
Attend and Predict: Understanding Gene Regulation
by Selective Attention on Chromatin

Ritambhara Singh, Jack Lanchantin, Arshdeep Sekhon, Yanjun Qi
Department of Computer Science

University of Virginia
yanjun@virginia.edu

S:1 Supplementary Information

S:1.1 More about results

Importance of All HMs as input signals: Not all HMs carry the same information, and it is
important to include different HMs for gene expression prediction. While Hprom may be essential to
predict gene=ON, Henhc may play a role to make that prediction. Contrarily, for "OFF" genes, HMs
like HreprA may play a significant role. To demonstrate this, we used only one HM at a time and
performed the classification. The accuracy decreases when just one HM is used. Table S:1 shows
AUC scores in GM12878 when all HMs are used as input signals and when we use them one at a
time. We observe that the performance drops drastically, indicating that it is vital to include different
HMs for gene expression prediction.

Table S:1: AUC scores in GM12878 when all HMs are used as input signals and when we use them
one at a time. The AUC score reduces drastically, indicating that it is vital to include different HMs
for gene expression prediction

HMs used as input AUC Score
All 5 HMs 0.9085
Hprom 0.8893
Henhc 0.8516
Hstruct 0.8506
HreprA 0.7698
HreprB 0.6465

S:1.2 More about experimental settings

Evaluation Metric for Classification: We use the area under the receiver operating characteristic
curve (AUC) as our evaluation metric. AUC represents the probability that a randomly selected
‘event’ will be regarded with greater suspicion than a randomly selected ‘non-event’. AUC scores
range between 0 and 1, with values closer to 1 indicating successful predictions.

Choice for Evaluation Metric: We also calculated the F1-scores for baseline DeepChrome[2] and
AttentiveChrome, presented in Table S:2.

We observe that the F1-scores vary significantly across cell types. This is because, for most cell types,
the number of samples with Gene=OFF are much more substantial (80% of Test data) than those with
Gene=ON. Since AUC score, used in all previous works, is independent of the distribution of positive
and negative classes and depends only on the learning model, we use it as our evaluation metric to
measure performances of different models.

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.



Table S:2: Performance comparison in terms of F1-scores

DeepChrome[2] AttChrome
Mean 0.55 0.56
Median 0.69 0.62
Max 0.89 0.88
Min 0.12 0.16

Choice of Baselines: We chose the DeepChrome CNN based model [2] as our baseline, as it has
been shown to outperform SVM and Random Forest based models used previously for this task
(reported in [2]) . We summarize performance results of all the baselines in Table S:3.

Table S:3: Performance comparison (in AUC Scores) of all baseline models

RF SVM DeepChrome[2] LSTM
Mean 0.59 0.75 0.80 0.81
Median 0.58 0.76 0.80 0.80
Max 0.71 0.87 0.92 0.92
Min 0.52 0.62 0.69 0.71

S:1.3 More about Method

Long Short-Term Memory (LSTM) Networks: Recurrent neural networks (RNNs) have been
designed for modeling sequential data samples and are used widely in sequential data application
tasks such as natural language processing. RNNs are advantageous over CNNs because they can
capture the complete set of dependencies among spatial positions in a sequential sample.

Given an input matrix X of size nin×T , an RNN produces a matrix H of size d×T , where nin is the
input feature size, T is the input feature length, and d is the RNN embedding size. At each timestep
t ∈ [1..T ], an RNN takes an input column vector xt ∈ Rnin and the previous hidden state vector
ht−1 ∈ Rd and produces the next hidden state ht by applying the following recursive operation:

ht = σ(Wxt +Uht−1 + b), (S:1–1)

where W,U,b are the trainable parameters of the model, and σ is an element-wise nonlinearity
function. Due to their recursive nature, RNNs can model the full conditional distribution of any
sequential data and find dependencies over time. To handle “vanishing gradient” issue of training basic
RNNs, [1] proposed an RNN variant called the Long Short-term Memory (LSTM) network,which can
handle long term dependencies by using gating functions. These gates can control when information

ht-1 ht

xt

LSTM

Figure S:1: A simple representation of an LSTM module.

is written to, read from, and forgotten. Specifically, LSTM “cells” take inputs xt,ht−1, and ct−1,
and produce ht, and ct:

it = σ(Wixt +Uiht−1 + bi)

ft = σ(Wfxt +Ufht−1 + bf )

ot = σ(Woxt +Uoht−1 + bo)

gt = tanh(Wgxt +Ught−1 + bg)

ct = ft � ct−1 + it � gt

ht = ot � tanh(ct)

where σ(·), tanh(·), and � are element-wise sigmoid, hyperbolic tangent, and multiplication func-
tions, respectively. it, ft, and ot are the input, forget, and output gates, respectively.

