
APPENDIX:
The Unreasonable Effectiveness of Random Orthogonal Embeddings

We present here details and proofs of all the theoretical results presented in the main body of the
paper. We also provide further experimental results in §10.

We highlight proofs of several key results that may be of particular interest to the reader:

• The proof of Theorem 3.3; see §8.3.

• The proof of Theorem 3.6; see §8.5.

• The proof of Theorem 4.3; see §9.2.

In the Appendix we will use interchangeably two notations for the dot product between vectors x and
y, namely: x>y and 〈x,y〉.

8 Proofs of results in §3

8.1 Proof of Lemma 3.1

Proof. Denote Xi = (gi)>x · (gi)>y, where gi stands for the ith row of the unstructured Gaussian
matrix G ∈ Rm×n. Note that we have:

K̂base
m (x,y) =

1

m

m∑
i=1

Xi. (7)

Denote gi = (gi1, ..., g
i
n)>. Notice that from the independence of gijs and the fact that: E[gij ] = 0,

E[(gij)
2] = 1, we get: E[Xi] =

∑n
i=1 xiyi = x>y, thus the estimator is unbiased. Since the

estimator is unbiased, we have: MSE(K̂base
m (x,y)) = V ar(K̂base

m (x,y)). Thus we get:

MSE(K̂base
m (x,y)) =

1

m2

∑
i,j

(E[XiXj ]− E[Xi]E[Xj ]). (8)

From the independence of different Xis, we get:

MSE(K̂base
m (x,y)) =

1

m2

∑
i

(E[X2
i ]− (E[Xi])

2). (9)

Now notice that different Xis have the same distribution, thus we get:

MSE(K̂base
m (x,y)) =

1

m
(E[X2

1 ]− (E[X1])2). (10)

From the unbiasedness of the estimator, we have: E[X1] = x>y. Therefore we obtain:

MSE(K̂base
m (x,y)) =

1

m
(E[X2

1 ]− (x>y)2). (11)

Now notice that

E[X2
1 ] = E[

∑
i1,j1,i2,j2

gi1gj1gi2gj2xi1yj1xi2yj2 ] =
∑

i1,j1,i2,j2

xi1yj1xi2yj2E[gi1gj1gi2gj2 ], (12)

where (g1, ..., gn) stands for the first row of G. In the expression above the only nonzero terms
corresponds to quadruples (i1, j1, i2, j2), where no index appears odd number of times. Therefore,
from the inclusion-exclusion principle and the fact that E[g2

i ] = 1 and E[g4
i ] = 3, we obtain

E[X2
1 ] =

∑
i1=j1,i2=j2

xi1yj1xi2yj2E[gi1gj1gi2gj2 ] +
∑

i1=i2,j1=j2

xi1yj1xi2yj2E[gi1gj1gi2gj2 ] (13)
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+
∑

i1=j2,i2=j1

xi1yj1xi2yj2E[gi1gj1gi2gj2 ]−
∑

i1=j1=i2=j2

xi1yj1xi2yj2E[gi1gj1gi2gj2 ]

(14)

= ((x>y)2 −
n∑
i=1

x2
i y

2
i + 3

n∑
i=1

x2
i y

2
i ) + ((‖x‖2‖y‖2)2 −

n∑
i=1

x2
i y

2
i + 3

n∑
i=1

x2
i y

2
i ) (15)

+ ((x>y)2 −
n∑
i=1

x2
i y

2
i + 3

n∑
i=1

x2
i y

2
i )− 3 · 2

n∑
i=1

x2
i y

2
i (16)

= (‖x‖2‖y‖2)2 + 2(x>y)2. (17)

Therefore we obtain

MSE(K̂base
m (x,y)) =

1

m
((‖x‖2‖y‖2)2 +2(x>y)2− (x>y)2) =

1

m
(‖x‖22‖y‖22 +(x>y)2), (18)

which completes the proof.

8.2 Proof of Theorem 3.2

Proof. The unbiasedness of the Gaussian orthogonal estimator comes from the fact that every row of
the Gaussian orthogonal matrix is sampled from multivariate Gaussian distribution with entries taken
independently at random from N (0, 1).

Note that:
Cov(Xi, Xj) = E[XiXj ]− E[Xi]E[Xj ], (19)

where: Xi = (r>i x)(r>i y), Xj = (r>j x)(r>j y) and ri, rj stand for the ith and jth row of the
Gaussian orthogonal matrix respectively. From the fact that Gaussian orthogonal estimator is
unbiased, we get:

E[Xi] = x>y. (20)

Let us now compute E[XiXj ]. Writing Z1 = ri, Z2 = rj , we begin with some geometric observa-
tions:

• If φ ∈ [0, π/2] is the acute angle between Z1 and the x-y plane, then φ has density
f(φ) = (n− 2) cos(φ) sinn−3(φ).

• The squared norm of the projection of Z1 into the x-y plane is therefore given by the product
of a χ2

n random variable (the norm of Z2), multiplied by cos2(φ), where φ is distributed as
described above, independently from the χ2

n random variable.

• The angle ψ ∈ [0, 2π) between x and the projection of Z1 into the x-y plane is distributed
uniformly.

• Conditioned on the angle φ, the direction of Z2 is distributed uniformly on the hyperplane
of Rn orthogonal to Z1. Using hyperspherical coordinates for the unit hypersphere of this
hyperplane, we may pick an orthonormal basis of the x-y plane such that the first basis
vector is the unit vector in the direction of the projection of Z1, and the coordinates of
the projection of Z2 with respect to this basis are (sin(φ) cos(ϕ1), sin(ϕ1) cos(ϕ2)), where
ϕ1, ϕ2 are random angles taking values in [0, π], with densities given by sinn−3(ϕ1)I(n−
3)−1 and sinn−4(ϕ2)I(n − 4)−1 respectively. Here I(k) =

∫ π
0

sink(x)dx =
√
πΓ((k +

1)/2)/Γ(k/2 + 1).

• The angle t that the projection of Z2 into the x-y plane makes with the projection of Z1

then satisfies tan(t) = sin(ϕ1) cos(ϕ2)/(sin(φ) cos(ϕ1)) = cos(ϕ1)/ sin(φ)× tan(ϕ1).

Applying these observations, we get:

E[XiXj ]

=E[(r>i x)(r>i y)(r>j x)(r>j y)]

=‖x‖22‖y‖22n2

∫ π/2

0

dφf(φ) cos2(φ)

∫ π

0

dϕ1 sinn−3(ϕ1)I(n− 3)−1

∫ π

0

dϕ2 sinn−4(ϕ2)I(n− 4)−1×
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∫ 2π

0

dψ

2π

(
sin2(φ) cos2(ϕ1) + sin2(ϕ1) cos2(ϕ2)

)
cos(ψ) cos(ψ + θ) cos(t− ψ) cos(t− θ − ψ).

(21)

We first apply the cosine product formula to the two adjacent pairs making up the final product of
four cosines involving ψ in the integrand above. The majority of these terms vanish upon integrating
with respect to ψ, due to the periodicity of the integrands wrt ψ. We are thus left with:

E[XiXj ]

=‖x‖22‖y‖22n2

∫ π/2

0

dφf(φ) cos2(φ)

∫ π

0

dϕ1 sinn−3(ϕ1)I(n− 3)−1

∫ π

0

dϕ2 sinn−4(ϕ2)I(n− 4)−1×

(
sin2(φ) cos2(ϕ1) + sin2(ϕ1) cos2(ϕ2)

)(1

4
cos2(θ) +

1

8
cos(2t)

)
. (22)

We now consider two constituent parts of the integral above: one involving the term 1
4 cos2(θ), and

the other involving 1
8 cos(2t). We deal first with the former; its evaluation requires several standard

trigonometric integrals:

‖x‖22‖y‖22n2

∫ π/2

0

dφf(φ) cos2(φ)

∫ π

0

dϕ1 sinn−3(ϕ1)I(n− 3)−1

∫ π

0

dϕ2 sinn−4(ϕ2)I(n− 4)−1×(
sin2(φ) cos2(ϕ1) + sin2(ϕ1) cos2(ϕ2)

) 1

4
cos2(θ)

=
‖x‖22‖y‖22n2 cos2(θ)

