W⋆

N (x) ̸= ∅. Or equivalently, for any θ ∈ Si, (θ+S⊥
i )∩W⋆

N (x) ̸= ∅.

• 0 ∈ int
{
UT
i z : z ∈ B

}
⊂ Rdi where B is any convex base for W⋆

N (x), and Ui is an
orthonormal basis of Si.

B.2 Proof of Lemma 8

We specialize Theorem 7 to a random-subspace model by using the celebrated Gordon’s lemma [6]
and the notion of statistical dimension.

Under a random-subspace model, St and WN (x) are two random objects and are dependent (sam-
ples from St take part in forming WN (x), hence the orientation and the dimension of St affect
the definition of WN (x)), which makes the analysis harder. Therefore, assuming a symmetric set of
samples (or simply considering [X,−X] as the new set of samples), Lemma 10 attempts to decouple
St and WN (x). Define Wi

N (x) = convcone{x′−x : x′ ∈ Si}, with WN (x) = conv
⋃k

i=1 Wi
N (x).

Moreover, consider W−i
N (x) = convcone{x′ − x : x′ ̸∈ Si, x′ ∈ X}.

Lemma 10. Suppose S(x) = S1 ∪ . . . ∪ Sj and take any i = j + 1, . . . , k. Then, for a set of
symmetric data points denoted by X , we have that Si ∩WN (x) = {0} and Si ∩W−i

N (x) = {0} are
equivalent.

Proof. As W−i
N (x) ⊂WN (x), the condition Si∩WN (x) = {0} simply implies Si∩W−i

N (x) = {0}.
On the other hand, WN (x) = conv(W−i

N (x) ∪ cone(Xi − x)). Suppose there exists a nonzero
y ∈ Si ∩WN (x) while Si ∩W−i

N (x) = {0}. Then, there exists z ∈ W−i
N (x), x′ ∈ Xi, λ ∈ [0, 1),

and θ > 0, for which y = λz + (1− λ)θ(x′ − x).

As y, x′ ∈ Si, we should have λz − (1− λ)θx ∈ Si. On the other hand, we have z,−x ∈ W−i
N (x)

which implies λz − (1 − λ)θx ∈ W−i
N (x). Therefore, λz − (1 − λ)θx ∈ Si ∩W−i

N (x) which is a
contradiction unless it is the zero vector. But then we should have λz = (1− λ)θx implying λ ̸= 0
and ⟨z, x⟩ = (1− λ)θ/λ > 0 for z ∈W−i

N (x) which contradicts the fact that all samples are on the
unit sphere implying ⟨w, x⟩ ≤ 0 for all w ∈WN (x).

In a random-subspace model, based on Lemma 10, the condition of Theorem 7 requires the following
events to happen simultaneously for i = j + 1, . . . , k: a random subspace Si of known dimension
di < n has trivial intersection with a random cone W−i

N (x) where Si and W−i
N (x) are independent.

In this scenario, x can be thought of as a fixed point which will not lie on Si with probability 1 as
desired. However, notice that these events for i = j + 1, . . . , k are not independent from each other
(the subspace from one event is dependent on the cone in another event) and we will use a union
bound in the end. Since k is not assumed to be growing with n in our problem setup, such a union
bound does not require special considerations. For now, we focus on one of the events.

The event of a random subspace and a cone having trivial intersection can be studied using the notion
of the statistical dimension of the cone and the brilliant Gordon’s Lemma [6]. Let us define some
quantities first. Consider two random variables g ∼ N (0, In) and u ∼ unif(Sn−1). The statistical
dimension of a closed convex cone C ⊂ Rn is defined as

δ(C) := E sup
y∈C∩Sn−1

⟨y, g⟩2 = nE sup
y∈C∩Sn−1

⟨y, u⟩2 = E∥Π(g;C)∥22 = E dist2(g, C◦) (13)

where C◦ := {y : ⟨x, y⟩ ≤ 0 ∀x ∈ C} is the polar cone. Lemma 8 then simply employs Gordon’s
Lemma [6], and the proof is straightforward based on the above discussions as well as the fact that
the statistical dimension is bounded above by the ambient dimension.

B.3 A simple sufficient condition for existence of βL

Lemma 11. For any configuration of k subspaces in Rn, and any point x ∈ Sn−1 from their union,
we have

δ(Wt
N (x)) ≤ dim(St)

for t = 1, . . . , k.
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Proof. Suppose x ∈ S1 ∩ . . . ∩ Sj and not in the rest of the subspaces Sj+1, . . . , Sk. For t ∈
{1, . . . , j}, we have x ∈ St which implies Wt

N (x) ⊂ St. Therefore,

δ(Wt
N (x)) ≤ δ(St) = dt.

For t ∈ {j + 1, . . . , k} and t ̸= i, we consider the whole ring and use the bound Wt
N (x) ⊂

convcone(Rt − x). Therefore, by the monotonicity of the statistical dimension, we get

δ(Wt
N (x)) ≤ δ(convcone(Rt − x)). (14)

It is known that δ(C) + δ(C⋆) = n. Hence, we can either find an upper bound for δ(W−i
N (x)) or a

lower bound for δ(W−i
N (x)⋆). Therefore,

δ(Wt
N (x)⋆) ≥ δ(convcone(Rt − x)⋆)

= E dist2(g, convcone(Rt − x))

= E inf
θ
∥g − Utθ + x∥22

= E∥gS⊥
t
+ xS⊥

t
∥22 + E inf

θ
∥UT

t (g + x)− θ∥22

= n− dt + ∥xS⊥
t
∥22

≥ n− dt

Therefore, δ(Wt
N (x)) ≤ dt.

As briefly mentioned right after Lemma 8, while we can compute the statistical dimension for the
individual cones, it remains to understand how they should be aggregated, along with the affinity
between the subspaces, to provide us with the value of δ(WN (x)) in the random model.

We can simplify the condition of Lemma 8 and derive a sufficient condition:
Lemma 12. With the notation in Theorem 7, and under the random-subspace model, βL is finite
provided that

∑k
t=1 dim(St) < n.

The proof is simply by noting that W−i
N (x) ⊂ ⊕j ̸=iSj ⊕ {x} which implies δ(W−i

N (x)) ≤ 1 +∑
j ̸=i dim(Sj). Plugging this in to Lemma 8 yields the desired result.

B.4 βL when subspaces are independent (dimension of sum is the sum of dimensions)

Lemma 13. Given k independent subspaces, βL = 1.

