
Supplementary Material for “Q-LDA: Uncovering Latent
Patterns in Text-based Sequential Decision Processes”

A Proof of Proposition 1

We first write out the joint probability of the Q-LDA model as
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marginalize the variables z

S

t

and z

A

t

in joint probability of the Q-LDA model and obtain
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where x

S

t

is the bag-of-words (BOW) vector for the observation text at the t-th time step. Note that
the probability depends on w
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First, by Bayes rule, we have
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where for simplicity of notation we dropped the dependency on the model parameters ⇥ ,
(�

S

,�

A

, W

SS

, W

SA

, W

AS

, W

AA

, U). Note that the denominator is independent of (✓

S

t

, ✓

A

t

). There-
fore, the MAP estimate of (✓

S

t

, ✓

A

t

) is the same as maximizing the numerator:

(

ˆ

✓

S

t

,

ˆ

✓

A

t

) , arg max

✓t

p(✓

S

t

, ✓

A

t

, x

S

t

, x

A

t

|xS

1:t�1, x
A

1:t�1, a1:t�1) (17)

We now proceed to compute the probability p(✓

S

t

, ✓

A

t

, x

S

t

, x

A

t

|xS

1:t�1, x
A

1:t�1, a1:t�1). Note that

p(✓

S

t

, ✓

A

t

, x

S

t

, x

A

t

|xS

1:t�1, x
A

1:t�1, a1:t�1)

=

Z

p(x

S

t

|✓S

t

,�

S

)p(✓

S

t

|↵S

t

)p(↵

S

t

|✓S

t�1, ✓
at�1

t�1 , W

SS

, W

SA

)

⇥ p(x

A

t

|✓A

t

,�

A

)p(✓

A

t

|↵A

t

)p(↵

A

t

|✓S

t�1, ✓
at�1

t�1 , W

AA

, W

AS

)

⇥ p(✓

S

t�1, ✓
A

t�1|xS

1:t�1, x
A

1:t�1, a1:t�1)d↵

S

t

d↵

A

t

d✓

S

t�1d✓

A

t�1 (18)

Note that the random variable a

t�1 is generated according to ⇡

b

(a

t�1|xS

1:t�1, x
A

1:t�1, a1:t�2), which
is conditioned on x

S

1:t�1, x

A

1:t�1 and a1:t�2. Therefore, knowing a

t�1 does not provide additional
information regarding ✓

S

t�1 and ✓

A

t�1 once x

S

1:t�1, x

A

1:t�1 and a1:t�2 are known, which leads to the
following relation:

p(✓

S

t�1, ✓
A

t�1|xS

1:t�1, x
A

1:t�1, a1:t�1) = p(✓

S

t�1, ✓
A

t�1|xS

1:t�1, x
A

1:t�1, a1:t�2) (19)

11



Substituting the above expression into (18), we obtain
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where step (a) uses the fact that the probability distribution of ↵
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Using the definition of these probability distributions, we can show that the above MAP estimation
problem can be decomposed into
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Note that the approximate MAP inference of ✓
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independent optimization problems, which could be solved by mirror descent separately. Therefore,
we complete our proof of Proposition 1.

B Approximation of the learning objective function

In this appendix, we show that the learning objective function (3) can be approximated by the cost
function (7). For convenience, we repeat (3) below:
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where the last step uses the fact that the behavior policy for exploring the environment does not
depend on the current model parameter to be optimized and the fact that the intermediate rewards are
known deterministic quantities except the terminal reward. Likewise, we can also get
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Dividing (25) by the above expression leads to
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We now examine the term inside the product of (27). Unfortunately, the exact expression is not
tractable as it requires to marginalize out all the latent variables, which cannot be done in closed-form.
Instead, we develop approximate expressions for it. Note that
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t+1|xS
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⇢
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b

Q(✓
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t+1, ✓
b

t+1)

�
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b

Q(

ˆ

✓

S

t+1,
ˆ

✓

b

t+1) (35)

In summary, we have the approximation:

d

t

=

(

r

t

+ � max

b

Q(

ˆ

✓

S

t+1,
ˆ

✓

b

t+1) t < T

i

r

t

t = T

i

(36)

which completes our proof.