4I(n− 3)I(n− 4)

∫ π/2

0

dφf(φ) cos2(φ)

∫ π

0

dϕ1 sinn−3(ϕ1)×(
sin2(φ) cos2(ϕ1)I(n− 4) + sin2(ϕ1) (I(n− 4)− I(n− 2))

)
=
‖x‖22‖y‖22n2 cos2(θ)

4I(n− 3)I(n− 4)

∫ π/2

0

dφ(n− 2) sinn−3(φ) cos(φ) cos2(φ)×(
sin2(φ)(I(n− 3)− I(n− 1))I(n− 4) + I(n− 1) (I(n− 4)− I(n− 2))

)
=
‖x‖22‖y‖22n2 cos2(θ)

4I(n− 3)I(n− 4)

((
1

n
− 1

n+ 2

)
(I(n− 3)− I(n− 1))I(n− 4)+

I(n− 1) (I(n− 4)− I(n− 2))

(
1

n− 2
− 1

n

))
. (23)

We may now turn our attention to the other constituent integral of Equation (22), which in-
volves the term cos(2t). Recall that from our earlier geometric considerations, we have tan(t) =
cos(ϕ2)
sin(φ) tan(φ1). An elementary trigonometric calculation using the tan half-angle formula yields:

cos(2t) = cos

(
2 arctan

(
cos(ϕ2)

sin(φ)
tan(ϕ1)

))

=
1− cos2(ϕ2)

sin2(φ)
tan2(ϕ1)

cos2(ϕ2)
sin2(φ)

tan2(ϕ1) + 1

=
sin2(φ) cos2(ϕ1)− cos2(ϕ2) sin2(ϕ1)

cos2(ϕ2) sin2(ϕ1) + sin2(φ) cos2(ϕ1)
. (24)

This observation greatly simplifies the integral from Equation (22) involving the term cos(2t), as
follows:

‖x‖22‖y‖22n2

∫ π/2

0

dφf(φ) cos2(φ)

∫ π

0

dϕ1 sinn−3(ϕ1)I(n− 3)−1

∫ π

0

dϕ2 sinn−4(ϕ2)I(n− 4)−1×(
sin2(φ) cos2(ϕ1) + sin2(ϕ1) cos2(ϕ2)

) 1

8
cos(2t)

=
‖x‖22‖y‖22n2

8I(n− 3)I(n− 4)

∫ π/2

0

dφf(φ) cos2(φ)

∫ π

0

dϕ1 sinn−3(ϕ1)

∫ π

0

dϕ2 sinn−4(ϕ2)×
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(
sin2(φ) cos2(ϕ1) + sin2(ϕ1) cos2(ϕ2)

) sin2(φ) cos2(ϕ1)− cos2(ϕ2) sin2(ϕ1)

cos2(ϕ2) sin2(ϕ1) + sin2(φ) cos2(ϕ1)

=
‖x‖22‖y‖22n2

8I(n− 3)I(n− 4)

∫ π/2

0

dφf(φ) cos2(φ)

∫ π

0

dϕ1 sinn−3(ϕ1)

∫ π

0

dϕ2 sinn−4(ϕ2)×(
sin2(φ) cos2(ϕ1)− cos2(ϕ2) sin2(ϕ1)

)
.
(25)

But now observe that this integral is exactly of the form dealt with in (23), hence we may immediately
identify its value as:

‖x‖22‖y‖22n2

8I(n− 3)I(n− 4)

((
1

n
− 1

n+ 2

)
(I(n− 3)− I(n− 1))I(n− 4)−

I(n− 1) (I(n− 4)− I(n− 2))

(
1

n− 2
− 1

n

))
. (26)

Thus substituting our calculations back into Equation (22), we obtain:

E[XiXj ]

=
‖x‖22‖y‖22n2

4I(n− 3)I(n− 4)

((
1

n
− 1

n+ 2

)
(I(n− 3)− I(n− 1))I(n− 4)

[
cos2(θ) +

1

2

]
+

I(n− 1) (I(n− 4)− I(n− 2))

(
1

n− 2
− 1

n

)[
cos2(θ)− 1

2

])
. (27)

The covariance term is obtained by subtracting off E[Xi]E[Xi] = 〈x,y〉2. Now we sum over
m(m − 1) covariance terms and take into account the normalization factor 1√

m
for the Gaussian

matrix entries. That gives the extra multiplicative term m(m−1)
m2 = m−1

m . Thus we obtain the quantity
in the statement of the theorem, completing the proof.

8.3 Proof of Theorem 3.3

We obtain Theorem 3.3 through a sequence of smaller propositions. Broadly, the strategy is first to
show that the estimators of Theorem 3.3 are unbiased (Proposition 8.1). An expression for the mean
squared error of the estimator K̂(1)

m with one matrix block is then derived (Proposition 8.2). Finally,
a straightforward recursive formula for the mean squared error of the general estimator is derived
(Proposition 8.3), and the result of the theorem then follows.
Proposition 8.1. The estimator K̂(k)

m (x,y) is unbiased, for all k, n ∈ N, m ≤ n, and x,y ∈ Rn.

Proof. Notice first that since rows of S = {si,j} are orthogonal and are L2-normalized, the matrix S
is an isometry. Thus each block SDi is also an isometry. Therefore it suffices to prove the claim for
k = 1.

Then, denoting by J = (J1, . . . , Jm) the indices of the randomly selected rows of SD1, note that the
estimator K̂(1)

m (x,y) may be expressed in the form

K̂(1)
m (x,y) =

1

m

m∑
i=1

(√
n(SD1)Jix×

√
n(SD1)Jiy

)
,

where (SD1)i is the ith row of SD1. Since each of the rows of SD1 has the same marginal
distribution, it suffices to demonstrate that E[yTD1S

>
1 S1D1x] = x>y

n , where S1 is the first row of
S. Now note

E[y>DS>1 S1Dx]=
1

n
E

[
n∑
i=1

yidi ×
n∑
i=1

xidi

]
=

1

n
E

[
n∑
i=1

xiyid
2
i

]
+ E

∑
i 6=j

xiyjdidj

=
x>y

n
,

where di = Dii are iid Rademacher random variables, for i = 1, . . . , n.
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With Proposition 8.1 in place, the mean square error for the estimator K̂(1)
m using one matrix block

can be derived.
Proposition 8.2. The MSE of the single SD(R)-block m-feature estimator K̂(1)

m (x,y) for 〈x,y〉
using the without replacement row sub-sampling strategy is

MSE(K̂(1)
m (x,y)) =

1

m

(
n−m
n− 1

)(
‖x‖2‖y‖2 + 〈x,y〉2 − 2

n∑
i=1

x2
i y

2
i

)
.

Proof. First note that since K̂(1)
m (x,y) is unbiased, the mean squared error is simply the variance of

this estimator. Secondly, denoting the indices of the m randomly selected rows by J = (J1, . . . , Jm),
by conditioning on J we obtain the following:

Var
(
K̂(1)
m (x,y)

)
=

n2

m2

(
E

[
Var

(
m∑
p=1

(SDx)Jp(SDy)Jp

∣∣∣∣∣J
)]

+ Var

(
E

[
m∑
p=1

(SDx)Jp(SDy)Jp

∣∣∣∣∣J
]))

.

Now note that the conditional expectation in the second term is constant as a function of J , since
conditional on whichever rows are sampled, the resulting estimator is unbiased. Taking the variance
of this constant therefore causes the second term to vanish. Now consider the conditional variance
that appears in the first term:

Var

(
m∑
p=1

(SDx)Jp(SDy)Jp

∣∣∣∣∣J
)

=

m∑
p=1

m∑
p′=1

Cov
(

(SDx)Jm(SDy)Jp , (SDx)Jp′ (SDy)Jp′
∣∣J)

=

m∑
p,p′=1

n∑
i,j,k,l=1

sJpisJpjsJp′ksJp′ lxiyjxkylCov (didj , dkdl) ,

where we write D = Diag(d1, . . . , dn). Now note that Cov (didj , dkdl) is non-zero iff i, j are
distinct, and {i, j} = {k, l}, in which case the covariance is 1. We therefore obtain:

Var

(
m∑
p=1

(SDx)Jp(SDy)Jp

∣∣∣∣∣J
)

=

m∑
p,p′=1

n∑
i 6=j

(
sJpisJpjsJp′ isJp′ jx

2
i y

2
j + sJpisJpjsJp′ jsJp′ ixiyjxjyi

)
.

