
Random Permutation Online Isotonic Regression

Wojciech Kotłowski
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Abstract

We revisit isotonic regression on linear orders, the problem of fitting monotonic
functions to best explain the data, in an online setting. It was previously shown that
online isotonic regression is unlearnable in a fully adversarial model, which lead to
its study in the fixed design model. Here, we instead develop the more practical
random permutation model. We show that the regret is bounded above by the
excess leave-one-out loss for which we develop efficient algorithms and matching
lower bounds. We also analyze the class of simple and popular forward algorithms
and recommend where to look for algorithms for online isotonic regression on
partial orders.

1 Introduction

A function f : R → R is called isotonic (non-decreasing) if x ≤ y implies f(x) ≤ f(y). Isotonic
functions model monotonic relationships between input and output variables, like those between
drug dose and response [25] or lymph node condition and survival time [24]. The problem of
isotonic regression is to find the isotonic function that best explains a given data set or population
distribution. The isotonic regression problem has been extensively studied in statistics [1, 24], which
resulted in efficient optimization algorithms for fitting isotonic functions to the data [7, 16] and sharp
convergence rates of estimation under various model assumptions [26, 29].

In online learning problems, the data arrive sequentially, and the learner is tasked with predicting
each subsequent data point as it arrives [6]. In online isotonic regression, the natural goal is to predict
the incoming data points as well as the best isotonic function in hindsight. Specifically, for time steps
t = 1, . . . , T , the learner observes an instance xi ∈ R, makes a prediction ŷi of the true label yi,
which is assumed to lie in [0, 1]. There is no restriction that the labels or predictions be isotonic. We
evaluate a prediction ŷi by its squared loss (ŷi − yi)2. The quality of an algorithm is measured by its
regret,

∑T
t=1(ŷi − yi)2 − L∗T , where L∗T is the loss of the best isotonic function on the entire data

sequence.

Isotonic regression is nonparametric: the number of parameters grows linearly with the number of
data points. It is thus natural to ask whether there are efficient, provably low regret algorithms for
online isotonic regression. As of yet, the picture is still very incomplete in the online setting. The
first online results were obtained in the recent paper [14] which considered linearly ordered domains
in the adversarial fixed design model, i.e. a model in which all the inputs x1, . . . , xT are given to the
learner before the start of prediction. The authors show that, due to the nonparametric nature of the
problem, many textbook online learning algorithms fail to learn at all (including Online Gradient
Descent, Follow the Leader and Exponential Weights) in the sense that their worst-case regret grows
linearly with the number of data points. They prove a Ω(T

1
3 ) worst case regret lower bound, and

develop a matching algorithm that achieves the optimal Õ(T
1
3 ) regret. Unfortunately, the fixed design

assumption is often unrealistic. This leads us to our main question: Can we design methods for online
isotonic regression that are practical (do not hinge on fixed design)?
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Our contributions Our long-term goal is to design practical and efficient methods for online
isotonic regression, and in this work we move beyond the fixed design model and study algorithms
that do not depend on future instances. Unfortunately, the completely adversarial design model (in
which the instances are selected by an adaptive adversary) is impossibly hard: every learner can
suffer linear regret in this model [14]. So in order to drop the fixed design assumption, we need to
constrain the adversary in some other way. In this paper we consider the natural random permutation
model, in which all T instances and labels are chosen adversarially before the game begins but then
are presented to the learner in a random order.

This model corresponds with the intuition that the data gathering process (which fixes the order) is
independent of the underlying data generation mechanism (which fixes instances and labels). We
will show that learning is possible in the random permutation model (in fact we present a reduction
showing that it is not harder than adversarial fixed design) by proving an Õ(T

1
3 ) upper bound on

regret for an online-to-batch conversion of the optimal fixed design algorithm from [14] (Section 3).

Our main tool for analyzing the random permutation model is the leave-one-out loss, drawing
interesting connections with cross-validation and calibration. The leave-one-out loss on a set of t
labeled instances is the error of the learner predicting the i-th label after seeing all remaining t− 1
labels, averaged uniformly over i = 1, . . . , t. We begin by proving a general correspondence between
regret and leave-one-out loss for the random permutation model in Section 2.1, which allows us to
use excess leave-one-out loss as a proxy for regret. We then describe a version of online-to-batch
conversion that relates the fixed design model with the random permutation model, resulting in an
algorithm that attains the optimal Õ(T

1
3 ) regret.