C Introduction of the two text games

In Figure 3, we show two screenshots of the two text games used in this paper. The first game belongs
to choice-based game, where the feasible actions at each time are listed separately as candidate
choices. And the second game is a mix between choice-based and hypertext-based game (where
the actions are embedded in the observation text as substrings with hyperlinks). The action spaces
of both games are defined by natural languages and the feasible actions change over time, which
is a setting that Q-LDA is designed for. This setting was believed to be more challenging than the
parser-based text games in [19], which accepts a (small) fixed set of pre-defined typed-in commands
(e.g., “eat apple”, “get key”). Therefore, we do not consider parser-based game and will focus on the
choice-based and hyperlink-based games. To be self-contained, we include the description of the two
text games (“Saving John” and “Machine of Death”) from [11] (Tables 3, 4, and 5). Table 3 gives the
basic statistics of the two text games, Tables 4-5 give the rewards for different endings of the two
games. In Table 6, we give an example text flow when playing “Machine of Death”. In addition, the
number of conversation turns (number of steps) per episode is 10-30 for “SavingJohn” and is 10-200
for “Machine of Death”. When the training converges, the length is around 7 for “SavingJohn” and
is between 10-20 for “Machine of Death”. For more details, the readers are referred to [11] and its
supplementary material.
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(a) “Saving John” (b) “Machine of Death”

Figure 3: The user interface of the two text games used for evaluation.

Table 3: Statistics for the games “Saving John” and and “Machine of Death”.

Game Saving John Machine of Death
Text game type Choice Choice & Hypertext
Vocab size 1762 2258
Action vocab size 171 419
Avg. words/description 76.67 67.80
State transitions Deterministic Stochastic
# of states (underlying) � 70 � 200

D Additional experiment results

In Table 6, we show the snapshots of the text game “Machine of Death” at three different time steps:
beginning (t = 2), in the middle (t = 8), and approaching the end (t = 15). In the table, we show
the observation texts and the action texts for all the actions. The action texts highlighted in boldface
correspond to the selected action. Below, we show the value of the matrix U in the learned model
parameter on “Machine of Death” task:

U =

2

6

4

1.2014 39.5233 20.7054 12.2296

22.1366 12.4041 1.3726 �0.1604

2.5195 4.8452 4.1210 1.9419

5.3332 8.3989 13.3208 4.1159

3

7

5

(37)

E Implementation details

E.1 Details of the inference algorithm

As we discussed in the paper, we use mirror descent algorithm to perform MAP inference. In
Algorithm 2, the MAP inference is implemented with constant step-size �. In practice, we found that
it converges faster if we use adaptive step-size determined by line search. In Algorithm 3, we include
the mirror descent inference algorithm with line search.

E.2 Details of the learning algorithm

In Figure 4, we visualize the computation graph of the inference step time t, which illustrates the
recursive inference steps in Algorithm 2 (or Algorithm 3). We observe that the recursive inference
process could be interpreted as a recurrent neural network (RNN) with the following special structures.
The topic distributions ✓

S

t

and {✓

a

t

} can be viewed as A

t

+ 1 (time-varying) sets of hidden units that
satisfy probabilistic simplex constraints, which are computed by A

t

+ 1 feedforward mirror descent
networks (Figure 4(b)) from the input vectors x

S

t

and {x

a

t

} and the Dirichlet parameters ↵̂

S

t

and
↵̂

A

t

. The recurrent links from the current hidden units (✓S

t

and {✓

A

t

}) to the next ones are through
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Table 4: Final rewards defined for the text game “Saving John"

Reward Endings (partially shown)
-20 Suspicion fills my heart and I scream. Is she trying to kill me? I don’t trust her one bit...
-10 Submerged under water once more, I lose all focus...
0 Even now, she’s there for me. And I have done nothing for her...
10 Honest to God, I don’t know what I see in her. Looking around, the situation’s not so bad...
20 Suddenly I can see the sky... I focus on the most important thing - that I’m happy to be alive.

Table 5: Final rewards for the text game “Machine of Death.” Scores are assigned according to
whether the character survives, how the friendship develops, and whether he overcomes his fear.

Reward Endings (partially shown)
-20 You spend your last few moments on Earth lying there, shot through the heart, by the image of

Jon Bon Jovi.
-20 you hear Bon Jovi say as the world fades around you.
-20 As the screams you hear around you slowly fade and your vision begins to blur, you look at the

words which ended your life.
-10 You may be locked away for some time.
-10 Eventually you’re escorted into the back of a police car as Rachel looks on in horror.
-10 Fate can wait.
-10 Sadly, you’re so distracted with looking up the number that you don’t notice the large truck

speeding down the street.
-10 All these hiccups lead to one grand disaster.
10 Stay the hell away from me! She blurts as she disappears into the crowd emerging from the bar.
20 You can’t help but smile.
20 Hope you have a good life.
20 Congratulations!
20 Rachel waves goodbye as you begin the long drive home. After a few minutes, you turn the radio

on to break the silence.
30 After all, it’s your life. It’s now or never. You ain’t gonna live forever. You just want to live

while you’re alive.