Substituting this expression for the conditional variance into the decomposition of the MSE of the
estimator, we obtain the result of the theorem:

Var
(
K̂(1)
m (x,y)

)
=
n2

m2
E

 m∑
p,p′=1

n∑
i 6=j

(
sJpisJpjsJp′ isJp′ jx

2
i y

2
j + sJpisJpjsJp′ jsJp′ ixiyjxjyi

)
=
n2

m2

m∑
p,p′=1

n∑
i6=j

(
x2
i y

2
j + xixjyiyj

)
E
[
sJpisJpjsJp′ isJp′ j

]
.

We now consider the law on the index variables J = (J1, . . . , Jm) induced by the sub-sampling
strategy without replacement to evaluate the expectation in this last term. If p = p′, the integrand of
the expectation is deterministically 1/n2. If p 6= p′, then we obtain:

E
[
sJpisJpjsJp′ isJp′ j

]
=E

[
sJpisJpjE

[
sJp′ isJp′ j

∣∣Jp]]
=E
[
sJpisJpj

[(
1

n

(
n/2− 1

n− 1

)
− 1

n

(
n/2

n− 1

))
1{sJpisJpj=1/n}+(

1

n

(
n/2

n− 1

)
− 1

n

(
n/2− 1

n− 1

))
1{sJpisJpj=−1/n}

]]
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=
1

n(n− 1)
E
[
sJpisJpj

(
1{sJpisJpj=−1/n} − 1{sJpisJpj=1/n}

)]
=

1

n2(n− 1)
,

where we have used the fact that the products sJpisJpj and sJp′ isJp′ j take values in {±1/n}, and
because distinct rows of S are orthogonal, the marginal probability of each of the two values is 1/2.
A simple adjustment, using almost-sure distinctness of Jp and Jp′ , yields the conditional probabilities
needed to evaluate the conditional expectation that appears in the calculation above.

Substituting the values of these expectations back into the expression for the variance of K̂(1)
m (x,y)

then yields

Var(K̂(1)
m (x,y)) =

n2

m2

n∑
i 6=j

(
x2
i y

2
j + xixjyiyj

)(
m× 1

n2
−m(m− 1)× 1

n2(n− 1)

)

=
1

m

(
1− m− 1

n− 1

) n∑
i 6=j

(
x2
i y

2
j + xixjyiyj

)

=
1

m

(
1− m− 1

n− 1

) n∑
i,j=1

(x2
i y

2
j + xixjyiyj)− 2

n∑
i=1

x2
i y

2
i


=

1

m

(
n−m
n− 1

)(
〈x,y〉2 + ‖x‖2‖y‖2 − 2

n∑
i=1

x2
i y

2
i

)
,

as required.

We now turn our attention to the following recursive expression for the mean squared error of a
general estimator.
Proposition 8.3. Let k ≥ 2. We have the following recursion for the MSE of K(k)

m (x, y):

MSE(K̂(k)
m (x,y)) = E

[
MSE

(
K̂(k−1)
m (SD1x,SD1y)|D1

)]
.

Proof. The result follows from a straightforward application of the law of total variance, conditioning
on the matrix D1. Observe that

MSE(K̂(k)
m (x,y)) = Var(K̂(k)

m (x,y))

= E
[
Var

(
K̂(k)
m (x,y)

∣∣∣D1

)]
+ Var

(
E
[
K̂(k)
m (x,y)

∣∣∣D1

])
= E

[
Var

(
K̂(k−1)
m (SD1x,SD1y)

∣∣∣D1

)]
+ Var

(
E
[
K̂(k−1)
m (SD1x,SD1y)

∣∣∣D1

])
.

But examining the conditional expectation in the second term, we observe

E
[
K̂(k−1)
m (SD1x,SD1y)

∣∣∣D1

]
= 〈SD1x,SD1y〉 almost surely ,

by unbiasedness of the estimator, and since SD1 is orthogonal almost surely, this is equal to the
(constant) inner product 〈x,y〉 almost surely. This conditional expectation therefore has 0 variance,
and so the second term in the expression for the MSE above vanishes, which results in the statement
of the proposition.

With these intermediate propositions established, we are now in a position to prove Theorem 3.3. In
order to use the recursive result of Proposition 8.3, we require the following lemma.
Lemma 8.4. For all x, y,∈ Rn, we have

E

[
n∑
i=1

(SDx)2
i (SDy)2

i

]
=

1

n

(
‖x‖2‖y‖2 + 2〈x,y〉2 − 2

n∑
i=1

x2
i y

2
i

)
.
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Proof. The result follows by direct calculation. Note that

E

[
n∑
i=1

(SDx)
2
i (SDy)

2
i

]
= nE

( n∑
a=1

s1adaxa

)2(∑
a=1

s1adaya

)2


= n

n∑
i,j,k,l=1

s1is1js1ks1lxixjykylE [didjdkdl] ,

where the first inequality follows since the n summands indexed by i in the initial expectation are
identically distributed. Now note that the expectation E [didjdkdl] is non-zero iff i = j = k = l, or
i = j 6= k = l, or i = k 6= j = l, or i = l 6= k = l; in all such cases, the expectation takes the value
1. Substituting this into the above expression and collecting terms, we obtain

E

[
n∑
i=1

(SDx)
2
i (SDy)

2
i

]
=

1

n

 n∑
i=1

x2
i y

2
i +

∑
i 6=j

x2
i y

2
i + 2

∑
i 6=j

xixjyiyj


=

1

n

 n∑
i,j=1

x2
i y

2
j + 2

n∑
i,j=1

xixjyiyj − 2

n∑
i=1

x2
i y

2
i

 ,

from which the statement of the lemma follows immediately.

Proof of Theorem 3.3. Recall that we aim to establish the following general expression for k ≥ 1:

MSE(K̂(k)
m (x,y))=

1

m

(
n−m
n−1

)(
((x>y)2+‖x‖2‖y‖2)+

k−1∑
r=1

(−1)r2r

nr
(2(x>y)2+‖x‖2‖y‖2)+ (−1)k2k

nk−1

n∑
i=1

x2i y
2
i

)
.

We proceed by induction. The case k = 1 is verified by Proposition 8.2. For the inductive step,
suppose the result holds for some k ∈ N. Then observe by Proposition 8.3 and the induction
hypothesis, we have

MSE(K̂(k+1)
m (x,y)) = E

[
MSE

(
K̂(k−1)
m (SD1x,SD1y)|D1

)]
=

1

m

(
n−m
n− 1

)(
((x>y)2 + ‖x‖2‖y‖2) +

k−1∑
r=1

(−1)r2r

nr
(2(x>y)2 + ‖x‖2‖y‖2)

+
(−1)k2k

nk−1

n∑
i=1

E
[
(SD1x)2

i (SD1y)2
i

])
,

where we have used that SD1 is almost surely orthogonal, and therefore ‖SD1x‖2 = ‖x‖2 almost
surely, ‖SD1y‖2 = ‖y‖2 almost surely, and 〈SD1x,SD1y〉 = 〈x,y〉 almost surely. Applying
Lemma 8.4 to the remaining expectation and collecting terms yields the required expression for
MSE(K̂

(k+1)
m (x,y)), and the proof is complete.