Section 4 then turns to the computationally efficient and natural class of forward algorithms that
use an offline optimization oracle to form their prediction. This class contains most common online
isotonic regression algorithms. We then show a O(T

1
2 ) upper bound on the regret for the entire class,

which improves to O(T
1
3 ) for the well-specified case where the data are in fact generated from an

isotonic function plus i.i.d. noise (the most common model in the statistics literature).

While forward algorithms match the lower bound for the well-specified case, there is a factor T
1
6 gap

in the random permutation case. Section 4.6 proposes a new algorithm that calls a weighted offline
oracle with a large weight on the current instance. This algorithm can be efficiently computed via
[16]. We prove necessary bounds on the weight.

Related work Offline isotonic regression has been extensively studied in statistics starting from
work by [1, 4]. Applications range across statistics, biology, medicine, psychology, etc. [24, 15, 25,
22, 17]. In statistics, isotonic regression is studied in generative models [26, 3, 29]. In machine
learning, isotonic regression is used for calibrating class probability estimates [28, 21, 18, 20, 27],
ROC analysis [8], training Generalized Linear Models and Single Index Models[12, 11], data cleaning
[13], and ranking [19]. Fast algorithms for partial ordering are developed in [16].

In the online setting, [5] bound the minimax regret for monotone predictors under logarithmic loss
and [23, 10] study online nonparametric regression in general. Efficient algorithms and worst-cases
regret bounds for fixed design online isotonic regression are studied in [14]. Finally, the relation
between regret and leave-one-out loss was pioneered by [9] for linear regression.

2 Problem Setup

Given a finite set of instances {x1, . . . , xt} ⊂ R, a function f : {x1, . . . , xt} → [0, 1] is isotonic
(non-decreasing) if xi ≤ xj implies f(xi) ≤ f(xj) for all i, j ∈ {1, . . . , t}. Given a set of labeled
instances D = {(x1, y1), . . . , (xt, yt)} ⊂ R× [0, 1], let L∗(D) denote the total squared loss of the
best isotonic function on D,

L∗(D) := min
isotonic f

t∑
i=1

(yi − f(xi))
2.

This convex optimization problem can be solved by the celebrated Pool Adjacent Violators Algorithm
(PAVA) in time linear in t [1, 7]. The optimal solution, called the isotonic regression function, is
piecewise constant and its value on any of its levels sets equals the average of labels within that set
[24].
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Online isotonic regression in the random permutation model is defined as follows. At the beginning of
the game, the adversary chooses data instances x1 < . . . < xT

1 and labels y1, . . . , yT . A permutation
σ = (σ1, . . . , σT ) of {1, . . . , T} is then drawn uniformly at random and used to determine the order
in which the data will be revealed. In round t, the instance xσt is revealed to the learner who then
predicts ŷσt . Next, the learner observes the true label yσt and incurs the squared loss (ŷσt − yσt)2.
For a fixed permutation σ, we use the shorthand notation L∗t = L∗({(xσ1

, yσ1
), . . . , (xσt , yσt)}) to

denote the optimal isotonic regression loss of the first t labeled instances (L∗t will clearly depend on
σ, except for the case t = T ). The goal of the learner is to minimize the expected regret,

RT := Eσ
[ T∑
t=1

(yσt − ŷσt)2
]
− L∗T =

T∑
t=1

rt,

where we have decomposed the regret into its per-round increase,

rt := Eσ
[
(yσt − ŷσt)2 − L∗t + L∗t−1

]
, (1)

with L∗0 := 0. To simplify the analysis, let us assume that the prediction strategy does not depend
on the order in which the past data were revealed (which is true for all algorithms considered
in this paper). Fix t and define D = {(xσ1 , yσ1), . . . , (xσt , yσt)} to be the set of first t labeled
instances. Furthermore, let D−i = D\{(xσi , yσi)} denote the set D with the instance from round
i removed. Using this notation, the expression under the expectation in (1) can be written as(
yσt − ŷσt(D−t)

)2 − L∗(D) + L∗(D−t), where we made the dependence of ŷσt on D−t explicit
(and used the fact that it only depends on the set of instances, not on their order). By symmetry of the
expectation over permutations with respect to the indices, we have

Eσ
[(
yσt − ŷσt(D−t)

)2]
= Eσ

[(
yσi − ŷσi(D−i)

)2]
, and Eσ

[
L∗(D−t)

]
= Eσ

[
L∗(D−i)

]
,

for all i = 1, . . . , t. Thus, (1) can as well be rewritten as:

rt = Eσ
[

1

t

t∑
i=1

((
yσi − ŷσi(D−i)

)2
+ L∗(D−i)

)
− L∗(D)

]
.

