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1 Optimization steps of RMR

We summarize the optimization steps of Regularized Modal Regression (RMR) in Algorithm 1.

2 Proof of Theorem 1

Proof: For any a0 ∈ R, suppose b0 = arg max
b

(a0b − g(b)), then we have f(a0) = a0b0 − g(b0),

thus g(b0) = a0b0 − f(a0). Since g = f?, we obtain that g(b0) = max
a

(ab0 − f(a)). Taking

derivative of the maximum function w.r.t. a, we find that the maximum is reached when f ′(a) = b0.
Since a0 = arg max

a
(ab0 − f(a)), we get f ′(a0) = b0. This completes the proof.

3 Proof of Theorem 2

The approximation bound in Theorem 2 is estimated by error analysis technique associated with
Rademacher complexity.

We introduce a data-free function fλ = wTλ x as the stepping-stone for decomposingR(f∗)−R(fz),
where

wλ = arg max
w∈Rp

{ 1

σ

∫
X×Y

φ(
y − wTx

σ
)dρ(x, y)− λ

p∑
j=1

τj |wj |p
}
.

Here, similar with RMR in Section 2, λ > 0 is a regularized parameter and {τj} are weights for
different input components.

From the viewpoint of function learning, we have

fλ = arg max
f∈F

{
Rσ(f)− λΩ(f)

}
.

Now we present the decomposition forR(f∗)−R(fz).
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Algorithm 1 Half Quadratic Optimization Algorithm for RMR.
Require: Input data z = {(xi, yi)}ni=1, and the choice of kernel-induced representing function φ.
Ensure: wz

1: Define function f such that f(e2) = φ(e);
2: Initialize bandwidth σ;
3: Initialize w randomly;
4: while not converge do
5: Update bi such that bi = f ′((yi−w

T xi

σ )2), for i = 1, 2, . . . , n;

6: Update w such that w = arg max
w∈Rp

1
nσ

n∑
i=1

(
bi(

yi−wT xi

σ )2 − g(bi)
)
− λ

p∑
j=1

τj |wj |q;

7: Update σ;
8: end while
9: wz = w.

Proposition 1 Let f∗ ∈ F . Under Assumptions 1 and 2, there holds

R(f∗)−R(fz)

≤ Rσz (fz)−Rσ(fz) +Rσ(fλ)−Rσz (fλ) + σ2‖p′′ε|X‖∞
∫
R
u2φ(u)du+ λΩ(f∗).

Proof: According to Theorem 10 in [5], we know that

R(f∗)−R(fz) ≤ R(f∗)−Rσ(fz) + σ2‖p′′ε|X‖∞
∫
R
u2φ(u)du. (1)

Moreover, from the definitions of fλ and fz, we obtain that

Rσ(f∗)−Rσ(fz) = Rσ(f∗)− λΩ(f∗)−Rσ(fz) + λΩ(f∗)

≤ Rσ(fλ)− λΩ(fλ)−Rσ(fz) + λΩ(f∗)

≤ Rσ(fλ)−Rσz (fλ) +
{
Rσz (fλ)− λΩ(fλ)−

(
Rσz (fz)− λΩ(fz)

)}
+Rσz (fz)−Rσ(fz) + λΩ(f∗)

≤ Rσ(fλ)−Rσz (fλ) +Rσz (fz)−Rσ(fz) + λΩ(f∗).

Combining the above decomposition with (1), we get the desire result.

The error termRσ(fλ)−Rσz (fλ) can be bounded by the Bernstein inequality [2, 4].

Lemma 1 Let ξ be a random variable on a probability space Z with mean Eξ and variance ν. If
|ξ(z)− Eξ| ≤Mξ for almost all z ∈ Z , then with confidence at least 1− δ

Eξ − 1

m

m∑
i=1

ξ(zi) ≤
2Mξ log(1/δ)

3m
+

√
2ν2 log(2/δ)

m
.

Proposition 2 Under Assumption 1, for any δ ∈ (0, 1), there holds

Rσ(fλ)−Rσz (fλ) ≤ 4φ(0) log(2/δ)

3nσ
+ σ−1φ(0)

√
2 ln(2/δ)

n

with confidence at least 1− δ.