8.4 Proof of Lemma 3.5

Proof. Consider the last block H that is sub-sampled. Notice that if rows r1 and r2 of H of indices i
and n

2 + i are chosen then from the recursive definition of H we conclude that (r2)>x = (r1
1)>x−

(r1
2)>x, where r1

1, r
1
2 stand for the first and second half of r1 respectively. Thus computations of

(r1)>x can be reused to compute both (r1)>x and (r2)>x in time n + O(1) instead of 2n. If we
denote by r the expected number of pairs of rows (i, n2 + i) that are chosen by the random sampling
mechanism, then we see that by applying the trick above for all the r pairs, we obtain time complexity
O((k − 1)n log(n) + n(m − 2r) + nr + r), where: O((k − 1)n log(n)) is the time required to
compute first (k − 1) HD blocks (with the use of Walsh-Hadamard Transform), O(n(m − 2r))
stands for time complexity of the brute force computations for these rows that were not coupled in
the last block and O(nr + r) comes from the above trick applied to all r aforementioned pairs of
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rows. Thus, to obtain the first term in the min-expression on time complexity from the statement of
the lemma, it remains to show that

E[r] =
(m− 1)m

2(n− 1)
. (28)

But this is straightforward. Note that the number of the m-subsets of the set of all n rows that contain
some fixed rows of indices i1, i2 (i1 6= i2) is

(
n−2
m−2

)
. Thus for any fixed pair of rows of indices i

and n
2 + i the probability that these two rows will be selected is exactly psucc =

(n−2
m−2)
(n
m)

= (m−1)m
(n−1)n .

Equation 28 comes from the fact that clearly: E[r] = n
2 psucc. Thus we obtain the first term in

the min-expression from the statement of the lemma. The other one comes from the fact that one
can always do all the computations by calculating k times Walsh-Hadamard transformation. That
completes the proof.

8.5 Proof of Theorem 3.6

The proof of Theorem 3.6 follows a very similar structure to that of Theorem 3.3; we proceed by
induction, and may use the results of Proposition 8.3 to set up a recursion. We first show unbiasedness
of the estimator (Proposition 8.5), and then treat the base case of the inductive argument (Proposition
8.6). We prove slightly more general statements than needed for Theorem 3.6, as this will allow us to
explore the fully complex case in §8.7.
Proposition 8.5. The estimator KH,(k)

m (x,y) is unbiased for all k, n ∈ N, m ≤ n, and x,y ∈ Cn
with 〈x,y〉 ∈ R; in particular, for all x,y ∈ R.

Proof. Following a similar argument to the proof of Proposition 8.1, note that it is sufficient to prove
the claim for k = 1, since each SD block is unitary, and hence preserves the Hermitian product
〈x,y〉.

Next, note that the estimator can be written as a sum of identically distributed terms:

K̂H,(1)
m (x,y) =

n

m

m∑
i=1

Re
(
(SD1x)Ji × (SD1y)Ji

)
.

The terms are identically distributed since the index variables Ji are marginally identically dis-
tributed, and the rows of SD1 are marginally identically distributed (the elements of a row are iid
Unif(S1)/

√
n). Now note

E
[
Re
(
(SD1x)Ji × (SD1y)Ji

)]
=

1

n
E

[
n∑
i=1

yidi ×
n∑
i=1

xidi

]

=
1

n
E

[
n∑
i=1

xiyididi

]
+ E

∑
i 6=j

xiyjdidj

 =
1

n
〈x,y〉 ,

where di = Dii
iid∼ Unif(S1) for i = 1, . . . , n. This immediately yields E

[
K̂
H,(1)
m (x,y)

]
= 〈x,y〉,

as required.

We now derive the base case for our inductive proof, again proving a slightly more general statement
then necessary for Theorem 3.6.
Proposition 8.6. Let x,y ∈ Cn such that 〈x,y〉 ∈ R. The MSE of the single complex SD-block
m-feature estimator KH,(1)

m (x,y) for 〈x,y〉 is

MSE(K̂H,(1)
m (x,y)) =

1

2m

(
n−m
n− 1

)(
〈x,x〉〈y,y〉+ 〈x,y〉2 −

n∑
r=1

|xr|2|yr|2 −
n∑
r=1

Re(x2
ry

2
r)

)
.
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Proof. The proof is very similar to that of Proposition 8.2. By the unbiasedness result of Proposition
8.5, the mean squared error of the estimator is simply the variance. We begin by conditioning on the
random index vector J selected by the sub-sampling procedure.

K̂H,(1)
m (x,y)) =

1

M
Re
(
〈
√
n(SD1x)J,

√
n(SDy)J〉

)
,

where again J is a set of uniform iid indices from 1, . . . , n, and the bar over D represents complex
conjugation. Since the estimator is again unbiased, its MSE is equal to its variance. First conditioning
on the index set J, as for Proposition 8.6, we obtain

Var
(
K̂H,(1)m (x, y)

)
=
n2

m2

(
E

[
Var

(
Re

(
m∑
p=1

(SD1x)Jp(SD1y)Jp

)∣∣∣∣∣J
)]

+Var

(
E

[
Re

(
m∑
p=1

(SD1x)Jp(SD1y)Jp

)∣∣∣∣∣J
]))

.

Again, the second term vanishes as the conditional expectation is constant as a function of J, by
unitarity of SD. Turning attention to the conditional variance expression in the first term, we note

Var

(
Re

(
m∑
p=1

(SD1x)Jp(SD1y)Jp

)∣∣∣∣∣J
)

=

m∑
p,p′=1

n∑
i,j,k,l=1

sJpisJpjsJp′ksJp′ lCov
(
Re(dixidjyj),Re(dkxkdlyl)

)
.

Now note that the covariance term is non-zero iff i, j are distinct, and {i, j} = {k, l}. We therefore
obtain

Var

(
Re

(
m∑
p=1

(SDx)Jp(SDy)Jp

)∣∣∣∣∣J
)

=

m∑
p,p′=1

n∑
i 6=j

sJpisJpjsJp′ isJp′ j
(
Cov

(
Re(dixidjyj),Re(dixidjyj)

)
+Cov

(
Re(dixidjyj),Re(djxjdiyi)

))
First consider the term Cov

(
Re(dixidjyj),Re(dixidjyj)

)
. The random variable dixidjyj is dis-

tributed uniformly on the circle in the complex plane centered at the origin with radius |xiyj |.
Therefore the variance of its real part is

Cov
(
Re(dixidjyj),Re(dixidjyj)

)
=

1

2
|xiyj |2 =

1

2
xixiyjyj .

For the second covariance term, we perform an explicit calculation. Let Z = eiθ = didj . Then we
have

Cov
(
Re(dixidjyj),Re(djxjdiyi)

)
= Cov

(
Re(Zxiyj),Re(Zxjyi)

)
= Cov (cos(θ)Re(xiyj)− sin(θ)Im(xiyj), cos(θ)Re(xjyi) + sin(θ)Im(xjyi))

=
1

2
(Re(xiyj)Re(xjyi)− Im(xiyj)Im(xjyi)) ,

with the final equality following since the angle θ is uniformly distributed on [0, 2π], and standard
trigonometric integral identities. We recognize the bracketed terms in the final line as the real part of
the product xixjyiyj . Substituting these into the expression for the conditional variance obtained
above, we have

Var

(
Re

(
m∑
p=1

(SDx)Jp(SDy)Jp

)∣∣∣∣∣J
)

=

m∑
p,p′=1

n∑
i6=j

sJpisJpjsJp′ isJp′ j
1

2

(
xixiyjyj +Re(xixjyiyj)

)
.

Now taking the expectation over the index variables J, we note that as in the proof of Proposition 8.2,
the expectation of the term sJpisJpjsJp′ isJp′ j is 1/n2 when p = p′, and 1/(n2(n− 1)) otherwise.
Therefore we obtain

Var
(
K̂H,(1)
m (x,y)

)
=

n2

m2

(m
n2

+
m(m− 1)

n2(n− 1)

)
1

2

n∑
i 6=j

(
xixiyjyj + Re(xixjyiyj)

)
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=
1

2m

(
n−m
n− 1

) n∑
i 6=j

(
xixiyjyj + Re(xixjyiyj)

)
=

1

2m

(
n−m
n− 1

) n∑
i,j=1

(
xixiyjyj + Re(xixjyiyj)

)
−

n∑
i=1

(xixiyiyi + Re(xixiyiyi))


=

1

2m

(
n−m
n− 1

)(
〈x,x〉〈y,y〉+ 〈x,y〉2 −

n∑
i=1

(xixiyiyi + Re(xixiyiyi))

)
,

where in the final equality we have used the assumption that 〈x,y〉 ∈ R.

We are now in a position to prove Theorem 3.6 by induction, using Proposition 8.6 as a base case,
and Proposition 8.3 for the inductive step.