Proof. By definition, βL ≥ 1. We will show that it cannot be larger than one. Consider x ∈ X1 and
x′ ∈ X2, and denote the rest of the points by X̄ . Suppose β is such that βx′ − x ∈WN (x). Hence,
there exists λ ≥ 0 such that

βx′ − x = (X − x1T )λ = X1λ1 +X2λ2 + X̄λ̄− x1Tλ

where X = [X1, X2, X̄] and λT = [λT
1 ,λ

T
2 , λ̄

T ]. Assume, without loss of generality, that
(λ1)x = 0. By the linear independence assumption, we get

x(1Tλ− 1) = X1λ1 , βx′ = X2λ2.

Since 1
1Tλ1

X1λ1 is a convex combination of points in X1, and x ̸∈ conv(X1\{x}) (as all points

are on the sphere), we get 1Tλ−1
1Tλ1

< 1 which, due to λ ≥ 0, implies 1Tλ2 < 1. Therefore,
βx′ = X2λ2 ∈ conv(X2) which requires β ≤ 1. This establishes the claim; βL = 1.

B.5 More on computing and bounding βL for general subspace configurations

Theorem 7 only guarantees the existence of βL. However, computing this extremal value is not
straightforward. In the following, we present a transformation of βL(x, x′) into a function that
is concave in x′, hence can be maximized over convex sets. Such a property can be used as an
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analytical tool in deriving the desired lower bound when certain information (or a probabilistic
generative model) about the subspaces is available.

For this, we use a simple geometric argument illustrated in Figure 6. Consider the line segment
extended from x′ in the direction of x until it reaches the boundary of the cone illustrated with solid
black lines. By similarity of triangles (0, x,βx′) and (x′, x′ + λx,βx′), we have λ

1 = β−1
β which

yields β = 1
1−λ . More generally, we can define

λ0(x, x
′) := inf {λ ≥ 0 : x′ − (1− λ)x ̸∈WN (x)}

as well as λ0(x) := maxx′ ̸∈S(x) λ0(x, x′) and λ0 := maxx∈X λ0(x). Then, the above geometric
argument can be used to observe that

λ0(x, x
′) = 1− 1

βL(x, x′)
.

With this insight, we turn (6) and (7) into computing the corresponding extremal value of λ0 =
1 − 1

βL
. In our problem, λ0 measures how close the rings Rj+1, . . . ,Rk are to WN (x). The

above relationship can also be seen from (12), where for x′ ̸∈ WN (x), we have 1 − λ0(x, x′) =
inf{α : x′ − αx ∈WN (x)}, and α is a placeholder for 1

β .

Interestingly, λ0(x, x′) coincides with the function λmin(x′−x) defined in [12], and we can leverage
their optimization approach for maximizing λ0(x, x′). More specifically, the definition of λmin

in [12] requires a proper closed convex cone with nonempty interior and a reference point in its
relative interior. Thus, λ0(x, x′) = λmin(x′ − x) for WN (x) (which is a proper closed convex cone
with nonempty interior for every finite N ) and with reference point −x (if in the relative interior
of WN (x)). By the characterization of [12], λ0(x, x′) is a concave function of its second argument
which is computationally desirable for computing the maximum over rings to which x does not
belong, for all x.

x0

x′

βx′

x′′

x′ + λx

Figure 6: Definition of λ through similarity of triangles as λ
1 = β−1

β which yields β = 1
1−λ . The

solid black lines represent x + WN (x) and the dotted circle represents the unit sphere, while both
of which have been intersected with the plane span{0, x, x′}.

C Partial True Positives

C.1 Proof of Theorem 4

We assume each sample only belongs to one of the subspaces. This is not a restrictive assumption,
as for example, in a random model, a random sample x will belong to only one subspace, with
probability one.

Goal: assuming x ∈ St, find an upper bound βt
U,ρ such that if we use any β ≤ βt

U,ρ in CSC1(β, x),
a fraction ρ of the samples in St are true positives. Then, with a

β ≤ βU,ρ := min
t=1,...,k

βt
U,ρ ,

every row of the estimated affinity matrix will have at least ρ(Nt − 1) ones over the block corre-
sponding to samples from St, excluding the diagonal entries. With this in mind, from this point
forward, we may omit all the subscripts t and restrict the space to St to simplify the presentation.
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Suppose we are given N − 1 samples (except x) in this d-dimensional subspace (where we have
omitted subscripts form Nt and dt). We will denote the samples, excluding x, by X . Moreover,
suppose we are given a desired fraction for true positives, namely ρ ∈ (0, 1). Define the desired
number of true positives (excluding the diagonal entry) as

m := ⌈ρ(N − 1)⌉ ∈ {1, . . . , N − 1}.

Consider sorting the values arccos(|⟨x, x′⟩|) for all x′ ∈ X (x′ ̸= x), namely as

0 = arccos(|⟨x, x⟩|) < arccos(|⟨x, x1⟩|) ≤ arccos(|⟨x, x2⟩|) ≤ . . . ≤ arccos(|⟨x, xN−1⟩|),

and taking the m-th smallest value and defining

ηρ := arccos(|⟨x, xm⟩|) , ϵρ := |⟨x, xm⟩| = cos(ηρ).

Moreover, for any given value ϵ ∈ [0, 1], denote a spherical cap and its symmetrized version by

C−
ϵ :=

{
y ∈ Sd−1 : ⟨y, x⟩ ≤ −ϵ

}
, Cϵ :=

{
y ∈ Sd−1 : |⟨y, x⟩| ≥ ϵ

}
.

By definition, for every x′ ∈ X ∩ Cϵρ we have |⟨x, x′⟩| ≥ ϵρ = |⟨x, xm⟩|. Recall that we are
interested in an upper bound for β below which we get at least m true positives from CSC1(β, x)
(except x itself). Consider,

β(x′) := sup
{
β > 0 : dβ(x, x

′) ∈Wt
N (x)

}
, (15)

where Wt
N (x) := convcone{x′ − x : x′ ∈ St}, and note that the above quantity might be strictly

smaller than a counterpart defined via the WN (x) defined with all samples included; but this re-
stricted definition suffices for our purposes. Therefore, our interest is in

β1 := inf
{
β(x′) : x′ ∈ X ∩ Cϵρ

}
.

Using any β ≤ β1, by definition, CSC1(β, x) would output all x′ ∈ X∩Cϵρ as true positives, where
from the definition of ϵρ, the set X ∩ Cϵρ contains at least m ≥ ρ(N − 1) of the samples.