Proof: Denote ξ(x, y) = σ−1φ(y−f(x)σ ) for any (x, y) ∈ X × Y and f ∈ F . We can verify that
0 < ξ(x, y) ≤ σ−1φ(0) and |ξ−Eξ| ≤ σ−1φ(0). Then, according to Bernstein inequality in Lemma
1, we have

Rσ(fλ)−Rσz (fλ) = Eξ − 1

n

n∑
i=1

ξ(xi, yi) ≤
4φ(0) log(2/δ)

3nσ
+ σ−1φ(0)

√
2 ln(2/δ)

n

with confidence at least 1− δ. This completes the proof.
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Since fz varies with random drawn samples z, we need to provide the uniform estimation on the error
termRσz (fz)−Rσ(fz) for all z ∈ (X ×Y)n. Here, we adopt the concentration estimation in [1, 8] to
bound this error term, where the capacity of hypothesis space is measured by Rademacher complexity.
In particular, Rademacher complexity for linear function classes has been well characterized in
[8, 7, 9].

Definition 1 Let {zi}ni=1 ∈ Zn be independent samples selected according to µ and let G be a class
of functions mapping from Z to R. Define the Rademacher complexity of G to be

Rn(G) = EµEε

[
sup
g∈G

1

n

n∑
i=1

εig(zi)
]
,

where {εi}ni=1 are independent random variables uniformly chosen from {−1, 1}.

The following concentration inequality has been used extensively for error analysis, see, e.g., [1, 8, 7,
9] .

Lemma 2 Assume that loss function ψ(f, z) is L Lipschitz continuous with respect to f and
|ψ(f, z)| ≤ c for any z ∈ Z and f ∈ G. For any δ ∈ (0, 1), with confidence 1− δ there holds

1

n

n∑
i=1

ψ(f, zi)− Eψ(f, z) ≤ 2LRn(G) + c

√
ln(2/δ)

2n
.

Proposition 3 Assume that ‖x‖ q
q−1
≤ a for q ∈ (1, 2] and any x ∈ X . Let Assumption 1 be true.

For q ∈ (1, 2] and any δ ∈ (0, 1), with confidence at least 1− δ there holds

Rσz (fz)−Rσ(fz) ≤ 2aLφ

( φ(0)

nλσ2q+1

) 1
q

+ 2σ−1φ(0)

√
ln(4/δ)

n
.

For q = 1 and ‖x‖∞ ≤ a for any x ∈ X , with confidence at least 1− δ, there holds

Rσz (fz)−Rσ(fz) ≤ 2
√

2aσ−3λ−1Lφφ(0)(2 +
√

ln p)√
n

+ 2σ−1φ(0)

√
ln(4/δ)

n
.

Proof: From the definition of fz, we know that

Rσz (fz)− λΩ(fz) ≥ Rσz (0).

It means that

Ω(fz) =

p∑
j=1

τj |wz,j |q ≤ λ−1σ−1φ(0).

Then, we can deduce that

‖wz‖q =
( p∑
j=1

|wz,j |q
) 1

q ≤
( φ(0)

λσminj τj

) 1
q

.

We first consider the setting of q ∈ (1, 2]. Denote

G1 = {f(x) = wTx : ‖w‖q ≤
( φ(0)

λσminj τj

) 1
q

, ‖x‖ q
q−1
≤ a}.

Notice that ‖w‖q is q − 1-strongly convex on Rd with respect to ‖ · ‖q [8, 7]. According to Theorem
3 in [8], we have

Rn(G1) ≤ a
( φ(0)

λσminj τj

) 1
q

√
1

n(q − 1)
.

Let ψ(f, z) = σ−1φ(y−f(x)σ ), f ∈ G1. For any measurable functions f1, f2, and (x, y) ∈ X × Y ,
there holds∣∣∣ψ(f1, z)− ψ(f2, z)

∣∣∣ =
∣∣∣ 1
σ
φ(
y − f1(x)

σ
)− 1

σ
φ(
y − f2(x)

σ
)
∣∣∣ ≤ σ−2Lφ|f1(x)− f2(x)|.
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This means ψ(f, z) has Lipschitz constant σ−2Lφ with respect to f . From Assumption 1, we know
that ψ(f, z) ≤ σ−1φ(0). Applying Lemma 2 to ψ(f, z), f ∈ G1, we obtain that

∀f ∈ G1,
1

n

m∑
i=1

ψ(f, zi)− Eψ ≤ 2aLφ(
φ(0)

nλσ2q+1
)

1
q + 2σ−1φ(0)

√
ln(4/δ)

n

with confidence at least 1− δ. This asserts the first statement as fz ∈ G1.