Let us denote the expression inside the expectation by rt(D) to stress its dependence on the set of
instances D, but not on the order in which they were revealed. If we can show that rt(D) ≤ Bt holds
for all t, then its expectation has the same bound, so RT ≤

∑T
t=1Bt.

2.1 Excess Leave-One-Out Loss and Regret

Our main tool for analyzing the random permutation model is the leave-one-out loss. In the
leave-one-out model, there is no sequential structure. The adversary picks a data set D =
{(x1, y1), . . . , (xt, yt)} with x1 < . . . < xt. An index i is sampled uniformly at random, the
learner is given D−i, the entire data set except (xi, yi), and predicts ŷi (as a function of D−i) on
instance xi. We call the difference between the expected loss of the learner and L∗(D) the expected
excess leave-one-out loss:

`oot(D) :=
1

t

(( t∑
i=1

(
yi − ŷi(D−i)

)2)− L∗(D)

)
. (2)

The random permutation model has the important property that the bound on the excess leave-one-out
loss of a prediction algorithm translates into a regret bound. A similar result has been shown by [9]
for expected loss in the i.i.d. setting.
Lemma 2.1. rt(D) ≤ `oot(D) for any t and any data set D = {(x1, y1), . . . , (xt, yt)}.

Proof. As x1 < . . . < xt, let (y∗1 , . . . , y
∗
t ) = argminf1≤...≤ft

∑t
i=1(yi − fi)2 be the isotonic

regression function on D. From the definition of L∗, we can see that L∗(D) =
∑t
i=1(y∗i − yi)2 ≥

L∗(D−i) + (yi − y∗i )2. Thus, the regret increase rt(D) is bounded by

rt(D) =

t∑
i=1

(yi − ŷi)2 + L∗(D−i)

t
− L∗(D) ≤

t∑
i=1

(yi − ŷi)2 − (yi − y∗i )2

t
= `oot(D).

1 We assume all points xt are distinct as it will significantly simplify the presentation. All results in this
paper are also valid for the case x1 ≤ . . . ≤ xT .
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However, we note that lower bounds for `oot(D) do not imply lower bounds on regret.

In what follows, our strategy will be to derive bounds `oot(D) ≤ Bt for various algorithms, from
which the regret bound RT ≤

∑T
t=1Bt can be immediately obtained. From now on, we abbreviate

`oot(D) to `oot, (as D is clear from the context); we will also consistently assume x1 < . . . < xt.

2.2 Noise free case

As a warm-up, we analyze the noise-free case (when the labels themselves are isotonic) and demon-
strate that analyzing `oot easily results in an optimal bound for this setting.
Proposition 2.2. Assume that the labels satisfy y1 ≤ y2 ≤ . . . ≤ yt. The prediction ŷi that is the
linear interpolation between adjacent labels ŷi = 1

2 (yi−1 + yi+1), has

`oot ≤
1

2t
, and thus RT ≤

1

2
log(T + 1).

Proof. For δi := yi − yi−1, it is easy to check that `oot = 1
4t

∑t
i=1(δi+1 − δi)2 because the L∗(D)

term is zero. This expression is a convex function of δ1, . . . , δt+1. Note that δi ≥ 0 for each
i = 1, . . . , t+ 1, and

∑t+1
i=1 δi = 1. Since the maximum of a convex function is at the boundary of

the feasible region, the maximizer is given by δi = 1 for some i ∈ {1, . . . , t+ 1}, and δj = 0 for all
j ∈ {1, . . . , t+ 1}, j 6= i. This implies that `oot ≤ (2t)−1.

2.3 General Lower Bound

In [14], a general lower bound was derived showing that the regret of any online isotonic regression
procedure is at least Ω(T

1
3 ) for the adversarial setup (when labels and the index order were chosen

adversarially). This lower bound applies regardless of the order of outcomes, and hence it is also a
lower bound for the random permutation model. This bound translates into `oot = Ω(t−2/3).