the Dirichlet parameters computed via (11). Furthermore, there are A

t

+ 1 output units, which are
pairwise bilinear functions of ✓

S

t

and ✓

a

t

for each a = 1, . . . , A

t

. Therefore, the entire inference
process could be interpreted as using a special structured RNN to approximate the Q-function in
reinforcement learning. From this perspective, our work is related to DRRN [11] in that both of them
use separate embedding vectors for the state and action texts and that they both use bilinear functions
to map the embeddings into a Q-value. However, our work uses a special structured RNN to embed
the input texts into their respective representation vectors while DRRN uses standard feedforward
DNN. Our work is also related to the deep recurrent Q-network (DRQN) [10], which uses standard
RNN (rather than the special structured RNN in our case) to approximate the Q-function to address
the partial observability problem in reinforcement learning. Different from our model, the DRQN
only works in the case with a fixed action space and could not handle the situation where the actions
are described by natural languages. Finally, the above special RNN structures are designed from the
generative model of Q-LDA, while both DRRN and DRQN are constructed as a black-box model
for function approximation in Q-learning. This enables Q-LDAto be more interpretable during the
decision making process.

E.3 Details of the experiments

The softmax action selection rule for behavior policy can be written as ⇡

m

b

(a

t

|xS

1:t, x
A

1:t, a1:t�1) /
exp[

1
⌧

Q(

ˆ

✓

S

t

,

ˆ

✓

a

t

)] for all a

t

= 1, . . . , A

t

, where ⌧ is a temperature parameter that controls the sharp-
ness of the softmax. Q(

ˆ

✓

S

t

,

ˆ

✓

a

t

) is computed according to Algorithm 2 using the model parameter
⇥

m�1 from the previous experience replay. That is, at the exploration stage of each m-th experience
replay, the behavior policy ⇡

m

b

(·) is parameterized by ⇥
m�1, which will be fixed during the explo-

ration stage. With this, the behavior policy ⇡

m

b

can be viewed as independent of the model parameter
⇥ to be optimized in the m-th replay. During the exploration stage, we will terminate the episode
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Table 6: Snapshots of game observation and actions at different times for “Machine of Death”

Time step t = 2 t = 8 t = 15

Observation
text (partially
shown)

You approach The Ma-
chine, which has the very
charming street name of
The Machine of Death.
The device has only been
around for a few years,
but it’s already hard to
imagine a world without
it, as it completely re-
shaped it, creating a cul-
ture of death. ... You
never did get yourself
tested. Maybe today is
the day.

You decided that you
don’t need a firearm. You
already have a set of guns
sitting below your shoul-
ders, after all. ... You
take a moment to relish
the drunken merriment.
Then, in a corner, you see
rock idol Jon Bon Jovi.

‘It makes me feel normal,’
she admits. ... she says
with a laugh. ’I’m go-
ing to go let Bonny have
a run. You better be
careful around him,’ she
adds with a mischievous
grin. ...... People call
Rachel the crazy one, but
you’re the one carrying a
gun around in case you
bump into members of
Bon Jovi!

Action texts
(selected ac-
tion in bold)

[1] Return your eyes to
the mall.
[2] A slip of paper is
stuck to the side of the
Machine. Examine it.
[3] Stand back and watch
people use the Machine.
[4] Insert a coin.

[1] Duck! DUCK!
[2] Tackle him to the
ground!
[3] Ignore him.

[1] It’s time to let it
go. Dismantle the gun
to the best of your abil-
ity and get rid of it.
[2] Things could have
gone a lot worse tonight.
Who knows when I’ll
need that gun to survive!
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(b) The computation graph of mirror descent

Figure 4: (a) Feedforward computation graph for the model in Figure 1. We use the same blue color
for the mirror descent graphs on the action texts to represent that they share the same model parameter
�

A

. The mirror descent graph for the state text uses a different yellow color to imply that it uses a
different model parameter �

S

. (b) The mirror descent graph in (a), where � is either �
S

or �
A

.

when its length exceeds 100 in “Saving John” and will terminate the episode when the length exceeds
500 in “Machine of Death”.

For learning algorithm, we use RMSProp to adaptively adjust the learning rate for each model
parameter, with exponential decaying parameter 0.999. The overall learning rates are chosen to be:

• µ

U

= 1.0 for both games
• In “Saving John”, µ�S = µ�A = 10

�4 when the number of topics is 20 and 50, and 10

�5

when the number of topics is 100. In “Machine of Death”, µ�S = µ�A = 10

�4 when the
number of topics is 20 and 50, and 10

�6 when the number of topics is 100.
• In “Saving John”, the learning rates for all W

SS

, W

SA

, W

AS

, W

AA

are chosen to be 10

�2.
In “Machine of Death”, they are chosen to be 10

�2 when the number of topics is 20 and 50,
and 10

�3 when the number of topics is 100.
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Algorithm 3 Inference with Mirror-Descent over one episode (with line search)
1: for t = 0, . . . , T

i

do
2: if t = 0 then
3: ↵̂

S

0 = ↵

S

0 and ↵̂

A

0 = ↵

A

0 .
4: else
5: ↵̂

S

t

= ↵

S

(✓

S

t�1,L

, ✓

at�1

t�1,L

, W

S

) and ↵̂

A

t

= ↵

A

(✓

S

t�1,L

, ✓

at�1

t�1,L

, W

A

)