For any sample x′ ∈ X , consider the half-plane

H(x, x′) :=
{
ν1x+ ν2x

′ : ν1, ν2 ∈ R, ν2 · sign(⟨x, x′⟩) ≤ 0
}

which has the line cone(x) as its boundary. These are all the points in the plane defined by x and
x′ that are on the same side of the line cone(x) ∪ cone(−x) as −sign(⟨x, x′⟩)x′. Then, consider a
point yx′ on the boundary of C−

ϵρ ∩H(x, x′) as

yx′ := ν1x+ ν2x
′ ∈ Sd−1 where ν2 · sign(⟨x, x′⟩) ≤ 0 and ⟨yx′ , x⟩ = −ϵρ. (16)

It is easy to see that for any x′ ∈ X ∩ Cϵρ we have β(yx′) ≤ β(x′), where β(yx′) is defined as
in (19) as a simple adaptation of (15). However, yx′ may not be in the cone anymore, which is not
relevant for our purposes. Therefore, we can lower bound β1 as

β2 := inf
{
β(yx′) : x′ ∈ X ∩ Cϵρ

}
≤ β1. (17)

For future purposes, we re-state the definition of β2 in terms of yx′ rather than x′. Considering
X ∩ Cϵρ = {x1, . . . , xm}, define Yϵρ = {yx1 , . . . , yxm}. Then,

β2 = inf
{
β(y) : y ∈ Yϵρ

}
≤ β1. (18)

Now, let us define a number of quantities illustrated in Figure 7.

Define

θ(x′) := max
{
∠(−x, y) : y ∈WN (x) ∩H(x, x′)

}
,

r(x′) := tan θ(x′).

Note that θ(x′) = θ(x′′) for any other x′′ ∈ (WN (x) + x) ∩H(x, x′). Specifically, r(yx′) = r(x′).
Moreover, for any y ∈ H(x, x′) ∩ Sd−1, define

β(y) := sup
{
β > 0 : βy ∈ (x+WN (x)) ∩H(x, x′)

}
= sup

{
β > 0 : βy ∈ x+WN (x)

}
. (19)
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x

H(x, x′)

{x}⊥ϵρ

yx′ spherical cap Cϵρ

β

r

θ

x′

Figure 7: An illustration of the quantities used in the proof of Theorem 4. The two solid black lines,
emanating from x, represent Wt

N (x). For simplicity, we have used an x′ with ⟨x, x′⟩ ≤ 0. Here, we
use the shorthands β = β(yx′), r = r(x′), and θ = θ(x′).

Define

γ : R+ × R+ → R , γ(r,β) :=

√
r2β2 − r2 + β2 − r2

β(1 + r2)
which is an increasing function in β (fixing r) and decreasing function in r (fixing β); i.e., partial
derivatives satisfy ∂βγ(r,β) > 0 and ∂rγ(r,β) < 0. Now, simple triangle geometry along with the
definition in (16) provides us with

γ(r(x′),β(yx′)) = ϵρ (20)
and we are interested in a lower bound on β(yx′); to be able to lower bound β2 from (17). Using the
monotonicity properties of γ(·, ·), we will find r̄(x′) satisfying r̄(x′) ≤ r(x′) which will provide us
with β̄(x′) satisfying β̄(x′) ≤ β(yx′) and

γ(r̄(x′), β̄(x′)) = ϵρ

where we take the largest solution as β̄(x′). The above equation is in fact a quadratic equation in β,
with roots equal to (we use r for r̄(x′) to declutter)

ϵr2(1 + r2)± r2
√
1 + r2

1 + r2 − ϵ2(1 + r2)2
=

r2

±
√
1 + r2 − ϵ(1 + r2)

and we denote the larger one by β̄(x′). An equivalent expression is given by

β̄(x′) =
sin2(θ)

cos(θ)− ϵ
where θ := arctan(r̄(x′)). (21)

Note that the expression of β̄(x′) is increasing in r = r̄(x′) (when ϵρ is small enough): as a result
of the monotonicity properties of γ and the Equation (20). Therefore, using larger lower bounds for
r(x′), i.e., tighter ones, provides us with larger values for β̄(x′) which translates into more freedom
in choosing β for CSC1(β, x). All in all,

β3 := inf
{
β̄(x′) : x′ ∈ X ∩ Cϵρ

}
≤ β2.

Note that β̄(x′) in (21) is an increasing function of r̄(x′) and θ. Therefore,

β3 =
sin2(θ)

cos(θ)− ϵ
where θ := arctan(r) and r = inf

{
r̄(x′) : x′ ∈ X ∩ Cϵρ

}
. (22)

Now, we turn into an ingredient given in the statement of Theorem 4, to find r in the above. From
the definition of the inner radius and r(·), it is clear that for all x′ we have

r = inf
{
r̄(x′) : x′ ∈ X ∩ Cϵρ

}

≥ inf
{
r̄(x′) : x′ ∈ Sd−1

}

= r
(
(x+Wt

N (x)) ∩ {x}⊥
)
.

This establishes the deterministic part of the proposition. In a nutshell, here is the pipeline

ρ
determines−−−−−→ m, ϵ

N
determines−−−−−→ r, θ

}
determine−−−−−→ β3 = βt

U,ρ. (23)
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C.2 Proof of Theorem 5

We first study the inradius, in Sections C.2.1 and C.2.2, without assuming any random generative
model. We provide a characterization for the inradius in Lemma 14 as an extremal value related
to the dual of the tangent cone. In Section C.2.2, we present a simple approach based on inversive
geometry to derive a lower bound for r((x+W1,...,j

N (x)) ∩ {x}⊥) that might be easier to compute
in different setups we assume later on. These quantities are derived using the inversion mapping.
In Section F we review some background on the inversion mapping and develop some tools for
our purposes. In Section C.2.3, we specialize this result to the random-sample model, to prove
Theorem 5.

C.2.1 A characterization for the inradius

Recall that for a close convex set A containing the origin, the inradius of A denoted by r(A) is the
radius of the largest Euclidean sphere in span(A) that is centered at the origin and is a subset of A.

Consider the cone W := W1,...,j
N (x). The inradius of the base (x + W) ∩ {x}⊥ of W is closely

related to the circular cone C with largest opening and central axis −x such that C ⊆ W . For such
a cone, we also have W⋆ ⊆ C⋆. Therefore, r((x+W) ∩ {x}⊥) is related to the circular cone with
smallest opening that contains W⋆. This intuition in formalized in the next lemma.
Lemma 14 (deterministic characterization of the inradius). The inradius

r = r
(
(x+W1,...,j

N (x)) ∩ {x}⊥
)

is given by r = p√
1−p2

where

p := min
y

⟨x, y⟩
∥y∥2

subject to yT (X1,...,j − x1T ) ≤ 0. (24)

In other words, for the optimal solution y⋆ we have

r2 =
⟨x, y⋆⟩2

∥y⋆∥22 − ⟨x, y⋆⟩2
. (25)

The proof is straightforward and is mainly about the relationship between the cosine of largest
opening for the dual cone (whose cosine is given by ⟨x,y⋆⟩

∥y⋆∥2
), namely p, and the inner radius of the

original cone, namely r.