3 Online-to-batch for fixed design

Here, we describe an online-to-batch conversion that relates the adversarial fixed design model with
the random permutation model considered in this paper. In the fixed design model with time horizon
Tfd the learner is given the points x1, . . . , xTfd

in advance (which is not the case in the random
permutation model), but the adversary chooses the order σ in which the labels are revealed (as
opposed to σ being drawn at random). We can think of an algorithm for fixed design as a prediction
function

ŷfd
(
xσt
∣∣yσ1

, . . . , yσt−1
, {x1, . . . , xTfd

}
)
,

for any order σ, any set {x1, . . . , xTfd
} (and hence any time horizon Tfd), and any time t. This

notation is quite heavy, but makes it explicit that the learner, while predicting at point xσt , knows the
previously revealed labels and the whole set of instances.

In the random permutation model, at trial t, the learner only knows the previously revealed t − 1
labeled instances and predicts on the new instance. Without loss of generality, denote the past
instances by D−i = {(x1, y1), . . . , (xi−1, yi−1), (xi+1, yi+1), . . . (xt, yt)}, and the new instance by
xi, for some i ∈ {1, . . . , t}. Given an algorithm for fixed design ŷfd, we construct a prediction
ŷt = ŷt(D−i, xi) of the algorithm in the random permutation model. The reduction goes through an
online-to-batch conversion. Specifically, at trial t, given past labeled instances D−i, and a new point
xi, the learner plays the expectation of the prediction of the fixed design algorithm with time horizon
T fd = t and points {x1, . . . , xt} under a uniformly random time from the past j ∈ {1, . . . , t} and a
random permutation σ on {1, . . . , t}, with σt = i, i.e.2

ŷt = E{σ:σt=i}
[

1

t

t∑
j=1

ŷfd(xi|yσ1 , . . . , yσj−1 , {x1, . . . , xt}
)]
. (3)

2Choosing the prediction as an expectation is elegant but inefficient. However, the proof indicates that we
might as well sample a single j and a single random permutation σ to form the prediction and the reduction
would also work in expectation.
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Note that this is a valid construction, as the right hand side only depends on D−i and xi, which are
known to the learner in a random permutation model at round t. We prove (in Appendix A) that the
excess leave-one-out loss of ŷ at trial t is upper bounded by the expected regret (over all permutations)
of ŷfd in trials 1, . . . , t divided by t:

Theorem 3.1. Let D = {(x1, y1), . . . , (xt, yt)} be a set of t labeled instances. Fix any algorithm
ŷfd for online adversarial isotonic regression with fixed design, and let Regt(ŷ

fd |σ) denote its regret
on D when the labels are revealed in order σ. The random permutation learner ŷ from (3) ensures
`oot(D) ≤ 1

tEσ[Regt(ŷ
fd |σ)].

This constructions allows immediate transport of the Õ(T
1
3

fd) fixed design regret result from [14].

Theorem 3.2. There is an algorithm for the random-permutation model with excess leave-one-out
loss `oot = Õ(t−

2
3 ) and hence expected regret RT ≤

∑
t Õ(t−

2
3 ) = Õ(T

1
3 ).

4 Forward Algorithms

For clarity of presentation, we use vector notation in this section: y = (y1, . . . , yt) is the label vector,
y∗ = (y∗1 , . . . , y

∗
t ) is the isotonic regression function, and y−i = (y1, . . . , yi−1, yi+1, . . . , yt) is y

with i-th label removed. Moreover, keeping in mind that x1 < . . . < xt, we can drop xi’s entirely
from the notation and refer to an instance xi simply by its index i.

Given labels y−i and some index i to predict on, we want a good prediction for yi. Follow the Leader
(FL) algorithms, which predict using the best isotonic function on the data seen so far, are not directly
applicable to online isotonic regression: the best isotonic function is only defined at the observed
data instances and can be arbitrary (up to monotonicity constraint) otherwise. Instead, we analyze
a simple and natural class of algorithms which we dub forward algorithms3. We define a forward
algorithm, or FA, to be any algorithm that estimates a label y′i ∈ [0, 1] (possibly dependent on i and
y−i), and plays with the FL strategy on the sequence of past data including the new instance with the
estimated label, i.e. performs offline isotonic regression on y′,

ŷ = argmin
f1≤...≤ft

{ t∑
j=1

(y′j − fj)2
}
, where y′ = (y1, . . . , yi−1, y

′
i, yi+1, . . . , yt).

Then, FA predicts with ŷi, the value at index i of the offline function of the augmented data. Note that
if the estimate turned out to be correct (y′i = yi), the forward algorithm would suffer no additional
loss for that round.