Proof of Theorem 3.6. Recall that we aim to establish the following general expression for k ≥ 1:

MSE(K̂H,(k)m (x,y)) =
1

2m

(
n−m
n− 1

)(
((x>y)2 + ‖x‖2‖y‖2)+

k−1∑
r=1

(−1)r2r

nr
(2(x>y)2 + ‖x‖2‖y‖2) + (−1)k2k

nk−1

n∑
i=1

x2i y
2
i

)
.

We proceed by induction. The case k = 1 is verified by Proposition 8.6, and by noting that in the
expression obtained in Proposition 8.6, we have

n∑
i=1

xixiyiyi = Re(xixiyiyi) =

n∑
i=1

x2
i y

2
i .

For the inductive step, suppose the result holds for some k ∈ N. Then observe by Proposition 8.3 and
the induction hypothesis, we have, for x,y ∈ Rn:

MSE(K̂H,(k+1)
m (x,y)) = E

[
MSE

(
K̂(k−1)
m (SD1x,SD1y)|D1

)]
=

1

2m

(
n−m
n− 1

)(
((x>y)2 + ‖x‖2‖y‖2) +

k−1∑
r=1

(−1)r2r

nr
(2(x>y)2 + ‖x‖2‖y‖2)

+
(−1)k2k

nk−1

n∑
i=1

E
[
(SD1x)2

i (SD1y)2
i

])
,

where we have used that SD1 is almost surely orthogonal, and therefore ‖SD1x‖2 = ‖x‖2 almost
surely, ‖SD1y‖2 = ‖y‖2 almost surely, and 〈SD1x,SD1y〉 = 〈x,y〉 almost surely. Applying
Lemma 8.4 to the remaining expectation and collecting terms yields the required expression for
MSE(K̂

H,(k+1)
m (x,y)), and the proof is complete.

8.6 Proof of Corollary 3.7

The proof follows simply by following the inductive strategy of the proof of Theorem 3.6, replacing
the base case in Proposition 8.6 with the following.
Proposition 8.7. Let x,y ∈ Rn. The MSE of the single hybrid SD-block m-feature estimator
K
H,(1)
m (x,y) using a diagonal matrix with entries Unif({1,−1, i,−i}), rather than Unif(S1) for
〈x,y〉 is

MSE(K̂H,(1)
m (x,y)) =

1

2m

(
〈x,x〉〈y,y〉+ 〈x,y〉2 − 2

n∑
r=1

x2
ry

2
r

)
.
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Proof. The proof of this proposition proceeds exactly as for Proposition 8.6; by following the same
chain of reasoning, conditioning on the index set J of the sub-sampled rows, we arrive at

Var

(
Re

(
m∑
p=1

(SD1x)Jp(SD1y)Jp

)∣∣∣∣∣J
)

=

m∑
p,p′=1

n∑
i,j,k,l=1

sJpisJpjsJp′ksJp′ lCov
(
Re(dixidjyj),Re(dkxkdlyl)

)
.

Since we are dealing strictly with the case x,y ∈ Rn, we may simplify this further to obtain

Var

(
Re

(
m∑
p=1

(SD1x)Jp(SD1y)Jp

)∣∣∣∣∣J
)

=

m∑
p,p′=1

n∑
i,j,k,l=1

sJpisJpjsJp′ksJp′ lxixkyiylCov
(
Re(didj),Re(dkdl)

)
.

By calculating directly with the di, dj , dk, dl ∼ Unif({1,−1, i,−i}), we obtain

Var

(
Re

(
m∑
p=1

(SD1x)Jp(SD1y)Jp

)∣∣∣∣∣J
)

=

1

2

m∑
p,p′=1

n∑
i 6=j

sJpisJpjsJp′ksJp′ l(x
2
i y

2
j + xixjyiyj) ,

exactly as in Proposition 8.6; following the rest of the argument of Proposition 8.6 yields the
result.

The proof of the corollary now follows by applying the steps of the proof of Theorem 3.6.

8.7 Exploring Dimensionality Reduction with Fully-complex Random Matrices

In this section, we briefly explore the possibility of using SD-product matrices in which all the
random diagonal matrices are complex-valued. Following on from the ROMs introduced in Definition
2.1, we define the S-Uniform random matrix with k ∈ N blocks to be given by

M
(k)
SU =

k∏
i=1

SD
(U)
i ,

where (D
(U)
i )ki=1 are iid diagonal matrices with iid Unif(S1) random variables on the diagonals, and

S1 is the unit circle of C.

As alluded to in §3, we will see that introducing this increased number of complex parameters
does not lead to significant increases in statistical performance relative to the estimator K̂H,(k)

m for
dimensionality reduction.

We consider the estimator K̂U,(k)
m below, based on the sub-sampled SD-product matrix M

(k),sub
SU :

K̂U,(k)
m (x,y) =

1

m
Re

[(
M

(k),sub
SU x

)> (
M

(k),sub
SU y

)]
,

and show that it does not yield a significant improvement over the estimator K̂H,(k)
m of Theorem 3.6:

Theorem 8.8. For x,y ∈ Rn, the estimator K̂U,(k)
m (x,y), applying random sub-sampling strategy

without replacement is unbiased and satisfies:

MSE(K̂U,(k)m (x,y))=

1

2m

(
n−m
n− 1

)((
(x>y)2+‖x‖2‖y‖2

)
+

k−1∑
r=1

(−1)r

nr
(3(x>y)2 + ‖x‖2‖y‖2) + (−1)k2

nk−1

n∑
i=1

x2i y
2
i

)
.

21



The structure of the proof of Theorem 8.8 is broadly the same as that of Theorem 3.3. We begin
by remarking that the proof that the estimator is unbiased is exactly the same as that of Proposition
8.5. We then note that in the case of k = 1 block, the estimators K̂H,(1)

m and K̂U,(1)
m , coincide so

Proposition 8.6 establishes the MSE of the estimator K̂U,(k)
m in the base case k = 1. We then obtain a

recursion formula for the MSE (Proposition 8.9), and finally prove the theorem by induction.
Proposition 8.9. Let k ≥ 2, n ∈ N, m ≤ n, and x,y ∈ Cn such that 〈x,y〉 ∈ R; in particular, this
includes x,y ∈ Rn. Then we have the following recursion for the MSE of K̂U,(k)

M (x,y):

MSE(K̂U,(k)
m (x,y)) = E

[
MSE(K̂U,(k−1)

m (SD1x,SD1y)
∣∣D1)

]
Proof. The proof is exactly analogous to that of Proposition 8.3, and is therefore omitted.

Before we complete the proof by induction, we will need the following auxiliary result, to deal with
the expectations that arise during the recursion due to the terms in the MSE expression of Proposition
8.6.
Lemma 8.10. Under the assumptions of Theorem 8.8, we have the following expectations:

E
[
|(SDx)r|2|(SDy)r|2

]
=

1

n2

(
〈x,x〉〈y,y〉+ 〈x,y〉2 −

n∑
i=1

|xi|2|yi|2
)

E
[
Re((SDx)2

r(SDy)2
r)
]

=
1

n2

(
2〈x,y〉2 −

n∑
i=1

Re(x2
i y

2
i )

)

Proof. For the first claim, we note that

E
[
|(SDx)r|2|(SDy)r|2

]
=

n∑
i,j,k,l

srisrjsrksrlxixjykylE
[
didjdkdl

]

=
1

n2

∑
i6=j

xixiyjyj +
∑
i6=j

xixjyjyi +

n∑
i=1

xixiyiyi


=

1

n2

 n∑
i,j=1

xixiyjyj +

n∑
i,j=1

xixjyjyi −
n∑
i=1

xixiyiyi


=

1

n2

(
〈x,x〉〈y,y〉+ 〈x,y〉2 −

n∑
i=1

|xi|2|yi|2
)
,

as required, where in the final equality we have use the assumption that 〈x,y〉 ∈ R. For the second
claim, we observe that

E
[
Re((SDx)2

r(SDy)2
r

]
=Re

 n∑
i,j,k,l

srisrjsrksrlxixjykylE
[
didjdkdl

]
=Re

 1

n2

2
∑
i6=j

xixjyiyj +

n∑
i=1

xixiyiyi


=

1

n2

(
2〈x,y〉2 −

n∑
i=1

Re
(
x2
i y

2
i

))
,

where again we have used the assumption that 〈x,y〉 ∈ R.