Now we turn to consider the setting of q = 1. When q = 1, we can deduce that Ω(fλ) =∑p
j=1 |wz,j | ≤ λ−1σ−1φ(0). Denote

G2 = {f(x) = wTx : Ω(fλ) ≤ λ−1σ−1φ(0), ‖x‖∞ ≤ a}.
According to Theorem 2 in [9], we have

Rn(G2) =
aλ−1σ−1φ(0)(2

√
2 +
√

2 ln p)

n
.

Similar with the proof procedures for q ∈ (1, 2], we have with confidence 1− δ

Rσz (fz)−Rσ(fz) ≤ 2
√

2aσ−3λ−1Lφφ(0)(2 +
√

ln p)√
n

+ 2σ−1φ(0)

√
ln(4/δ)

n
.

by applying Lemma 2 to ψ(f, z) = σ−1φ(y−f(x)σ ), f ∈ G2. The second statement in Proposition 3
is proved.

It is a position to present the proof of Theorem 2.

Proof of Theorem 2: For q ∈ (1, 2], by combining Propositions 1- 3, we get with confidence at least
1− 2δ

R(f∗)−R(fz) ≤ C1 log(2/δ)(σ−
5
2λ−

1
q n−

2q+1
q + σ2 + λ), (2)

where C1 > 0 is a constant depending on φ(0), f∗, Lφ and q.

Setting λ = σ2 = σ−
2q+1

q λ−
1
q n−

1
2 , we derive σ = n−

q
8q+6 and λ = n−

q
4q+3 . Then, from (2), we

get

R(f∗)−R(fz) ≤ 3C1 log(4/δ)n−
q

4q+3

with confidence at least 1− δ. This proves the first statement of Theorem 2.

When q = 1, from Propositions 1- 3, we get with confidence at least 1− 2δ

R(f∗)−R(fz) ≤ C2 log(2/δ)(σ−3λ−1
√

ln p

n
+ σ2 + λ), (3)

where C2 > 0 is a constant independent of n, δ.

Setting λ = σ2 = σ−3λ−1n−
1
2

√
ln p, we obtain that σ = ( ln p

n )
1
14 and λ = ( ln p

n )
1
7 . Then, from (3),

we deduce that

R(f∗)−R(fz) ≤ 3C2 log(4/δ)
( ln p

n

) 1
7

with confidence at least 1− δ. This completes the proof.

4 Proof of Theorems 3 and 4

The sparsity characterization in Theorems 3 and 4 are obtained in terms of the properties of re-
sulting estimator and analysis procedures in [11, 13, 3, 16]. We first provide the proof of sparsity
characterization for non-zero pattern of wz.

Proof of Theorem 3: Denote

G(w) =
1

nσ

n∑
i=1

φ(
yi − wTxi

σ
)− λ

p∑
j=1

τj |wj |q, 1 ≤ q ≤ 2.
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Let I+ = {j : wz,j > 0} and I− = {j : wz,j < 0}. For j ∈ I+, there holds

∂G(w)

∂wj
|w=wz = − 1

nσ2

n∑
i=1

φ′(
yi − fz(xi)

σ
)xij − λqτjwq−1zj = 0.

This means

− 1

nσ2

n∑
i=1

φ′(
yi − fz(xi)

σ
)xij = λqτjw

q−1
zj . (4)

Similarly, for j ∈ I−, there is

∂G(w)

∂wj
|w=wz = − 1

nσ2

n∑
i=1

φ′(
yi − fz(xi)

σ
)xij + λqτjw

q−1
zj = 0.