Forward algorithms are practically important: we will show that many popular algorithms can be cast
as FA with a particular estimate. FA automatically inherit any computational advances for offline
isotonic regression; in particular, they scale efficiently to partially ordered data [16]. To our best
knowledge, we are first to give bounds on the performance of these algorithms in the online setting.

Alternative formulation We can describe a FA using a minimax representation of the isotonic
regression [see, e.g., 24]: the optimal isotonic regression y∗ satisfies

y∗i = min
r≥i

max
`≤i

y`,r = max
`≤i

min
r≥i

y`,r, (4)

where y`,r =
∑r
j=` yj

r−`+1 . The “saddle point” (`i, ri) for which y∗i = y`i,ri , specifies the boundaries of
the level set {j : y∗j = y∗i } of the isotonic regression function that contains i.

It follows from (4) that isotonic regression is monotonic with respect to labels: for any two label
sequences y and z such that yi ≤ zi for all i, we have y∗i ≤ z∗i for all i. Thus, if we denote the
predictions for label estimates y′i = 0 and y′i = 1 by ŷ0i and ŷ1i , respectively, the monotonicity implies
that any FA has ŷ0i ≤ ŷi ≤ ŷ1i . Conversely, using the continuity of isotonic regression y∗ as a
function of y, (which follows from (4)), we can show that for any prediction ŷi with ŷ0i ≤ ŷi ≤ ŷ1i ,
there exists an estimate y′t ∈ [0, 1] that could generate this prediction. Hence, we can equivalently
interpret FA as an algorithm which in each trial predicts with some ŷi in the range [ŷ0i , ŷ

1
i ].

3The name highlights resemblance to the Forward algorithm introduced by [2] for exponential family models.
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4.1 Instances

With the above equivalence between forward algorithms and algorithms that predict in [ŷ0i , ŷ
1
i ], we

can show that many of the well know isotonic regression algorithms are forward algorithms and
thereby add weight to our next section where we prove regret bounds for the entire class.

Isotonic regression with interpolation (IR-Int)[28] Given y−i and index i, the algorithm first
computes f∗, the isotonic regression of y−i, and then predicts with ŷinti = 1

2

(
f∗i−1 + f∗i+1

)
, where

we used f∗0 = 0 and f∗t+1 = 1. To see that this is a FA, note that if we use estimate y′i = ŷinti , the
isotonic regression of y′ = (y1, . . . , yi−1, y

′
i, yi+1, . . . , yt) is ŷ = (f∗1 , . . . , f

∗
i−1, y

′
i, f
∗
i+1, . . . , f

∗
t ).

This is because: i) ŷ is isotonic by construction; ii) f∗ has the smallest squared error loss for y−t
among isotonic functions; and iii) the loss of ŷ on point y′i is zero, and the loss of ŷ on all other
points is equal to the loss of f∗.

Direct combination of ŷ0i and ŷ1i . It is clear from Section 4, that any algorithm that predicts
ŷi = λiŷ

0
i + (1 − λi)ŷ1i for some λi ∈ [0, 1] is a FA. The weight λi can be set to a constant (e.g.,

λi = 1/2), or can be chosen depending on ŷ1i and ŷ0i . Such algorithms were considered by [27]:

log-IVAP : ŷlogi =
ŷ1i

ŷ1i + 1− ŷ0i
, Brier-IVAP : ŷBrier

i =
1 + (ŷ0i )2 − (1− ŷ1i )2

2
.

It is straightforward to show that both algorithms satisfy ŷ0i ≤ ŷi ≤ ŷ1i and are thus instances of FA.

Last-step minimax (LSM). LSM plays the minimax strategy with one round remaining,

ŷi = argmin
ŷ∈[0,1]

max
yi∈[0,1]

{
(ŷ − yi)2 − L∗(y)

}
,

where L∗(y) is the isotonic regression loss on y. Define L∗b = L∗(y1, . . . , yi−1, b, yi+1, . . . , yt)
for b ∈ {0, 1}, i.e. L∗b is the loss of isotonic regression function with label estimate y′i = b. In
Appendix B we show that ŷi =

1+L∗0−L
∗
1

2 and it is also an instance of FA.