C.2.2 Inradius, via inversion

We first provide some intuition on the proof of Theorem 5 without using any randomness assump-
tions. Consider Figure 8. Consider an inversion map centered at x and with radius

√
2 [1]. By the

rules of inversion, the inverse of the black line (ℓAB) is a circle (labeled as I(ℓAB) and shown as a
black circle) that passes through x and the two points on the sphere shown as red dots. Since the
circle C, the orange circle centered at x and tangent to the black line, has a zero degree with the
black line (ℓAB), its inverse, which is another circle centered at x (the smaller orange circle labeled
as I(C)) will have a zero degree with the black circle (I(ℓAB)); i.e., they will be tangent. This
shows that the radius of the smaller orange circle (I(C)) is equal to the diameter of the black circle
(I(ℓAB)). Hence, we need to upper bound the radius of the black circle.

All in all, a lower bound on the desired inradius (see Figure 10) can be derived by upper bounding
the radius of circles like the black circle, and considering the maximum. The black circle is a circle
passing through x and any other two samples that correspond to an edge of the convex hull of the
radially projected points. A careful reader observes the hardness of the problem, as we cannot simply
take the maximum radius.

C.2.3 Lower bound on the inradius, in a random-sample model, via Lemma 14

In this section, we turn into a random model where samples are drawn independently and uniformly
at random from each subspace. Consider the subspace S1 and a sample x ∈ S1. Since samples are
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Πx⊥(C)

I(ℓAB)

x

{x}⊥

Figure 8: Part of two equators are shown in blue and they pass through two sample points on the
sphere that have been marked red. We are interested in lower bounding the radius of the orange
circle in the plane (which represents {x}⊥). For this, it is enough to lower bound the radius of the
orange circle tangent to the black line and centered at x.

drawn at random, we will have S(x) = S1 with probability one. However, we may still use the
notation S(x) to make the relationship between x and the subspace to which it belongs more clear
throughout.

For a random-sample model, we derive conditions under which the inradius is at least r0 with high
probability. Using the terminology of Lemma 14,

r ≥ r0 ⇐⇒ p ≥ p0 :=
r0√
1 + r20

.

Therefore, we are interested in showing that P(p ≤ p0) is small; possibly as a function of the number
of samples N1.

From (24), observe that p ≤ p0 is equivalent to

⟨y, x⟩ ≤ p0 and max
x′∈X1

⟨y, x′⟩ ≤ ⟨y, x⟩ (26)

for some y ∈ Sd−1. Then,

P(p ≤ p0) = P
(
∃y ∈ Sd−1 : ⟨y, x⟩ ≤ p0 , max

x′∈X1
⟨y, x′⟩ ≤ ⟨y, x⟩

)
(27)

≤ P
(
∃y ∈ Sd−1 : ⟨y, x⟩ = p0 , max

x′∈X1
⟨y, x′⟩ ≤ ⟨y, x⟩

)
(28)

where the last term is the probability that a spherical cap of opening degree arccos(p0) which passes
through x (equivalently a normal direction y with ⟨y, x⟩ = p0 that defines a cap), exists that contains
none of the samples. Due to the rotational invariance of the uniform distribution over the sphere,
from which samples x′ haven been drawn, we can fix this cap and get

P(p ≤ p0) ≤ P(X1 ∩ Cp0 = ∅) (29)

where Cp0 =
{
g ∈ Sd−1 : ⟨g, x⟩ ≥ p0

}
.

Lemma 15. We have

• for p0 ≤
√

2
d , we have 1

12 ≤ P(Cp0) ≤ 1
2 .

• for
√

2
d ≤ p0 ≤ 1:

1

6p0
√
d
(1− p20)

(d−1)/2 < P(Cp0) <
1

2p0
√
d
(1− p20)

(d−1)/2. (30)
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Using the above bound, and the independence of samples, we have P(p ≤ p0) = (1− P(Cp0))
N1

which implies

logP(p ≤ p0) = N1 log (1− P(Cp0)) ≤ −N1P(Cp0) < −N1
1

6p0
√
d
(1− p20)

(d−1)/2

and gives the following bound when d ≥ 4,

P(p ≤ p0) < exp

(
−N1

1

6p0
√
d
(1− p20)

(d−1)/2

)
. (31)

Finally, we want the above probability to be small for p0 ← r0√
1+r20

; i.e. the following to be small

k∑

i=1

N1 exp

(
−N1

1

6r0
√
d
(1 + r20)

1−d/2

)
(32)

which can be insured when mini=1,...,k Ni ≥ 3 by
1

6r0
√
d
(1 + r20)

1−d/2 > max
i=1,...,k

logNi

Ni
=

logNmin

Nmin
. (33)

Considering r0 = tan θ we have cos θ = 1√
1+r20

and sin θ = r0√
1+r20

. Then, the above inequality

can be expressed as
(cos θ)d−1

6
√
d sin θ

>
logNmin

Nmin
. (34)

Simple manipulations yield the result of Theorem 5.

C.3 Proof of Theorem 6: true positive rate when samples are drawn uniformly at random

In Theorem 4, given a value of ϵρ determined by (deterministicly provided) samples, we established
an upper bound for β that can be used in CSC1(β, x) to yield at least a fraction ρ of samples as true
positives. Under the random-sample model, ϵρ is a random variable and arccos(ϵρ) follows a Beta
distribution. Therefore, our upper bound for β will be a random variable. In the following, we use
this distributional information to provide an upper bound for β which yields the desired ρ-rate with
high probability.

Under the random-sample model, where samples x′ are drawn uniformly at random from the unit
sphere in the given subspace, the quantity arccos(|⟨x′, x⟩|) has a uniform distribution unif([0, π

2 ]);
i.e.,

arccos(|⟨x′, x⟩|) ∼ unif([0,
π

2
]).

We sort the values arccos(|⟨x′, x⟩|) for all x′ ∈ X and consider the m-th smallest value (as arccos is
a decreasing on this domain). We denote this value by ηρ and note that it is the m-th order statistic for
the uniform distribution unif([0, π

2 ]). The m-th order statistic for the standard uniform distribution
with N − 1 samples obeys a Beta distribution, i.e.,

2

π
ηρ ∼ Beta(m,N −m),

with mean m
N and variance m(N−m)

N2(N+1) .