Then,

− 1

nσ2

n∑
i=1

φ′(
yi − fz(xi)

σ
)xij = −λqτjwa−1zj . (5)

Combining (4) and (7), we know that for j satisfying wz,j 6= 0 such that

− 1

nσ2

n∑
i=1

φ′(
yi − fz(xi)

σ
)xij = λqτj |wzj |q−1.

This completes the proof.

The proof of Theorem 4 is inspired from the sparsity analysis in [16].

Proof of Theorem 4: Suppose that wzj 6= 0 for some j > p0. Observe that∣∣∣ 1

nσ2

n∑
i=1

φ′(
yi − fz(xi)

σ
)xij

∣∣∣ ≤ 1

nσ2

n∑
i=1

|φ′(yi − fz(xi)

σ
)xij | ≤

‖φ′‖∞‖x‖∞
σ2

≤ a‖φ′‖∞
σ2

.

This together with Theorem 3 implies that qλτj |wzj |q−1 ≤ aφ−2‖φ′‖∞. For q = 1, this result
contradicts with the parameter condition λτj > aφ−2‖φ′‖∞. Hence, we have wzj = 0 for any
j > p0. This proves the assertion of Theorem 4.

5 Proof of Theorem 5

The robust result in Theorem 5 is inspired from recent related works in [17, 5]. We use the analysis
strategy in [17] to establish the proof of Theorem 5.

Proof of Theorem 5: The RMR in Section 2 is equivalent to the following optimization

max
{ n∑
i=1

φ(yi−f(xi)
σ )

φ(0)
− nλσ(φ(0))−1

p∑
j=1

τj |wj |p
}
.

Denote φ∗(t) = φ(t)/φ(0). Then,∀t, φ∗(t) ≤ φ∗(0) = 1 and φ∗(t)→ 0 as t→∞. When m < M ,
there exists m + nζ < M for some ζ > 0. Let φ∗(t) ≤ ζ for |t| ≥ c and let w be any real vector
such that |y − wTx| ≥ c for any (x, y) ∈ z. Then, we deduce that

n+m∑
i=1

φ∗(yi − wTz xi)− λσ(φ(0))−1
p∑
j=1

τj |wzj |q ≥M (6)

and
n+m∑
i=1

φ∗(yi − wTxi)− λσ(φ(0))−1
p∑
j=1

τj |wj |q ≤
n+m∑
i=n+1

φ∗(yi − wTxi) +

n∑
i=1

φ∗(yi − wTxi)

≤ m+ nζ. (7)
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Combining (4) and (7), we have

n+m∑
i=1

φ∗(yi − wTz xi)− λσ(φ(0))−1
p∑
j=1

τj |wz,j |q ≥
n+m∑
i=1

φ∗(yi − wTxi)− λσ(φ(0))−1
p∑
j=1

τj |wj |q.

According to the definition of wz∪z′ , one knows that wz∪z′ must satisfy |y−wTz∪z′x| < c for at least
one point in z. Hence, wz∪z′ is bounded as m < M . That is to say the finite sample breakdown point
of RMR is larger than M .

6 Data description

Data used in this article were obtained from the ADNI database (adni.loni.usc.edu). Each
MRI T1-weighted image was first anterior commissure (AC) posterior commissure (PC) corrected
using MIPAV2, intensity inhomogeneity corrected using the N3 algorithm [12], skull stripped [15]
with manual editing, and cerebellum-removed [14]. We then used FAST [18] in the FSL package3
to segment the image into gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF),
and used HAMMER [10] to register the images to a common space. GM volumes obtained from
93 ROIs defined in [6], normalized by the total intracranial volume, were extracted as features.
Cognitive scores were obtained from three independent cognitive assessments including Fluency Test,
Alzheimer’s Disease Assessment Scale (ADAS) and Trail making test (TRAILS). Details of these
cognitive assessments can be found in the ADNI procedure manuals. All participants with no missing
baseline MRI measurements and cognitive measures were included in this study. In total, there are
795 sample subjects in our study, including 180 AD samples, and 390 MCI samples and 225 normal
control (NC) samples. Five cognitive scores were employed in the experiments, which are: 1) ADAS
cognitive score; 2) FLU ANIM and FLU VEG scores from Fluency cognitive assessment; 3) Trails A
and Trails B scores from Trail making test.
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