4.2 Bounding the leave-one-out loss

We now give a O(
√

log t
t ) bound on the leave-one-out loss for forward algorithms. Interestingly, the

bound holds no matter what label estimate the algorithm uses. The proof relies on the stability of
isotonic regression with respect to a change of a single label. While the bound looks suboptimal in
light of Section 2.3, we will argue in Section 4.5 that the bound is actually tight (up to a logarithmic
factor) for one FA and experimentally verify that all other mentioned forward algorithms also have a
tight lower bound of that form for the same sequence of outcomes.

We will bound `oot by defining δi = ŷi − y∗i and using the following simple inequality:

`oot =
1

t

t∑
i=1

(
(ŷi − yi)2 − (y∗i − yi)2

)
=

1

t

t∑
i=1

(ŷi − y∗i )(ŷi + y∗i − 2yi) ≤
2

t

t∑
i=1

|δi|.

Theorem 4.1. Any forward algorithm has `oot = O
(√

log t
t

)
.

Proof. Fix some forward algorithm. For any i, let {j : y∗j = y∗i } = {`i, . . . , ri}, for some `i ≤ i ≤ ri,
be the level set of isotonic regression at level y∗i . We need the stronger version of the minimax
representation, shown in Appendix C:

y∗i = min
r≥i

y`i,r = max
`≤i

y`,ri . (5)

We partition the points {1, . . . , t} into K consecutive segments: Sk =
{
i : y∗i ∈

[
k−1
K , kK

)}
for

k = 1, . . . ,K − 1 and SK =
{
i : y∗i ≥ K−1

K

}
. Due to monotonicity of y∗, Sk are subsets of the

form {`k, . . . , rk} (where we use rk = `k − 1 if Sk is empty). From the definition, every level set
of y∗ is contained in Sk for some k, and each `k (rk) is a left-end (right-end) of some level set.
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Now, choose some index i, and let Sk be such that i ∈ Sk. Let y′i be the estimate of the FA, and let
y′ = (y1, . . . , yi−1, y

′
i, yi+1, . . . , yt). The minimax representation (4) and definition of FA imply

ŷi = max
`≤i

min
r≥i

y′`,r ≥ min
r≥i

y′`k,r = min
r≥i

{
y`k,r +

y′i − yi
r − `k + 1

}
≥ min

r≥i
y`k,r + min

r≥i

y′i − yi
r − `k + 1

≥ min
r≥`k

y`k,r + min
r≥i

y′i − yi
r − `k + 1

by (5)
≥ y∗`k + min

r≥i

−1

r − `k + 1
≥ y∗`k −

1

i− `k + 1
≥ y∗i −

1

K
− 1

i− `k + 1
.

A symmetric argument gives ŷi ≤ y∗i + 1
K + 1

rk−i+1 . Hence, we can bound |δi| = |ŷi − y∗i | ≤
1
K + max

{
1

i−`k+1 ,
1

rk−i+1

}
. Summing over i ∈ Sk yields

∑
i∈Sk |δi| ≤

|Sk|
K + 2

(
1 + log |Sk|

)
,

which allows the bound

`oot ≤
2

t

∑
i

|δi| ≤
2

K
+ 4

K

t
(1 + log t).

The theorem follows from setting K = Θ(
√
t/ log t).

4.3 Forward algorithms for the well-specified case

While the `oot upper bound of the previous section yields a regret bound RT ≤
∑
tO(

√
log t/t) =

Õ(T
1
2 ) that is a factor O(T

1
6 ) gap from the lower bound in Section 2.3, there are two pieces of good

news. First, forward algorithms do get the optimal rate in the well-specified setting, popular in the
classical statistics literature, where the labels are generated i.i.d. such that E[yi] = µi with isotonic
µ1 ≤ . . . ≤ µt.4 Second, there is a Ω(t−

1
2 ) lower bound for forward algorithms as proven in the next

section. Together, these results imply that the random permutation model in indeed harder than the
well-specified case: forward algorithms are sufficient for the latter but not the former.
Theorem 4.2. For data generated from the well-specified setting (monotonic means with i.i.d. noise),
any FA has `oot = Õ(t−

2
3 ), which translates to a Õ(T

1
3 ) bound on the regret.

The proof is given in Appendix D. Curiously, the proof makes use of the existence of the seemingly
unrelated optimal algorithm with Õ(t−

2
3 ) excess leave-one-out loss from Theorem 3.2.