Proof of Theorem 8.8. The proof now proceeds by induction. We in fact prove the stronger result
that for any x,y ∈ Cn for which 〈x,y〉 ∈ R, we have

MSE(K̂U,(k)m (x,y))=
1

2m

(
n−m
n− 1

)((
〈x,y〉2+〈x,x〉〈y,y〉

)
+

k−1∑
r=1

(−1)r

nr
(3〈x,y〉2+〈x,x〉〈y,y〉)+
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(−1)k

nk−1

(
n∑
i=1

(
|xi|2|yi|2 +Re

(
x2i y

2
i

))))
.

from which Theorem 8.8 clearly follows. Proposition 8.6 yields the base case k = 1 for this claim.
For the recursive step, suppose that the result holds for some number k ∈ N of blocks. Recalling the
recursion of Proposition 8.9, we then obtain

MSE(K̂U,(k+1)
m (x,y))=

1

2m

(
n−m
n− 1

)((
〈x,y〉2+〈x,x〉〈y,y〉

)
+

k−1∑
r=1

(−1)r

nr
(3〈x,y〉2+〈x,x〉〈y,y〉)+

(−1)k

nk−1

(
n∑
i=1

(
E
[
|SD1x|2i |SD1y|2i

]
+ E

[
Re
(
(SD1x)

2
i (SD1y)

2
i

)])))
,

where we have used the fact that SD1 is a unitary isometry almost surely, and thus preserves
Hermitian products. Applying Lemma 8.10 to the remaining expectations and collecting terms proves
the inductive step, which concludes the proof of the theorem.

8.8 Proof of Theorem 3.8

Proof. The proof of this result is reasonably straightforward with the proofs of Theorems 3.3 and 3.6
in hand; we simply recognize where in these proofs the assumption of the sampling strategy without
replacement was used. We deal first with Theorem 3.3, which deals with the MSE associated with
K̂

(k)
m (x,y). The only place in which the assumption of the sub-sampling strategy without replacement

is used is mid-way through the proof of Proposition 8.2, which quantifies MSE(K̂
(1)
m (x,y)). Picking

up the proof at the point the sub-sampling strategy is used, we have

MSE(K̂(1)
m (x,y)) =

n2

m2

m∑
p,p′=1

n∑
i6=j

(
x2
i y

2
j + xixjyiyj

)
E
[
sJpisJpjsJp′ isJp′ j

]
.

Now instead using sub-sampling strategy with replacement, note that each pair of sub-sampled indices
Jp and Jp′ are independent. Recalling that the columns of S are orthogonal, we obtain for distinct p
and p′ that

E
[
sJpisJpjsJp′ isJp′ j

]
= E

[
sJpisJpj

]
E
[
sJp′ isJp′ j

]
= 0 .

Again, for p = p′, we have E
[
sJpisJpjsJp′ isJp′ j

]
= 1/n2. Substituting the values of these

expectations back into the expression for the MSE of K̂(k)
m (x,y) then yields

MSE(K̂(1)
m (x,y)) =

n2

m2

n∑
i 6=j

(
x2
i y

2
j + xixjyiyj

)(
m× 1

n2

)

=
1

m

(
1− m− 1

n− 1

) n∑
i6=j

(
x2
i y

2
j + xixjyiyj

)
=

1

m

(
〈x,y〉2 + ‖x‖2‖y‖2 − 2

n∑
i=1

x2
i y

2
i

)
as required.

For the estimator K̂H,(k)
m (x,y), the result also immediately follows with the above calculation, as

the only point in the proof of the MSE expressions for these estimators that is influenced by the
sub-sampling strategy is in the calculation of the quantities E

[
sJpisJpjsJp′ isJp′ j

]
; therefore, exactly

the same multiplicative factor is incurred for MSE as for K̂(k)
m (x,y).

9 Proofs of results in §4

9.1 Proof of Lemma 4.2

Proof. Follows immediately from the proof of Theorem 4.4 (see: the proof below).
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9.2 Proof of Theorem 4.3

Recall that the angular kernel estimator based on Gort is given by

K̂ang,ort
m (x,y) =

1

m
sign(Gortx)>sign(Gorty)

where the function sign acts on vectors element-wise. In what follows, we write Gi
ort for the ith row

of Gort, and Gi for the ith row of G.

Since each Gi
ort has the same marginal distribution as Rm in the unstructured Gaussian case covered

by Theorem 4.4, unbiasedness of K̂ang,ort(x, y) follows immediately from this result, and so we
obtain:
Lemma 9.1. K̂ang,ort

m (x,y) is an unbiased estimator of Kang(x,y).

We now turn our attention to the variance of K̂ang,ort
m (x,y).

Theorem 9.2. The variance of the estimator K̂ang,ort
m (x, y) is strictly smaller than the variance of

K̂ang, base
m (x,y)

Proof. Denote by θ the angle between x and y, and for notational ease, let Si =
sign

(〈
Gi,x

〉)
sign

(〈
Gi,y

〉)
, and Sort

i = sign
(〈
Gi

ort,x
〉)

sign
(〈
Gi

ort,y
〉)

. Now observe that as
K̂ang,ort
m (x,y) is unbiased, we have

Var
(
K̂ang,ort
m (x,y)

)
= Var

(
1

m

m∑
i=1

Sort
i

)

=
1

m2

 m∑
i=1

Var
(
Sort
i

)
+

m∑
i 6=i′

Cov
(
Sort
i , Sort

i′
) .

By a similar argument, we have

Var
(
K̂base
m (x,y)

)
=

1

m2

 m∑
i=1

Var (Si) +

m∑
i6=i′

Cov (Si, Si′)

 . (29)

Note that the covariance terms in (29) evaluate to 0, by independence of Si and Si′ for i 6= i′ (which
is inherited from the independence of Gi and Gi′ ). Also observe that since Gi d= Gi

ort, we have

Var
(
Sort
i

)
= Var (Si) .

Therefore, demonstrating the theorem is equivalent to showing, for i 6= i′, that

Cov
(
Sort
i , Sort

i′
)
< 0 ,

which is itself equivalent to showing

E
[
Sort
i Sort

i′
]
< E

[
Sort
i

]
E
[
Sort
i′
]
. (30)

Note that the variables (Sort
i )mi=1 take values in {±1}. DenotingAi = {Sort

i = −1} for i = 1, . . . ,m,
we can rewrite (30) as

P [Aci ∩ Aci′ ] + P [Ai ∩ Ai′ ]− P [Ai ∩ Aci′ ]− P [Aci ∩ Ai′ ] <
(
π − 2θ

π

)2

.

Note that the left-hand side is equal to

2(P [Aci ∩ Aci′ ] + P [Ai ∩ Ai′ ])− 1 .

Plugging in the bounds of Proposition 9.3, and using the fact that the pair of indicators (1Ai
,1Ai′ ) is

identically distributed for all pairs of distinct indices i, i′ ∈ {1, . . . ,m}, thus yields the result.
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Proposition 9.3. We then have the following inequalities:

P [A1 ∩ A2] <

(
θ

π

)2

and P [Ac1 ∩ Ac2] <

(
1− θ

π

)2

Before providing the proof of this proposition, we describe some coordinate choices we will make in
order to obtain the bounds in Proposition 9.3.

We pick an orthonormal basis for Rn so that the first two coordinates span the x-y plane, and
further so that (G1

ort)2, the coordinate of G1
ort in the second dimension, is 0. We extend this to an

orthonormal basis of Rn so that (G1
ort)3 ≥ 0, and (G1

ort)i = 0 for i ≥ 4. Thus, in this basis, we
have coordinates

G1
ort = ((G1

ort)1, 0, (G
1
ort)3, 0, . . . , 0) ,

with (G1
ort)1 ∼ χ2 and (G1

ort)3 ∼ χN−2 (by elementary calculations with multivariate Gaus-
sian distributions). Note that the angle, φ, that G1

ort makes with the x-y plane is then φ =
arctan((G1

ort)3/(G
1
ort)1). Having fixed our coordinate system relative to the random variable

G1
ort, the coordinates of x and y in this frame are now themselves random variables; we introduce

the angle ψ to describe the angle between x and the positive first coordinate axis in this basis.

