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Abstract

Given samples lying on any of a number of subspaces, subspace clustering is the
task of grouping the samples based on the their corresponding subspaces. Many
subspace clustering methods operate by assigning a measure of affinity to each
pair of points and feeding these affinities into a graph clustering algorithm. This
paper proposes a new paradigm for subspace clustering that computes affinities
based on the corresponding conic geometry. The proposed conic subspace clus-
tering (CSC) approach considers the convex hull of a collection of normalized
data points and the corresponding tangent cones. The union of subspaces underly-
ing the data imposes a strong association between the tangent cone at a sample x
and the original subspace containing x. In addition to describing this novel ge-
ometric perspective, this paper provides a practical algorithm for subspace clus-
tering that leverages this perspective, where a tangent cone membership test is
used to estimate the affinities. This algorithm is accompanied with deterministic
and stochastic guarantees on the properties of the learned affinity matrix, on the
true and false positive rates and spread, which directly translate into the overall
clustering accuracy.

1 Introduction

Finding a low-dimensional representation of high-dimensional data is central to many tasks in sci-
ence and engineering. Union-of-subspaces have been a popular data representation tool for the past
decade. These models, while still parsimonious, offer more flexibility and better approximations
to non-linear data manifolds than single-subspace models. To fully leverage union-of-subspaces
models, we must be able to determine which data point lies in which subspace. This subproblem is
referred to as subspace clustering [16].

Formally, given a set of points x1, . . . , xN ∈ Rn lying on k linear subspaces S1, . . . , Sk ⊂ Rn,
subspace clustering is the pursuit of partitioning those points into k clusters so that all points in each
cluster lie within the same subspace among S1, . . . , Sk. Once the points have been clustered into
subspaces, standard dimensionality reduction methods such as principal component analysis can be
used to identify the underlying subspaces. A generic approach in the literature is to construct a
graph with each vertex corresponding to one of the given samples and each edge indicating whether
(or the degree to which) a pair of points could have come from the same subspace. We refer to the
(weighted) adjacency matrix of this graph as the affinity matrix. An ideal affinity matrix A would
have A(i, j) = 1 if and only if xi and xj are in the same subspace, and otherwise A(i, j) = 0. Given
an estimated affinity matrix, a variety of graph clustering methods, such as spectral clustering [17],
can be used to cluster the samples, so forming the affinity matrix is a critical step.

Many existing methods for subspace clustering with provable guarantees leverage the self-expressive
property of the data. Such approaches pursue a representation of each data point in terms of the
other data points, and then the representation coefficients are used to construct an affinity matrix.
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For example, the celebrated sparse subspace clustering (SSC) approach of [3] seeks a representation
of each sample as a weighted combination of the other points, with minimal ℓ1 norm. However, such
sparse self-expression can lead to graph connectivity issues, e.g., see [10, 8, 20, 5, 19, 18], where
clusters can be arbitrarily broken into separate components. This paper proposes a new paradigm
for devising subspace clustering algorithms:

Conic Subspace Clustering (CSC): exploiting the association of the tangent cones
to the convex hull of normalized samples with the original subspaces for comput-
ing affinities and subsequent clustering.

CSC leverages new insights into the geometry of subspace clustering. One of the key effects of
this approach is that the learned affinity matrix is generally denser among samples from the same
subspace, which in turn can mitigate graph connectivity issues.

In Proposition 1 below, we hint on what we mean by the strong association of the tangent cones
with the underlying subspaces for an ideal dataset. In Section 2, we show how a similar idea
can be implemented with finite number of samples. Given a set of nonzero samples from a
union of linear subspaces, we normalize them to fall on the unit sphere and henceforth assume
X = {x1, . . . , xN} ⊂ Sn−1 is the set of samples. We further overload the notation to define
X = [x1, x2, . . . , xN ] ∈ Rn×N . Data hull refers to the convex hull of samples. The tangent cone
at x ∈ conv(X) with respect to conv(X) is defined as

T (x) := cl conv cone(X + {−x}) = cl
{∑

x′∈X λx′(x′ − x) : λx′ ≥ 0, x′ ∈ X
}

where the Minkowski sum of two sets A and B is denoted by A + B, while A + {x} may be
simplified to A + x. The linear space of a cone C is defined as linC := C ∩ (−C). We term the
intersection of a subspace S with the unit sphere as a ring R = S ∩ Sn−1.
Proposition 1. For a union of rings, namely X = (S1 ∪ . . . ∪ Sk) ∩ Sn−1, and for every x ∈ X ,

S(x) = span{x}+ linT (x),

where S(x) is the convex hull of the union of all subspaces Si , i = 1, . . . , k, to which x belongs.

1.1 Our contributions

We introduce a new paradigm for subspace clustering, conic subspace clustering (CSC), inspired by
ideas from convex geometry. More specifically, we propose to consider the convex hull of normal-
ized samples, and exploit the structure of the tangent cone to this convex body at each sample to
estimate the relationships for pairs of samples (to construct an affinity matrix for clustering).