4.4 Entropic loss

We now abandon the squared loss for a moment and analyze how a FA performs when the loss function
is the entropic loss, defined as −y log ŷ − (1− y) log(1− ŷ) for y ∈ [0, 1]. Entropic loss (precisely:
its binary-label version known as log-loss) is extensively used in the isotonic regression context for
maximum likelihood estimation [14] or for probability calibration [28, 21, 27]. A surprising fact in
isotonic regression is that minimizing entropic loss5 leads to exactly the same optimal solution as in
the squared loss case, the isotonic regression function y∗ [24].

Not every FA is appropriate for entropic loss, as recklessly choosing the label estimate might result in
an infinite loss in just a single trial (as noted by [27]). Indeed, consider a sequence of outcomes with
y1 = 0 and yi = 1 for i > 1. While predicting on index i = 1, choosing y′1 = 1 results in ŷ1 = 1, for
which the entropic loss is infinite (as y1 = 0). Does there exists a FA which achieves a meaningful
bound on `oot in the entropic loss setup?

We answer this question in the affirmative, showing that the log-IVAP predictor FA gets the same
excess-leave-one-out loss bound as given in Theorem 4.1. As the reduction from the regret to leave-
one-out loss (Lemma 2.1) does not use any properties of the loss function, this immediately implies a
bound on the expected regret. Interestingly, the proof (given in Appendix G) uses as an intermediate
step the bound on |δi| for the worst possible forward algorithm which always produces the estimate
being the opposite of the actual label.

Theorem 4.3. The log-IVAP algorithm has `oot = O
(√

log t
t

)
for the entropic loss.

4The Ω(T 1/3) regret lower bound in [14] uses a mixture of well-specified distributions and still applies.
5In fact, this statement applies to any Bregman divergence [24].
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4.5 Lower bound

The last result of this section is that FA can be made to have `oot = Ω(t−
1
2 ). We show this by means

of a counterexample. Assume t = n2 for some integer n > 0 and let the labels be binary, yi ∈ {0, 1}.
We split the set {1, . . . , t} into n consecutive segments, each of size n =

√
t. The proportion of ones

(yi = 1) in the k-th segment is equal to k
n , but within each segment all ones precede all zeros. For

instance, when t = 25, the label sequence is:
10000︸ ︷︷ ︸
1/5

11000︸ ︷︷ ︸
2/5

11100︸ ︷︷ ︸
3/5

11110︸ ︷︷ ︸
4/5

11111︸ ︷︷ ︸
5/5

,

One can use the minimax formulation (4) to verify that the segments will correspond to the level sets
of the isotonic regression and that y∗i = k

n for any i in the k-th segment. This sequence is hard:

Lemma 4.4. The IR-Int algorithm run on the sequence described above has `oot = Ω(t−
1
2 ).

We prove the lower bound for IR-Int, since the presentation (in Appendix E) is clearest. Empirical
simulations showing that the other forward algorithms also suffer this regret are in Appendix F.

4.6 Towards optimal forward algorithms

An attractive feature of forward algorithms is that they generalize to partial orders, for which efficient
offline optimization algorithms exist. However, in Section 4 we saw that FAs only give a Õ(t−

1
2 )

rate, while in Section 3 we saw that Õ(t−
2
3 ) is possible (with an algorithm that is not known to scale

to partial orders). Is there any hope of an algorithm that both generalizes and has the optimal rate?

In this section, we propose the Heavy-γ algorithm, a slight modification of the forward algorithm that
plugs in label estimate y′i = γ ∈ [0, 1] with weight c (with unit weight on all other points), then plays
the value of the isotonic regression function. Implementation is straightforward for offline isotonic
regression algorithms that permit the specification of weights (such as [16]). Otherwise, we might
simulate such weighting by plugging in c copies of the estimated label γ at location xi.

What label estimate γ and weight c should we use? We show that the choice of γ is not very sensitive,
but it is crucial to tune the weight to c = Θ(t

1
3 ). Lemmas H.1 and H.2 show that higher and lower c

are necessarily sub-optimal for `oot. This leaves only one choice for c, for which we believe
Conjecture 4.5. Heavy-γ with weight c = Θ(t

1
3 ) has `oot = Õ(t−

2
3 ).

We cannot yet prove this conjecture, although numerical experiments strongly suggest it. We do not
believe that picking a constant label γ is special. For example, we might alternatively predict with the
average of the predictions of Heavy-1 and Heavy-0. Yet not any label estimate works. In particular, if
we estimate the label that would be predicted by IR-Int (see 4.1) and the discussion below it), and
we plug that in with any weight c ≥ 0, then the isotonic regression function will still have that same
label estimate as its value. This means that the Ω(t−

1
2 ) lower bound of Section 4.5 applies.

