
A Experiment Details

The following subsections provide detailed information about the experimental setup of our empirical
evaluation.

In all experiments we train the networks using ADAM [19] with default parameters, a batch size of
64 and 50 000 train + 10 000 validation + 10 000 test inputs. The quality of the learned groupings is
evaluated by computing the Adjusted Mutual Information (AMI; [35]) with respect to the ground
truth, while ignoring the background and overlap regions (as is consistent with earlier work [8, 7]).
We use early stopping when the validation loss has not improved for 10 epochs.

A.1 Experiments on Static Shapes

Each input consists of a 28 × 28 binary image containing three regular shapes (���) located in
random positions [26].

For N-EM we implement fφ by means of a single layer fully connected neural network with a sigmoid
activation function. It receives a real-valued 250-dimensional vector θ as input and outputs for each
pixel a value that parameterizes a Bernoulli distribution. We squash θ with a Sigmoid before passing
it to the network and train an additional weight to implement the learning rate that is used to combine
the gradient ascent updates into the current parameter estimate.

Similarly for RNN-EM we use a recurrent neural network with 250 Sigmoidal hidden units and
an fully-connected output-layer with a sigmoid activation function that parametrizes a Bernoulli
distribution for each pixel in the same fashion.

We train both networks with K = 4 for 15 EM steps and add bitflip noise with probability 0.1 to each
of the pixels. The prior for each pixel in the data is set to a Bernoulli distribution with p = 0. The
outer-loss is only injected at the final EM-step.

A.2 Experiments on Flying Shapes

Each input consists of a sequence of binary 28 × 28 images containing a fixed number of shapes
(���) that start in random positions and float along randomly sampled trajectories within the image
for 20 steps.

We use a convolutional encoder-decoder architecture inspired by recent GANs [4] with a recurrent
neural network as bottleneck:

1. 4× 4 conv. 32 ELU. stride 2. layer norm

2. 4× 4 conv. 64 ELU. stride 2. layer norm

3. fully connected. 512 ELU. layer norm

4. recurrent. 100 Sigmoid. layer norm on the output

5. fully connected. 512 RELU. layer norm

6. fully connected. 7× 7× 64 RELU. layer norm

7. 4× 4 reshape 2 nearest-neighbour, conv. 32 RELU. layer norm

8. 4× 4 reshape 2 nearest-neighbour, conv. 1 Sigmoid

Instead of using transposed convolutions (to implement the "de-convolution") we first reshape the
image using the default nearest-neighbour interpolation followed by a normal convolution in order to
avoid frequency artifacts [22]. Note that we do not add layer norm on the recurrent connection.

At each timestep t we feed γk(ψ
(t−1)
k − x̃(t)) as input to the network, where x̃ is the input with

added bitflip noise (p = 0.2). RNN-EM is trained with a next-step prediction objective implemented
by replacing x with x(t+1) in (5), which we evaluate at each time-step. A single RNN-EM step is
used for each timestep. The prior for each pixel in the data is set to a Bernoulli distribution with
p = 0. We prevent conflicting gradient updates by not back-propagating any gradients through γ.

12



A.3 Experiments on Flying MNIST

Each input consists of a sequence of gray-scale 24× 24 images containing a fixed number of down-
sampled (by a factor of two along each dimension) MNIST digits that start in random positions and
“fly” across randomly sampled trajectories within the image for T timesteps.

We use a slightly deeper version of the architecture used for flying shapes:

1. 4× 4 conv. 32 ELU. stride 2. layer norm
2. 4× 4 conv. 64 ELU. stride 2. layer norm
3. 4× 4 conv. 128 ELU. stride 2. layer norm
4. fully connected. 512 ELU. layer norm
5. recurrent. 250 Sigmoid. layer norm on the output
6. fully connected. 512 RELU. layer norm
7. fully connected. 3× 3× 128 RELU. layer norm
8. 4× 4 reshape 2 nearest-neighbour, conv. 64 RELU. layer norm
9. 4× 4 reshape 2 nearest-neighbour, conv. 32 RELU. layer norm

10. 4× 4 reshape 2 nearest-neighbour, conv. 1 linear

The training procedure is largely identical to the one described for flying shapes except that we replace
the bitflip noise with masked uniform noise: we first sample a binary mask from a multi-variate
Bernoulli distribution with p = 0.2 and then use this mask to interpolate between the original image
and samples from a Uniform distribution between the minimum (0.0) and maximum (1.0) values
of the data. We use a learning rate of 0.0005 (from the second stage onwards in case of stage-wise
training), scale the second-loss term by a factor of 0.2 and find it beneficial to normalize the masked
differences between the prediction and the image (zero mean, standard deviation one) before passing
it to the network.

13