Now consider G2
ort. We are concerned with the direction of ((G2

ort)1, (G
2
ort)2) in the x-y plane.

Conditional on G1
ort, the direction of the full vector G2

ort is distributed uniformly on Sn−2(〈G1
ort〉⊥),

the set of unit vectors orthogonal to G1
ort. Because of our particular choice of coordinates, we can

therefore write

G2
ort = (r sin(φ), (G2

ort)2, r cos(φ), (G2
ort)4, (G

2
ort)5, . . . , (G

2
ort)n) ,

where the (N − 1)-dimensional vector (r, (G2
ort)2, (G

2
ort)4, (G

2
ort)5, . . . , (G

2
ort)n) has an isotropic

distribution.

So the direction of ((G2
ort)1, (G

2
ort)2) in the x-y plane follows an angular Gaussian distribution,

with covariance matrix (
sin2(φ) 0

0 1

)
.

With these geometrical considerations in place, we are ready to give the proof of Proposition 9.3.

Proof of Proposition 9.3. Dealing with the first inequality, we decompose the event as

A1 ∩ A2 ={
〈
G1

ort,x
〉
> 0,

〈
G1

ort,y
〉
< 0,

〈
G2

ort,x
〉
> 0,

〈
G2

ort,y
〉
< 0}

∪ {
〈
G1

ort,x
〉
> 0,

〈
G1

ort,y
〉
< 0,

〈
G2

ort,x
〉
< 0,

〈
G2

ort,y
〉
> 0}

∪ {
〈
G1

ort,x
〉
< 0,

〈
G1

ort,y
〉
> 0,

〈
G2

ort,x
〉
> 0,

〈
G2

ort,y
〉
< 0}

∪ {
〈
G1

ort,x
〉
< 0,

〈
G1

ort,y
〉
> 0,

〈
G2

ort,x
〉
< 0,

〈
G2

ort,y
〉
> 0} .

As the law of (G1
ort,G

2
ort) is the same as that of (G2

ort,G
1
ort) and that of (−G1

ort,G
2
ort), it follows

that all four events in the above expression have the same probability. The statement of the theorem
is therefore equivalent to demonstrating the following inequality:

P
[〈
G1

ort, x
〉
> 0,

〈
G1

ort,y
〉
< 0,

〈
G2

ort,x
〉
> 0,

〈
G2

ort,y
〉
< 0
]
<

(
θ

2π

)2

.

We now proceed according to the coordinate choices described above. We first condition on the
random angles φ and ψ to obtain

P
[〈
G1

ort,x
〉
> 0,

〈
G1

ort,y
〉
< 0,

〈
G2

ort,x
〉
> 0,

〈
G2

ort,y
〉
< 0
]

=

∫ 2π

0

dψ

2π

∫ π/2

0

f(φ)dφ P
[〈
G1

ort,x
〉
> 0,

〈
G1

ort,y
〉
< 0,

〈
G2

ort,x
〉
> 0,

〈
G2

ort,y
〉
< 0|ψ, φ

]
=

∫ 2π

0

dψ

2π

∫ π/2

0

f(φ)dφ 1{0∈[ψ−π/2,ψ−π/2+θ]}P
[〈
G2

ort,x
〉
> 0,

〈
G2

ort,y
〉
< 0|ψ, φ

]
,
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where f is the density of the random angle φ. The final equality above follows as G1
ort and G2

ort are
independent conditional on ψ and φ, and since the event {

〈
G1

ort,x
〉
> 0,

〈
G1

ort,y
〉
< 0} is exactly

the event {0 ∈ [ψ − π/2, ψ − π/2 + θ]}, by considering the geometry of the situation in the x-y
plane. We can remove the indicator function from the integrand by adjusting the limits of integration,
obtaining

P
[〈
G1

ort,x
〉
> 0,

〈
G1

ort,y
〉
< 0,

〈
G2

ort,x
〉
> 0,

〈
G2

ort,y
〉
< 0
]

=

∫ π/2

π/2−θ

dψ

2π

∫ π/2

0

f(φ)dφ P
[〈
G2

ort,x
〉
> 0,

〈
G2

ort,y
〉
< 0|ψ, φ

]
.

We now turn our attention to the conditional probability

P
[〈
G2

ort,x
〉
> 0,

〈
G2

ort,y
〉
< 0|ψ, φ

]
.

The event {
〈
G2

ort,x
〉
> 0,

〈
G2

ort,y
〉
< 0} is equivalent to the angle t of the projection of G2

ort into
the x-y plane with the first coordinate axis lying in the interval [ψ − π/2, ψ − π/2 + θ]. Recalling
the distribution of the angle t from the geometric considerations described immediately before this
proof, we obtain

P
[〈
G1

ort,x
〉
> 0,

〈
G1

ort,y
〉
< 0,

〈
G2

ort,x
〉
> 0,

〈
G2

ort,y
〉
< 0
]

=

∫ π/2

π/2−θ

dψ

2π

∫ π/2

0

f(φ)dφ

∫ ψ−π/2+θ

ψ−π/2
(2π sin(φ))−1(cos2(t)/ sin2(φ) + sin2(t))−1dt .

With θ ∈ [0, π/2], we note that the integral with respect to t can be evaluated analytically, leading us
to

P
[〈
G1

ort,x
〉
> 0,

〈
G1

ort,y
〉
< 0,

〈
G2

ort,x
〉
> 0,

〈
G2

ort,y
〉
< 0
]

=

∫ π/2

π/2−θ

dψ

2π

∫ π/2

0

f(φ)dφ
1

2π
(arctan(tan(ψ − π/2 + θ) sin(φ))− arctan(tan(ψ − π/2) sin(φ)))

≤
∫ π/2

π/2−θ

dψ

2π

∫ π/2

0

f(φ)dφ
θ

2π

=

(
θ

2π

)2

.

To deal with θ ∈ [π/2, π], we note that if the angle θ between x and y is obtuse, then the
angle between x and −y is π − θ and therefore acute. Recalling from our definition that
Am = {sign

(〈
Gi

ort,x
〉)

sign
(〈
Gi

ort,y
〉)

= −1}, if we denote the corresponding quantity for
the pair of vecors x, −y by Ām = {sign

(〈
Gi

ort,x
〉)

sign
(〈
Gi

ort,−y
〉)

= −1}, then we in fact
have Ām = Acm. Therefore, applying the result to the pair of vectors x and −y (which have acute
angle π − θ between them) and using the inclusion-exclusion principle, we obtain:

P(A1 ∩ A2) = 1− P(Ac1)− P(Ac2) + P(Ac1 ∩ Ac2)

< 1− P(Ac1)− P(Ac2) +

(
π − θ
π

)2

= 1− 2

(
π − θ
π

)
+

(
π − θ
π

)2

=

(
θ

π

)2

as required.

The second inequality of Proposition 9.3 follows from the inclusion-exclusion principle and the first
inequality:

P [Ac1 ∩ Ac2] = 1− P [A1]− P [A2] + P [A1 ∩ A2]

< 1− P [A1]− P [A2] +

(
θ

π

)2
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= (1− P [A1])(1− P [A2])

=

(
1− θ

π

)2

.

9.3 Proof of Theorem 4.4

Proof. We will consider the following setting. Given two vectors x,y ∈ Rn, each of them is
transformed by the nonlinear mapping: φM : z→ 1√

k
sgn(Mz), where M ∈ Rm×n is some linear

transformation and sgn(v) stands for a vector obtained from v by applying pointwise nonlinear
mapping sgn : R → R defined as follows: sgn(x) = +1 if x > 0 and sgn(x) = −1 otherwise.
The angular distance θ between x and y is estimated by: θ̂M = π

2 (1 − φM(x)>φM(y)). We will
derive the formula for the MSE(θ̂M(x,y)). One can easily see that the MSE of the considered in
the statement of the theorem angular kernel on vectors x and y can be obtained from this one by
multiplying by 4

π2 .

Denote by ri the ith row of M. Notice first that for any two vectors x,y ∈ Rn with angular distance
θ, the event Ei = {sgn((ri)>x) 6= sgn((ri)>y)} is equivalent to the event {riproj ∈ R}, where
riproj stands for the projection of ri into the x− y plane and R is a union of two cones in the x-y
plane obtained by rotating vectors x and y by π

2 . Denote Ai = {riproj ∈ R} for i = 1, ..., k and
δi,j = P[Ai ∩ Aj ]− P[Ai]P[Aj ].