2



Algorithm S:1 AttentiveChrome: Forward Propagation
Require: X . Size: M × T

1: procedure CLASSIFICATION(X)
2: {xt1, xt2, . . . xtj} ← X . Size: 1× T , t ∈ {1, . . . T} and j ∈ {1, . . .M}
3: mj ← BinLevelAttention(xjt )
4: v← HMLevelAttention(mj)
5: y ←MultiLayerPerceptron(v)
6: return y
7: procedure BIN-LEVEL ATTENTION(xjt )
8: for j ∈ {1, . . .M} do . Run in Parallel
9:

10:
−→
hj
t ←
−−−−→
LSTM j(xjt ) . Bi-directional LSTM

11:
←−
hj
t ←
←−−−−
LSTM j(xjt )

12: hj
t ← [

−→
hj
t ,
←−
hj
t ].

13: αj
t ←

exp(Wbh
j
t)∑T

i=1 exp(Wbh
j
i )

. Size: 1× T for each j ∈ {1, . . .M}

14: mj ←
∑T

t=1 α
j
t × hj

t

return mj

15: procedure HM-LEVEL ATTENTION(mj)
16: sj ← [

−−−−−→
LSTMs(m

j),
←−−−−−
LSTMs(m

j)]

17: βj ← exp(Wss
j)∑M

i=1 exp(Wssi)
. Size: 1×M

18: v←
∑M

j=1 β
jsj

return v

AttentiveChrome Details: AttentiveChrome Forward Propagation algorithm is presented in Algo-
rithm box S:1, while Figure S:2 presents the overview of the proposed AttentiveChrome in detail.

References
[1] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. volume 9, pages 1735–1780. MIT

Press, 1997.

[2] Ritambhara Singh, Jack Lanchantin, Gabriel Robins, and Yanjun Qi. Deepchrome: deep-learning for
predicting gene expression from histone modifications. Bioinformatics, 32(17):i639–i648, 2016.

3



  

HM1 

HM2 

HM3 

HM4 

HM5 

...... 100 bp  ….. 

Transcription Start 
Site (TSS) 

Bin # 1 2 3 4 .. 100 

X 

HM1 
HM2 
HM3 
HM4 
HM5 

Gene A 

Bins H
is

to
ne

 M
od

if
ic

at
io

ns
 

Bin # 1 2 3 4 .. 100 

 

HM1 

HM2 
HM3 
HM4 

HM5 

Gene A 

Gene A 

Gene A 

Gene A 

Gene A 

(c) LSTMj
(for each 
       where
  j=1,...5) 

...... 

Linear Layer 

Soft Max 

Gene= +1/-1 

Context Vector
b

 

t=1 t=2 t=100 (d) Bin-level 
Attention Layer
(for each            ) 

Whm mj=1 m  …… m  

j=1   

 

HM2 

 

HM1 

HM2 
HM3 
HM4 

HM5 

 

(e) HM-level 
Attention Layer
  (for mj=1,..5) 

HM1 HM2 HM3 HM4 HM5 

GeneA = ON 
                        or

GeneA =OFF 

(a) Feature 
Generation 

W

Context Vector

Bin-level 
attention weights

HM-level
attention weights

…
 

…
 

t=1 t=2 t=100 

t=100 t=1 t=2 
…… …… 

…… …… 

(b) Input 

(f) Output 

x j=5

j=2 j=2 j=2

ht=1
j=2 ht=2

j=2 ht=100
j=2

xj

ht=1,..T
j=1..5

LSTMj=2 

LSTMj=2 

Bin-level 
Encoder

Bin-level 
Attention

HM-level 
Attention

Classification

j=2 j=5

j=2 j=5

ht=1
j=2

ht=2
j=2

ht=100
j=2

ht=100
j=2

...... ht=2
j=2

ht=1
j=2

xt=1
j=2 xt=2

j=2 ...... xt=100
j=2

x j=4
x j=2
x j=2
x j=1

v

f(v)

e.g. j=2

Figure S:2: Overview of the proposed AttentiveChrome, a unified framework that can both predict and
understand how histone modifications regulate gene expression. We present six steps in order: (a) We
generate an input matrix X for each gene’s TSS flanking region, consisting of 100 bins as rows and 5
histone modification (HM) signals as columns. (b) We split the matrix into five vectors representing
each HM mark. We input these vectors into the AttentiveChrome model. (c) We use a separate LSTM
to learn feature representations of an HM mark. (d) A bin-level attention layer is learned to extract
bins that are important for representing an HM mark. This attention layer will aggregate important
bins to form an embedding vector for an HM. Here we only show the case of HM2 in steps (c) and
(d). (e) Next, to capture the dependencies among different HM marks, we apply another LSTM layer
over the representation of 5 HMs. (f) To reward HM marks that are significant clues for classifying
an individual gene’s expression, AttentiveChrome adds another attention layer- HM-level attention.
This layer outputs an embedding vector v for the whole gene region under consideration. (g) Finally,
the output embedding v from the previous layers will be fed into a classification module to predict
the gene expression as high(+1)/low(-1).

4


	Supplementary Information
	More about results
	More about experimental settings
	More about Method