Recall that we defined ϵρ = cos(ηρ). We use this distributional information to find a range for the
value of interest (an upper bound βx

U,ρ on the β which will be used for CSC to yield a fraction ρ of
true positives) with high probability.
Lemma 16 (CDF for Beta distribution; e.g., see Section 2.2 of [13]). For positive integer values N
and m < N , and for a Beta distributed random variable Y ∼ Beta(m,N −m), with mean m

N and
variance m(N−m)

N2(N+1) , we have:

P (Y < y) = I(y;m,N −m) := 1−
m∑

i=1

(
N − 1

i− 1

)
yi−1(1− y)N−i (35)

where I(y;m,N −m) is the incomplete Beta function.
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Using Lemma 16, we have
2

π
ηρ <

m

N
+∆ with probability at least I(

m

N
+∆;m,N −m)

which implies ϵρ = cos(ηρ) > cos(π2 (
m
N +∆)) with high probability. Therefore, with high proba-

bility,

βx
u,ρ =

sin2 θ

cos θ − cos(π2 (
m
N +∆))

is the desired upper bound.

D True Positives for CSC vs SSC

In this section, we discuss a key feature of CSC, particularly as it relates to some prior work in sub-
space clustering. See [16] and references therein for a review of different approaches in subspace
clustering. For concreteness and clarity of exposition, we contrast CSC with sparse subspace clus-
tering (SSC) of [3] which is representative of the current state of the art. The first analysis of SSC
appeared in [4] and was later improved in [14], and we use the latter in our discussions.

D.1 True positive rate for SSC

In the following, we aim to illustrate an important distinction in the results of SSC and CSC by
showing how the number of true positives of SSC is bounded by a quantity |J(x)| which can be
much smaller than the number of samples drawn from S(x). More specifically, Lemma 17 tells us
that the coefficients derived by the SSC optimization problem in (36) cannot be nonzero for samples
that do not correspond to the extreme rays of WN (x). In contrast, CSC faces no such limitation and
for suitable values of β one can have all true positives.

Notice that for a finitely generated cone, such as WN (x) = {(X − x1T
N )λ : λ ∈ RN

+} defined
in (4), the extreme rays are among the generators. Denote the set of extreme rays of WN (x) by
ext rayWN (x). Then,

ext rayWN (x) = cone(Y ) for some Y ⊆
{
(X − x1T

N )ei : i = 1, . . . , N
}

where ei is the i-th standard basis vector in RN .
Lemma 17. Given X , which has N samples as its columns, consider an arbitrary column x and
the corresponding convex cone WN (x) = {(X − x1T

N )λ : λ ∈ RN
+} defined in (4). Also, without

loss of generality, assume that the columns of X represent a symmetric set of points with respect to
the origin. Consider any optimal solution z⋆ to

min
z
∥z∥1 subject to Xz = x , zx = 0 , z−x = 0. (36)

Then,
z⋆i ̸= 0 =⇒ sign(zi)xi − x ∈ ext rayWN (x).

In other words, when X is symmetric, consider the subset of samples that are active in defining
WN (x) as

J(x) :=
{
j : xj ∈ (x+ ext rayWN (x)) ∩ Sn−1 , xj ̸= x

}
. (37)

Then, for any optimal solution z⋆ to the above, we have z⋆J(x)c = 0.

Notice that the above illustrates a very important point. While SSC, when successful, declares some
of the members of J(x) as being in the same subspace as x, CSC can potentially declare all the
columns of X in S(x) as such. Therefore, many more true positives are possible with CSC than
with SSC. In cases with independent subspaces, the true positive rate can go up as much as ρ = 1.
Implications of this observation can be seen in the post-processing step for the recovered affinities,
as well as in the proofs presented in [14].

Proof of Lemma 17. Suppose x = x1, x2 ̸= x1, and z⋆2 ̸= 0. Since the ℓ1 penalty is invariant under
sign flips and we are given a symmetric set of points, without loss of generality, suppose z⋆2 > 0
(otherwise we can flip the sign and still have an optimal solution, as X is symmetric).
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Contrapositively, assume x2 − x1 ̸∈ ext rayWN (x1), which implies

∃λ ≥ 0 ; x2 − x1 =
N∑

i=3

λi(xi − x1).

Setting λ1 = λ2 = 0, the above implies

x2 = (1− 1Tλ)x1 +
N∑

i=3

λixi.

If 1− 1Tλ ≥ 0 then x2 is in the convex hull of x1, x3, . . . , xN , which contradicts the fact that all of
the samples are on the unit sphere. Therefore, 1Tλ > 1.

Substituting for x2 from the above equation in x1 = Xz⋆ gives

x1 = z⋆2x2 +
N∑

i=3

z⋆i xi = z⋆2

(
(1− 1Tλ)x1 +

N∑

i=3

λixi

)
+

N∑

i=3

z⋆i xi

which gives

x1 =
N∑

i=3

z⋆i + z⋆2λi

1 + z⋆2(1
Tλ− 1)

xi

as another representation of x1 in terms of the other columns of X; in addition to x1 =
∑N

i=2 z
⋆
i xi.

Recall z⋆2 > 0 and 1Tλ > 1. By optimality of z⋆ (as the vector of coefficients in representing x1)
we have

∥z⋆∥1 ≤
N∑

i=3

| z⋆i + z⋆2λi

1 + z⋆2(1
Tλ− 1)

|

which gives

(1 + z⋆2(1
Tλ− 1))∥z⋆∥1 ≤

N∑

i=3

|z⋆i + z⋆2λi| ≤
N∑

i=3

|z⋆i |+ z⋆2

N∑

i=3

λi = ∥z⋆∥1 + z⋆2(1
Tλ− 1)

which gives ∥z⋆∥1 ≤ 1 implying that x1 lies in the convex hull of {±x2, . . . ,±xN}; which con-
tradicts with the fact that all of these points are on the unit sphere. This establishes the claim that
z⋆2 ̸= 0 implies x2 − x1 ∈ ext rayWN (x1).

D.2 Comparisons on true positives for CSC, SSC, and TSC

As illustrated by Lemma 17, the number of true positives for SSC is limited by the number of
extreme rays of the corresponding tangent cones. While SSC has this fundamental limitation, the
proposed conic geometry provides us with a way to address this issue with provable guarantees.
Other methods with lots of true positives are fundamentally different as they use a different guarantee
strategy or offer no guarantees at all. In contrast, the number of true positives for CSC is tunable by β
(via the characterizations we provide). While this number is nonetheless restricted to an admissible
range, the range’s upper limit could grow as large as the number of samples in each subspace; an easy
example to observe this would be the case of independent subspaces (when the sum of dimensions
is equal to the dimension of the Minkowski sum).