5 Conclusion

We revisit the problem of online isotonic regression and argue that we need a new perspective to
design practical algorithms. We study the random permutation model as a novel way to bypass the
stringent fixed design requirement of previous work. Our main tool in the design and analysis of
algorithms is the leave-one-out loss, which bounds the expected regret from above. We start by
observing that the adversary from the adversarial fixed design setting also provides a lower bound
here. We then show that this lower bound can be matched by applying online-to-batch conversion to
the optimal algorithm for fixed design. Next we provide an online analysis of the natural, popular and
practical class of Forward Algorithms, which are defined in terms of an offline optimization oracle.
We show that Forward algorithms achieve a decent regret rate in all cases, and match the optimal rate
in special cases. We conclude by sketching the class of practical Heavy algorithms and conjecture
that a specific parameter setting might guarantee the correct regret rate.

Open problem The next major challenge is the design and analysis of efficient algorithms for
online isotonic regression on arbitrary partial orders. Heavy-γ is our current best candidate. We pose
deciding if it in fact even guarantees Õ(T

1
3 ) regret on linear orders as an open problem.
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[13] Wojciech Kotłowski and Roman Słowiński. Rule learning with monotonicity constraints. In
International Conference on Machine Learning (ICML), pages 537–544, 2009.

[14] Wojciech Kotłowski, Wouter M. Koolen, and Alan Malek. Online isotonic regression. In
Vitaly Feldman and Alexander Rakhlin, editors, Proceedings of the 29th Annual Conference on
Learning Theory (COLT), pages 1165–1189, June 2016.

[15] J. B. Kruskal. Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis.
Psychometrika, 29(1):1–27, 1964.

[16] Rasmus Kyng, Anup Rao, and Sushant Sachdeva. Fast, provable algorithms for isotonic
regression in all `p-norms. In Neural Information Processing Systems (NIPS), 2015.

[17] Ronny Luss, Saharon Rosset, and Moni Shahar. Efficient regularized isotonic regression with
application to gene–gene interaction search. Annals of Applied Statistics, 6(1):253–283, 2012.

9



[18] Aditya Krishna Menon, Xiaoqian Jiang, Shankar Vembu, Charles Elkan, and Lucila Ohno-
Machado. Predicting accurate probabilities with a ranking loss. In Interantional Conference on
Machine Learning (ICML), 2012.

[19] T. Moon, A. Smola, Y. Chang, and Z. Zheng. Intervalrank: Isotonic regression with listwise
and pairwise constraint. In WSDM, pages 151–160. ACM, 2010.

[20] Harikrishna Narasimhan and Shivani Agarwal. On the relationship between binary classification,
bipartite ranking, and binary class probability estimation. In Neural Information Processing
Systems (NIPS), pages 2913–2921, 2013.

[21] Alexandru Niculescu-Mizil and Rich Caruana. Predicting good probabilities with supervised
learning. In ICML, volume 119, pages 625–632. ACM, 2005.

[22] G. Obozinski, C. E. Grant, G. R. G. Lanckriet, M. I. Jordan, and W. W. Noble. Consistent
probabilistic outputs for protein function prediction. Genome Biology, 2008 2008.

[23] Alexander Rakhlin and Karthik Sridharan. Online nonparametric regression. In Conference on
Learning Theory (COLT), pages 1232–1264, 2014.

[24] T. Robertson, F. T. Wright, and R. L. Dykstra. Order Restricted Statistical Inference. John
Wiley & Sons, 1998.

[25] Mario Stylianou and Nancy Flournoy. Dose finding using the biased coin up-and-down design
and isotonic regression. Biometrics, 58(1):171–177, 2002.

[26] Sara Van de Geer. Estimating a regression function. Annals of Statistics, 18:907–924, 1990.

[27] Vladimir Vovk, Ivan Petej, and Valentina Fedorova. Large-scale probabilistic predictors with
and without guarantees of validity. In Neural Information Processing Systems (NIPS), pages
892–900, 2015.

[28] Bianca Zadrozny and Charles Elkan. Transforming classifier scores into accurate multiclass
probability estimates. In International Conference on Knowledge Discovery and Data Mining
(KDD), pages 694–699, 2002.

[29] Cun-Hui Zhang. Risk bounds in isotonic regression. The Annals of Statistics, 30(2):528–555,
2002.

10