For a warmup, let us start our analysis for the standard unstructured Gaussian estimator case. It is a
well known fact that this is an unbiased estimator of θ. Thus

MSE(θ̂G(x,y)) = V ar(
π

2
(1− φM(x)>φM(y))) =

π2

4
V ar(φM(x)>φM(y)))

=
π2

4

1

m2
V ar(

m∑
i=1

Xi),
(31)

where Xi = sgn((ri)>x)sgn((ri)>y).

Since the rows of G are independent, we get

V ar(
m∑
i=1

Xi) =
m∑
i=1

V ar(Xi) =
m∑
i=1

(E[X2
i ]− E[Xi]

2). (32)

From the unbiasedness of the estimator, we have: E[Xi] = (−1) · θπ + 1 · (1− θ
π ). Thus we get:

MSE(θ̂G(x,y)) =
π2

4

1

m2

m∑
i=1

(1− (1− 2θ

π
)2) =

θ(π − θ)
m

. (33)

Multiplying by 4
π2 , we obtain the proof of Lemma 4.2.

Now let us switch to the general case. We first compute the variance of the general estimator E using
matrices M (note that in this setting we do not assume that the estimator is necessarily unbiased).

By the same analysis as before, we get:

V ar(E) = V ar(
π

2
(1− φ(x)>φ(y))) =

π2

4
V ar(φ(x)>φ(y))) =

π2

4

1

m2
V ar(

m∑
i=1

Xi), (34)
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This time however different Xis are not uncorrelated. We get

V ar(

m∑
i=1

Xi) =

m∑
i=1

V ar(Xi) +
∑
i 6=j

Cov(Xi, Xj) =

m∑
i=1

E[X2
i ]−

m∑
i=1

E[Xi]
2 +

∑
i 6=j

E[XiXj ]−
∑
i 6=j

E[Xi]E[Xj ] =

m+
∑
i 6=j

E[XiXj ]−
∑
i,j

E[Xi]E[Xj ]

(35)

Now, notice that from our previous observations and the definition of Ai, we have

E[Xi] = −P[Ai] + P[Aic], (36)

where Aic stands for the complement of Ai.
By the similar analysis, we also get:

E[XiXj ] = P[Ai ∩ Aj ] + P[Aic ∩ Ajc]− P[Aic ∩ Aj ]− P[Ai ∩ Ajc] (37)

Thus we obtain

V ar(

m∑
i=1

Xi) = m+
∑
i 6=j

(P[Ai ∩ Aj ] + P[Aic ∩ Ajc]− P[Aic ∩ Aj ]− P[Ai ∩ Ajc]

−(P[Aic]− P[Ai])(P[Ajc]− P[Aj ]))

−
∑
i

(P[Aic]− P[Ai])2 = m−
∑
i

(1− 2P[Ai])2

+
∑
i6=j

(P[Ai ∩ Aj ] + P[Aic ∩ Ajc]− P[Aic ∩ Aj ]− P[Ai ∩ Ajc]+

P[Aic]P[Aj ] + P[Ai]P[Ajc]− P[Aic]P[Ajc]− P[Ai]P[Aj ])

= m−
∑
i

(1− 2P[Ai])2 +
∑
i 6=j

(δ1(i, j) + δ2(i, j) + δ3(i, j) + δ4(i, j)),

(38)

where

• δ1(i, j) = P[Ai ∩ Aj ]− P[Ai]P[Aj ],
• δ2(i, j) = P[Aic ∩ Ajc]− P[Aic]P[Ajc],
• δ3(i, j) = P[Aic]P[Aj ]− P[Aic ∩ Aj ],
• δ4(i, j) = P[Ai]P[Ajc]− P[Ai ∩ Ajc].

Now note that
−δ4(i, j) = P[Ai]− P[Ai ∩ Aj ]− P[Ai]P[Ajc]

= P[Ai]− P[Ai](1− P[Aj ])− P[Ai ∩ Aj ]
= P[Ai]P[Aj ]− P[Ai ∩ Aj ] = −δ1(i, j)

(39)

Thus we have δ4(i, j) = δ1(i, j). Similarly, δ3(i, j) = δ1(i, j). Notice also that

−δ2(i, j) = (1− P[Ai])(1− P[Aj ])− (P[Aic]− P[Aic ∩ Aj ])
= 1− P[Ai]− P[Aj ] + P[Ai]P[Aj ]− 1 + P[Ai] + P[Aic ∩ Aj ]

= P[Ai]P[Aj ]− P[Ai ∩ Aj ] = −δ1(i, j),

(40)

therefore δ2(i, j) = δ1(i, j).

Thus, if we denote δi,j = δ1(i, j) = P[Ai ∩ Aj ]− P[Ai]P[Aj ], then we get

V ar(

m∑
i=1

Xi) = m−
∑
i

(1− 2P[Ai])2 + 4
∑
i 6=j

δi,j . (41)
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Thus we obtain

V ar(E) =
π2

4m2
[m−

∑
i

(1− 2P[Ai])2 + 4
∑
i 6=j

δi,j ]. (42)

Note that V ar(E) = E[(E − E[E ])2]. We have:

MSE(θ̂M(x,y)) = E[(E − θ)2] = E[(E − E[E ])2] + E[(E − θ)2]− E[(E − E[E ])2]

= V ar(E) + E[(E − θ)2 − (E − E[E ])2]

= V ar(E) + (E[E ]− θ)2

(43)

Notice that E = π
2 (1− 1

m

∑m
i=1Xi). Thus we get:

MSE(θ̂M(x,y)) =
π2

4m2
[m−

∑
i

(1− 2P[Ai])2 + 4
∑
i 6=j

δi,j ] +
π2

m2

∑
i

(P(Ai)− θ

π
)2. (44)

Now it remains to multiply the expression above by 4
π2 and that completes the proof.

Remark 9.4. Notice that if P(Ai) = θ
π (this is the case for the standard unstructured estimator as

well as for the considered by us estimator using orthogonalized version of Gaussian vectors) and if
rows of matrix M are independent then the general formula for MSE for the estimator of an angle
reduces to (π−θ)θ

m . If the first property is satisfied but the rows are not necessarily independent (as
it is the case for the estimator using orthogonalized version of Gaussian vectors) then whether the
MSE is larger or smaller than for the standard unstructured case is determined by the sign of the
sum

∑
i6=j δi,j . For the estimator using orthogonalized version of Gaussian vectors we have already

showed that for every i 6= j we have: δi,j > 0 thus we obtain estimator with smaller MSE. If M is a
product of blocks HD then we both have: an estimator with dependent rows and with bias. In that
case it is also easy to see that P(Ai) does not depend on the choice of i. Thus there exists some ε
such that ε = P(Ai)− θ

π . Thus the estimator based on the HD blocks gives smaller MSE iff:∑
i6=j

δi,j +mε2 < 0.

10 Further comparison of variants of OJLT based on SD-product matrices

In this section we give details of further experiments complementing the theoretical results of the
main paper. In particular, we explore the various parameters associated with the SD-product matrices
introduced in §2. In all cases, as in the experiments of §6, we take the structured matrix S to be the
normalized Hadamard matrix H. All experiments presented in this section measure the MSE of the
OJLT inner product estimator for two randomly selected data points in the g50c data set. The MSE
figures are estimated on the basis of 1, 000 repetitions. All results are displayed in Figure 3.
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(a) Comparison of estimators based on S-
Rademacher matrices with a varying number
of SD matrix blocks, using the with replace-
ment sub-sampling strategy.

(b) Comparison of estimators based on S-
Rademacher matrices with a varying number
of SD matrix blocks, using the sub-sampling
strategy without replacement.

(c) Comparison of the use of M(3)
SR, M(3)

SH,
and M

(3)
SU (introduced in §8.7) for dimension-

ality reduction. All use sub-sampling without
replacement. The curves corresponding to the
latter two random matrices are indistinguish-
able.

Figure 3: Results of experiments comparing OJLTs for a variety of SD-matrices.
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