Furthermore, the distribution of true positives is favorable for CSC. More specifically, as we argue
in the Section D.3 and illustrate via some numerical experiments, the true positives are distributed in
a way that only O(logNt) true positives per sample are enough to ensure graph connectivity in the
random-sample model. This small value, provides us with a freedom as described in the following.
In complicated situations where

• the inner radius of the tangent cone is small (for example, when samples are concentrated
rather than uniformly spread over the subspace),

• or βL is large (i.e., when subspaces have a complicated configuration),
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having a nonempty range for β requires a large βU,ρ which corresponds to admissibility of only
small ρ’s. In such case, the knowledge that true positives are favorably spread (as it is the case for
CSC) enables us to run CSC expecting a very small number of true positives yet being sure about the
final clustering results (because of true positives being well spread). On the other hand, with SSC,
it is an open question to understand the spread of true positives, which depends on the complicated
facial geometry of the data hull.

Subspace clustering via thresholding (TSC) [7] considers the q closest points to a sample x (and
−x) to set their affinity with x equal to 1. They propose using log dt ≪ q ≪ dt. Unlike TSC,
which only considers the distance between samples (a pure nearest-neighbors strategy), CSC relies
on both the distances and the elongation of the cone in the corresponding plane defined by each pair
of samples. Furthermore, the true positives pattern is different between CSC and TSC: because TSC
uses q ≪ dt, it may face connectivity issues. Finally, the choice of q is fixed for all samples and
cannot adapt to the dimension of the corresponding subspace, the configuration of the subspaces,
or the density of samples from each subspace. Hence, such nearest-neighbor-based method can be
easily misled by imbalance in the subspace dimensions and their sample densities.

D.3 True positives pattern for CSC

We restrict our attention to a single subspace of dimension d and consider a random-sample model
where N samples are drawn uniformly at random. Fix a reference sample x. We will use the
notations and definitions from Appendix C. Assume, with high probability: given the samples, the
inner radius of the intersection of shifted tangent cone with {x}⊥ is r (corresponding to a value θ
in Theorem 4). To compute βx

U,ρ, use the m-th largest absolute inner product; m := ⌈ρ(N − 1)⌉,
and the above inradius. Then any sample x′ with |⟨x, x′⟩| > ϵρ will certainly be among the true
positives for CSC1(β, x) for β ≤ βx

U,ρ. Hence, the following matrix

Asub
dist∼ keep top m values in each row of |XTX| , X ∼ normc(N (0, Id ⊗ IN ))

will have a support inside the support of the affinity matrix constructed by CSC1(β) where β ≤ βU,ρ

and βU,ρ is defined via the conditioned value of inradius and directly using the m-th order statistic.
In the above, we use MATLAB’s notation normc to denote a matrix derived by normalizing each
column of the input matrix. If we use the ingredients from proof of Theorem 6, we can bound the
order statistic with high probability, hence using

Asub
dist∼ (|XTX| ≥ ϵ) , X ∼ normc(N (0, In ⊗ IN ))

as the matrix whose support is included in the support of the affinity matrix constructed by CSC,
with high probability. In this setting, the only question that remains is to characterize when (for
which n, N and ρ) is the graph corresponding to A disconnected?

The connectivity of the graph corresponding to Asub can be studied empirically thanks to the
above distributional characterization. We considered all the combinations of subspace dimen-
sion (d) and number of samples per dimension (κ = N/d) from d ∈ {20, 40, 60, . . . , 200} and
κ ∈ {1.2, 1.6, 2, . . . , 8}, and generated 100 different matrices X ∈ Rd×κd, with i.i.d. normal entries
normalized to have unit ℓ2 norm columns, for each pair of values (d,κ). Here N = κd. Then, for
each X , using a bisection approach with 15 steps, we found the smallest ρ for which the graph cor-
responding to Asub is connected. We denote the average value of such minimal ρ, over the 100 trials,
by ρcon(d,κ). We observe that ρcon is tightly approximated by 1.1 log(κd)

κd , and Figure 9 provides the
multiplicative residual for different values of κ and d. Recall that p = logN

N is a sharp threshold for
connectivity of an Erdos-Renyi graph G(N, p). While the adjacency matrix for our random graph
does not have i.i.d. Bernoulli(p) entries as an Erdos-Renyi graph does, its connectivity threshold
shows a strong resemblance with the threshold for Erdos-Renyi graphs.

The above observation allows us to be confident in perfect clustering even if θt (dictated by the
number of samples) and the formula for computing the upper bound (which has to be larger than
βL) only allow us to work with small values of ρ: even if the formulas only allow for logarithmically
small values of ρ, we can still use CSC and expect perfect clustering.
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Figure 9: Scaling of ρcon(d,κ) ≃ 1.1 log(κd)
κd which makes the thresholded graph connected. Shade

of each pixel corresponds to ρcon(d,κ)
log(κd)/κd .

E Details on Equivalent Formulations in Section 7

Taking the dual of linear feasibility program (CR), the cone membership (CM) can be tested by
solving

min
y∈Rn

⟨y,βx′ − x⟩ subject to yT (X − x1T
N ) ≥ 0 (CM)

where [[(CM) : 0, unbounded]]. This program checks whether there exists a certificate y ∈ W⋆
N (x)

(in the dual cone) that rejects the membership of βx′ − x in WN (x). Notice that neither (CR)
nor (CM) are robust and their output changes from zero with the smallest departure of βx′ − x
from the cone. On the other hand, observe that we are reading off very little information from these
optimization programs (feasibility or boundedness) and this provides us with an opportunity to tweak
these optimization problems without changing the categorization offered by [[(CR) : 0, infeasible]]
and [[(CM) : 0, unbounded]], while coming up with more robust programs. Next, we discuss a
proposal to turn this unbounded feasibility problem into a bounded feasible linear program with
outputs 0 and 1.

Reformulations for faster and more robust optimization. Observe that restricting y to any set
with origin in its relative interior yields a program P that is in CR-class, with [[P : 0, negative]]. For
example, consider an augmentation to (CM) as

min
y∈Rn

⟨y,βx′ − x⟩ subject to yT (X − x1T
N ) ≥ 0 , ⟨y,βx′ − x⟩ ≥ −ϵ (TCM)

for some ϵ > 0, which we refer to as the truncated cone membership (TCM) program. Clearly, the
program is now feasible and bounded and we have [[(TCM) : 0,−ϵ]]. Furthermore, this program can
be solved approximately, up to a precision ϵ′ ∈ (0, ϵ), and provide the same desired set of results,
i.e., [[ϵ′-inexact (TCM) : nonnegative, negative]]: the ϵ′-inexact solution is nonnegative if and only
if βx′ − x ∈ WN (x). Since ϵ can be chosen arbitrarily, this formulation allows us to choose the
desired bit-length of the solution and optimize the overall computational cost of optimization.