We provide an algorithm which implements CSC (Section 2) along with deterministic guarantees on
how to choose the single parameter in this algorithm, β, guaranteeing no false positives (Section 5)
and any desired true positive rate (Section 4), in the range allowed by the provided samples. We
specialize our results to random models, to showcase our guarantees in terms of the few parameters
defining said random generative models and to compare with existing methods. Aside from statis-
tical guarantees, we also provide different optimization programs for implementing our algorithm
that can be used for faster computation and increased robustness (Section 7).

In Section 6, we elaborate on the true positive rate and spread for CSC and compare it to what
is known about a sparsity-based subspace clustering approach, namely sparse subspace clustering,
SSC [3]. This comparison provides us with insight on situations where methods such as SSC would
face the so called graph connectivity issue, demonstrating the advantage of CSC in such situations.

2 Conic Subspace Clustering (CSC) via Rays: Intuition and Algorithm

In this section, we discuss an intuitive algorithm for subspace clustering under the proposed conic
subspace clustering paradigm. We present the underlying idea without worrying about the computa-
tional aspects, and relegate such discussions to Section 7. All proofs are presented in the Appendix.
Henceforth, lower case letters represent vectors, while specific letters such as x and x′ are reserved
to represent columns of X , and x is commonly used as the reference point.

Start by considering Figure 1(a) and the point x ∈ R := (S1 ∪ · · · ∪ Sk) ∩ Sn−1 from which
all the rays are emanating. Moreover, define Rt := St ∩ Sn−1 for t = 1, . . . , k, which gives
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(a) x + cl cone(R ! x) (b) x! " S(x) (c) x! /" S(x)

Figure 1: Illustration of the idea behind our implementation of Conic Subspace Clustering (CSC)
via rays. The union of the red and blue rings is R, and x is the point from which all the rays are
emanating. The orange wedge represents x + W(x). 1(a) The union of the red and blue surfaces
is x + cl cone(R − x). 1(b) When x′ and x are from the same subspace, the points d! (x, x′) for
different values of β ≥ 0 lie within cl cone(R−x) – specifically, in the blue shaded cone associated
with the blue ring. 1(c) When x′ and x are from different subspaces, the points d! (x, x′) lie outside
cl cone(R− x) for large enough values of β.

R = R1 ∪ . . .∪Rk. Only two subspaces are shown and the reference point x is in R1. The thin red
and blue rays correspond to elements of x+ cone(R− x) = x+ cone({x′ − x : x′ ∈ R}), where
cone(A) := {λy : y ∈ A,λ ≥ 0}.1 We leverage the geometry of this cone to determine subspace
membership. Specifically, Figure 1(b) considers a point x′ ∈ R1 different from x. The dashed line
segment represents points −sign(⟨x, x′⟩)βx′ for different values of β ≥ 0; where sign(0) can be
arbitrarily chosen as ±1. The vectors emanating from x and reaching these points represent

d! (x, x
′) := −sign(⟨x, x′⟩)βx′ − x. (1)

For x, x′ ∈ R1, this illustration shows that d! (x, x′) ∈ cl cone(R − x) for any β ≥ 0. In contrast,
Figure 1(c) considers x′ ∈ R2, while x ∈ R1. In this case, there exist β > 0 such that d! (x, x′) /∈
cl cone(R− x), indicating that x′ ̸∈ S(x). Formally,
Proposition 2. For any x, x′ ∈ R and any scalar value β ≥ 0,

x′ ∈ S(x) ⇐⇒
{
d! (x, x

′) : β ≥ 0
}
⊂ cl cone(R− x) (2)

Equivalently, x′ ∈ S(x) if and only if
{
β ∈ R : βx′ − x ∈ cl cone(R− x)

}
is unbounded.

In other words, we can test whether or not x′ ∈ S(x) by testing the cone membership for d! (x, x′).
Of course, such a test would not be practical: we cannot compute d! (x, x′) for an infinite set of
β values, the set cl cone(R − x) is generally non-convex (in Figure 1(a), the cone is the union of
the red and blue surfaces), and cl cone(R − x) is not known exactly because we only observe a
finite collection of points from R instead of all of R. We now develop an alternative test to (2) that
addresses these challenges and can be computed within a convex optimization framework. We first
address the convexity issue:
Proposition 3. For the closed convex cone W(x) := conv cl cone(R− x), and for any x, x′ ∈ R,

x′ ∈ S(x) =⇒
{
d! (x, x

′) : β ≥ 0
}
⊂W(x). (3)

In other words, x′ ∈ S(x) implies that
{
β ∈ R : d! (x, x′) ∈ cl cone(R− x)

}
is unbounded.

Next, we formulate the test as a convex optimization program, when a finite number of samples are
given. Specifically, using the samples in X ⊂ R instead of all the points in R, we can define an
approximation of W(x) as

WN (x) :=
{
(X − x1T

N )λ : λ ∈ RN
+

}
(4)

which is the tangent cone (also known as the descent cone) at x with respect to the data hull
conv(X). The implementation of CSC via rays, as sketched above and detailed below, is based

1Note that this is not the same as a conic hull.
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