6: end if
7: Initialization: ✓

S

t,0 =

1
K

1 and T

t,0.
8: for ` = 1, . . . , L do
9: T

t,`

= T

t,`�1/⌘, where 0 < ⌘ < 1 (e.g., ⌘ = 0.5).
10: while 1 do
11: ✓

S

t,`

=

1
C✓

· ✓

S

t,`�1 � exp

⇣

T

t,`

h

�

T

xt

�✓

S
t,`�1

+

↵�1
✓

S
t,`�1

i⌘

12: if f

S

(✓

S

t,`

) > f

S

(✓

S

t,`�1) + [r
✓

S
t
f

S

(✓

S

t,`�1)]
T

(✓

S

t,`

� ✓

S

t,`�1) +

1
Tt,`
 (✓

S

t,`

, ✓

S

t,`�1) then
13: T

t,`

 ⌘ · T

t,`

14: else
15: break
16: end if
17: end while
18: end for
19: for a = 1, . . . , |A

t

| do
20: Initialization: ✓

a

t,0 =

1
K

1 and T

t,0.
21: for ` = 1, . . . , L do
22: T

t,`

= T

t,`�1/⌘, where 0 < ⌘ < 1 (e.g., ⌘ = 0.5).
23: while 1 do
24: ✓

a

t,`

=

1
C✓

· ✓

a

t,`�1 � exp

⇣

T

t,`

h

�

T
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�✓

a
t,`�1

+

↵�1
✓

a
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i⌘

25: if f

a
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a
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) > f

a

(✓

a

t,`�1)+[r
✓

a
t
f

a

(✓

a

t,`�1)]
T

(✓

a

t,`

�✓

a

t,`�1)+
1

Tt,`
 (✓

a

t,`

, ✓

a

t,`�1) then
26: T

t,`

 ⌘ · T

t,`

27: else
28: break
29: end if
30: end while
31: end for
32: end for
33: Output: ˆ

✓

S

t

= ✓

S

t,L

, ˆ

✓

a

t

= ✓

a

t,L

, and

E
�

Q(✓

S

t

, ✓

a

t

)|xS

1:t, x
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⇡ (✓

a

t,L

)

T

U✓

S

t,L

, a = 1, . . . , |A
t

| (38)

34: end for

• The initial Dirichlet parameters ↵

S

1 = ↵

A

1 = 1.001. The rest of the ↵

S

t

and ↵

A

t

is dy-
namically determined by the model itself and could be less than or greater than one.
�

S

= �

A

= 1.001.

• The discount factor � = 0.9, same as the choice in [11].

• �

2
r

= 3.2.

• We clip the gradient of �
S

and �
A

with threshold 10

4, and we clip the gradients of
W

SS

, W

SA

, W

AS

, W

AA

with threshold 100.

E.4 Derivation of the Back Propagation Formula

In this appendix, we derive the back propagation formula for learning the LDA model from feedbacks.
The cost function of the problem can be expressed as

L(⇥) =

N

X

i=1

l

i

(⇥)� ln p(⇥) = N

 

1

N

N

X

i=1

l

i

(⇥)� 1

N

ln p(⇥)

!

(39)
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where
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The gradients of ln p(⇥) with respect to model parameters are relatively easy. Below, we mainly
focus on deriving the gradient of l

i

(⇥). We summarize the result before the derivation. Then, we
have
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E.5 �q
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By the definition of l
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By chain rule, we have
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Substituting the above expression, we arrive at the expression of @li
@U

.

E.7 @li
@�S

The expression of @li
@�S
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Then, we have
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By the expression of q

t
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)

T
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S

t,L
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S
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=
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Noting that
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where
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↵

S
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✓

S
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SA

✓
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where
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S
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Likewise, we can get
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where
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Substituting (59), (60) and (61) into (58), we obtain
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Multiplying both sides by 1T

p

S

t,L

, we obtain the desired result.

E.8 @li
@�A

The related expression for @li
@�A

can be derived in a similar manner as that of @li
@�S

. Therefore, we
omit the derivation for brevity.
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By chain rule, it holds that
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Noting that
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we have
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Substituting the above expressions, we have
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where in the last step, we used the fact that ⇠
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. In a similar manner,

we can derive the expression for �↵

A

t

.

E.10 @`i
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and @li
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We will only derive the expression for @`i
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and the derivation of the others is similar. Let [W
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ij

denote the (i, j)-th component of the matrix W
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. Then, by chain rule, we have
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By the fact that
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where e

i

is a vector with i-th element being one and zero otherwise. Then, it holds that
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so that putting in matrix form:
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