If we dualize (TCM) and divide the objective by −ϵ we get the robust cone membership (RCM)
program,

min
γ≥0,λ≥0

γ subject to (1− γ)(βx′ − x) = (X − x1T
N )λ (RCM)

where γ is a scalar and λ ∈ RN
+ . This problem can similarly be written by tweaking the conic rep-

resentation problem (CR) and mapping 0 and −∞ to 0 and 1; without double dualization. However,
the duality relationship with (TCM) is helpful in understanding the dual space and devising efficient
optimization algorithms. Notice that (γ,λ) = (1, 0N ) is always feasible, and the optimal solution is
in [0, 1]. Moreover, [[(RCM) : 0, 1]], which makes it a desirable candidate as a proxy for x′ ̸∈ S(x).
We use this program in our experiments reported in Section 3.1.
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Moreau’s decomposition theorem [9] can be stated as: For a given convex cone W , we have y ∈W
if and only if Π(y;W◦) = 0, where W◦ := {z : ⟨z, w⟩ ≤ 0, ∀w ∈ W} is the polar cone. Using
this, we can solve the following optimization program, tagged as the dual cone projection (DCP)
program,

min
y∈Rn

⟨y,βx′ − x⟩+ 1

2
∥y∥22 subject to yT (X − x1T

N ) ≥ 0 (DCP)

and [[(DCP) : 0, [− 1
2∥βx

′ − x∥22, 0) ]]. Observe that, when the problem is feasible, it is always
bounded, which is a very useful property in using optimization algorithms. Adding a constant term
1
2∥βx

′ − x∥22 to (DCP) illustrates its equivalence to a projection onto the dual cone, and gives

1

2
dist2(−βx′ + x,W⋆

N (x)).

This illustrates that (DCP) provides a reasonable proxy for the degree of membership and can be
used to define a continuous distance function (as opposed to 0/1 based on membership) that is also
more robust to noisy samples.

Aside from the computational and robustness properties of these reformulations, one can study their
relationship with geometry of the set of data points. Below, we mention three remarks.

Different bases of the cone. An inhomogenous version of (CM) can be derived by replacing y ∈
W⋆

N (x) with one that insures y is in a base of WN (x). Since WN (x) is pointed and full-dimensional,
and contains −x, the dual cone is also pointed and is included in {y : ⟨y, x⟩ ≤ 0}. Therefore, the
intersection of the cone with ⟨y, x⟩ = 1 is a base for W⋆

N (x). Interestingly, this set is equal to
−∂∥x∥X ; when X contains symmetric data points (with origin in the interior of its convex hull) and
its symmetric gauge function gives a norm, denoted by ∥ · ∥X . Moreover, the optimal solution to
this program is either zero (when in the cone) or the negative of the directional derivative;

− max
g∈∂∥x∥X

⟨g,βx′ − x⟩. (38)

Data norm. The constrained program (CM) can be turned into an unconstrained form, by regulariz-
ing for the constraints, as

min
y∈Rn

⟨y,βx′ − x⟩+ θ
(
∥XT y∥∞ + ⟨y, x⟩

)
(39)

which through convex conjugacy is equivalent to checking whether β
θ x

′ + (1 − 1
θx) is in

conv([−X,X]) or not. The latter is in turn equivalent to checking whether βx′ − x is a descent
direction at x with respect to ∥ · ∥X .

A notion of self-expressiveness. We can stack all the optimization problems in (RCM) (also used
in CSC1(β, x, x′) ) for each x and scalarize the resulting multi-objective optimization problem and
solve

γ̂(x) = min
γ≥0,Λ≥0

∥γ∥22 subject to βXdiag(1− γ)− xγT = (X − x1T
N )Λ

where γ ∈ RN and Λ ∈ Rn×N . Notice that the problem is completely separable in the entries of
γ and the columns of Λ, hence equivalent to (RCM). Moreover, one can use any other separable
function instead of the ∥γ∥22 in the above. While, in general, any data point can be written as a
combination of other data points in the space they span, it is interesting to understand the proper-
ties of the specific expression given in the constraints of the above optimization problem. In fact,
self-expressiveness property is a rather generic and vague description. For example, CSC can be
written as a self-expressive representation with coefficients from an extended simplex. k-means
(with a subset of samples as centers) can also be written as a self-expressive representation with a
0/1 coefficient matrix with k nonzero rows, and with only one 1 in each column.

E.1 Computational complexity and practical considerations

The proposed tests for CSC consist of solving O(N2) optimization problems, for each pair of x, x′,
each of which in n variables and with N constraints. Different methods can be adopted to solve
these linear feasibility programs or the variations. However, there are multiple ways we might be
able to get the same final output affinity matrix with much less computation.
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Inexact solutions are enough. since the goal in (CM) or (DCP) is distinguishing between bounded
(with zero optimal value) and unboundedness of the problem, one only needs to solve the problem
until reaching any negative value for the objective function. We have discussed an idea along this
line when we introduced (TCM).

Partial examination is enough. suppose we are guaranteed to have no false positives under certain
subspace configurations and sampling scenarios. This means that in the union of cliques graph, with
nodes being the samples, we only need to find a connected subgraph, which can then be completed
to the union of cliques graph. Therefore, in such cases, we only need to solve O(N) optimization
problems instead of O(N2) ones. More concretely, as discussed in Section D, CSC provides a
rather well-spread approximation of the original graph (which is a union of k cliques corresponding
to samples from each subspace). Therefore, solving a subset of O(N2) problems would still allow
for perfect grouping by the spectral clustering (the post-processing) step.

It is worth mentioning that SSC requires solving N ℓ1-minimization problems with N variables
and n constraints. However, when the number of samples grow compared to the dimension of each
subspace, the output affinity matrix by SSC becomes very sparse (due to the limitation in its design,
characterized in Section D). Therefore, in essence, SSC becomes inapplicable when we require
a large number of samples, e.g., when the subspaces are highly aligned and a higher number of
samples is expected to make the subspaces recoverable.

F Background from Inversive Geometry

Inversion [1] is a geometric transformation which preserves angles (but reverses the direction, hence
is anti-conformal). The inverse of a line or a circle in the plane is a line or a circle in the plane. We
will use inversion to understand a mapping from {x′ : x′ ∈ S(x) ∩X} to (x+W1

N (x)) ∩ {x}⊥.

Consider an inversion map centered at x and with radius
√
2; denoted by

I(·) = Ix,
√
2(·) (40)

where

Ix,r(y) := x+
r2

∥y − x∥22
(y − x) =

r2

∥y − x∥22
y + (1− r2

∥y − x∥22
)x. (41)

Moreover, for a given point x ∈ Sd−1, consider two other operators as in the following:

• Radial Projection defined as Π̊x : Sd−1\{x} → {x}⊥ which maps a point g on the unit
sphere to the intersection of the line {αx + (1 − α)g : α ∈ R} and the hyperplane {x}⊥.
More concretely,

Π̊x(g) =
g − ⟨g, x⟩x
1− ⟨g, x⟩ . (42)

• Radial Lift defined as ⨿̊x : {x}⊥ → Sd−1\{x} which maps a point h on the hyperplane
{x}⊥ to the intersection of the line {αx + (1 − α)h : α ∈ R} and the unit sphere other
than x itself. More concretely,

⨿̊x(h) =
2

∥h∥22 + 1
h+
∥h∥22 − 1

∥h∥22 + 1
x. (43)

It is easy to verify that Π̊x and ⨿̊x are inverse maps, and Ix,r is its own inverse; i.e.

⨿̊xΠ̊x(g) = g for all g ∈ Sd−1\{x}, (44)

Π̊x⨿̊x(h) = h for all h ∈ {x}⊥, (45)

Ix,rIx,r(y) = y for all y ∈ Rd\{x}. (46)

In the following, we review some other useful properties of these operators.
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Some preliminary properties. As mentioned before, the inverse of a line or a circle is a line or
a circle. Moreover, as clear from the definition, a point and its inverse lie on the same line passing
through the center of inversion. We understand the inversion mapping as a mapping defined over all
closed subsets of Rd\{x} through

A =
⋃

i∈I
(A ∩ ℓi) : Ix,r(A) =

⋃

i∈I
Ix,r(A ∩ ℓi) (47)

where {ℓi : i ∈ I} is a collection of lines (we could alternatively use circles) covering the whole
Rd.
Lemma 18. Consider a hyperplane H ⊂ Rd which passes through x. Then,

Ix,
√
2(H) = H. (48)

Proof. H can be understood as a collection of lines that are all passing through the origin. The
inverse of each such line is itself, yielding the claim.

Later, when we consider convex sets, we understand them as the intersection of halfspaces. To be
able to use the neat properties of inversion, we need to understand the inverse of hyperplanes that
define these halfspaces.
Corollary 19. Consider a hyperplane H ⊂ Rd which passes through x. Then,

Ix,
√
2(H ∩ Sd−1) = H ∩ {x}⊥. (49)

Proof. It is easy to see that

Ix,
√
2(H ∩ Sd−1) = Ix,

√
2(H) ∩ Ix,

√
2(S

d−1) = H ∩ {x}⊥.

Lemma 20. We have Ix,
√
2({x}⊥) = Sd−1\{x}.

Proof. Observe that the inverse of −x is the origin;

Ix,
√
2(−x) = 0.

Consider the unit sphere as the union of its 2-dimensional equators passing through x and −x. In
other words, consider all possible shortest paths on the sphere from x to −x. Since these circles
pass through the center of inversion, i.e. x, their inverses are straight lines not passing through x.
However, they all pass through −x and their inverse will contain the inverse of −x, namely the
origin. Moreover, the line [−x, x] is orthogonal to all these circles which implies that all of the
inverses will be orthogonal to the inverse of [−x, x], namely the line itself. All in all, the inverse of
the unit sphere is a subset of {x}⊥. Following similar arguments yields equality.

Lemma 21. Consider two symmetric points g,−g on the unit sphere, different from the center of
inversion x. Then the origin lies on the line segment connecting Π̊x(g) and Π̊x(−g).

Proof. There are multiple ways to establish this statement. First, since g,−g are symmetric with
respect to the origin, the sphere has a great circle passing through −g,−x, g, x. The inverse of this
circle is a line in {x}⊥ passing through the origin. Considering the half-circle from −g to −x to g,
the inverse is a line from Π̊x(−g) to Π̊x(−x) = 0 to Π̊x(g) which establishes the claim.

Alternatively, we can show that the following equality is feasible with some value of λ ∈ [0, 1];

λΠ̊x(g) + (1− λ)Π̊x(−g) = 0.

In fact, plugging in the expression for Π̊x(·) from (42), after some algebraic manipulations, we get

(g − x⟨x, g⟩)(1− ⟨x, g⟩ − 2λ) = 0

Since ±g ̸= x, the first term is nonzero; take the inner product with g. Therefore, we get λ =
1
2 (1− ⟨x, g⟩) ∈ [0, 1] which establishes the claim.
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All in all, we get the following:

Lemma 22. The restriction of the inversion operator, centered at x and with radius
√
2, to the unit

sphere is equivalent to the radial projection operator; i.e.,

Π̊x(g) ≡ Ix,
√
2(g) for all g ∈ Sd−1\{x}. (50)

Furthermore, the restriction of the inversion operator, centered at x and with radius
√
2, to {x}⊥ is

equivalent to the radial lift operator; i.e.,

⨿̊x(h) ≡ Ix,
√
2(h) for all h ∈ {x}⊥. (51)

A convex hull in {x}⊥. Suppose x ∈ St, only for t = 1, . . . , j. Observe that

(x+W1,...,j
N (x)) ∩ {x}⊥ = Π̊x((x+W1,...,j

N (x)) ∩ Sd−1) (52)

= conv Π̊x ({x′ : x′ ∈ S(x)}) . (53)

Therefore, the inradius of (x +W1,...,j
N (x)) ∩ {x}⊥ is equal to the minimum distance of the origin

to all faces of conv Π̊x ({x′ : x′ ∈ S(x)}).

The convex set conv Π̊x ({x′ : x′ ∈ S(x)}) ⊂ {x}⊥ can be characterized as the intersection of all
of its supporting halfspaces. Each of these halfspaces: 1) can be radially lifted to a halfspace passing
through x, 2) contains the origin, as implied by Lemma 21, when X is symmetric. We index these
subspaces by a set I, and for each i ∈ I, we denote the halfspace defined by the hyperplane Hi

and containing the origin by H≤1
i . Therefore, the inverse of this convex hull (denote by C) can be

characterized as

I(C) = I(
⋂

i∈I
H≤1

i ∩ {x}⊥) =
⋂

i∈I
I(H≤1

i ) ∩ Sd−1 =
⋂

i∈I
H≤1

i ∩ Sd−1

which is the unit sphere minus a union of caps passing through x; see Figure 10. Moreover, observe
that

⋂
i∈I H≤1

i = x+W1,...,j
N (x).

Figure 10: The radial lift of a convex set in {x}⊥ (shown with thick black lines) is the unit sphere
minus a number of caps defined by the supporting hyperplanes of the convex set that also pass
through x. The radially lifted set if shown in green.
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