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Abstract

Linear regression models have been successfully used to function estimation and
model selection in high-dimensional data analysis. However, most existing methods
are built on least squares with the mean square error (MSE) criterion, which
are sensitive to outliers and their performance may be degraded for heavy-tailed
noise. In this paper, we go beyond this criterion by investigating the regularized
modal regression from a statistical learning viewpoint. A new regularized modal
regression model is proposed for estimation and variable selection, which is robust
to outliers, heavy-tailed noise, and skewed noise. On the theoretical side, we
establish the approximation estimate for learning the conditional mode function,
the sparsity analysis for variable selection, and the robustness characterization. On
the application side, we applied our model to successfully improve the cognitive
impairment prediction using the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) cohort data.

1 Introduction

Modal regression [21, 5] has gained increasing attention recently due to its effectiveness on function
estimation and robustness to outliers and heavy-tailed noise. Unlike the traditional least-square
estimator pursuing the conditional mean, modal regression aims to estimate the conditional mode of
output Y given the input X = x. It is well known that the conditional modes can reveal the structure
of outputs and the trends of observation, which is missed by the conditional mean [29, 4]. Thus,
modal regression often achieves better performance than the traditional least square regression in
practical applications.

There are some studies for modal regression with (semi-)parametric or nonparametric methods, such
as [29, 28, 4, 6]. For parametric approaches, a parametric form is required for the global conditional
mode function. Recent works in [29, 28] belong to this category, where the method in [28] is based
on linear mode function assumption and the algorithm in [29] is associated with the local polynomial
regression. For non-parametric approaches, the conditional mode is usually derived by maximizing a
conditional density or a joint density. Typical work for this setting is established in [4], where a local
modal regression is proposed based on kernel density estimation and theoretical analysis is provided
to characterize asymptotic error bounds.

Most of the above mentioned works consider the asymptotic theory on the conditional mode function
estimation. Recently, several studies on variable selection under modal regression were also con-
ducted in [30, 27]. These approaches addressed the problem from statistical theory viewpoint (e.g.,
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asymptotic normality) and were implemented by modified EM algorithm. Although these studies
provide us good understanding for modal regression, the following problems still remain unclear
in theory and applications. Can we design new modal regression following the line of structural
risk minimization? Can we provide its statistical guarantees and computing algorithm for designed
model? This paper focuses on answering the above questions.

To illustrate the effectiveness of our model, we looked into a practical problem, i.e., cognitive
impairment prediction via neuroimaging data. As the most common cause of dementia, Alzheimer’s
Disease (AD) imposes extensive and complex impact on human thinking and behavior. Accurate and
automatic study of the relationship between brain structural changes and cognitive impairment plays
a crucial role in early diagnosis of AD. In order to increase the diagnostic capabilities, neuroimaging
provides an effective approach for clinical detection and treatment response monitoring of AD [13].
Several cognitive tests were presented to assess the individual’s cognitive level, such as Mini-Mental
State Examination (MMSE) [8] and Trail Making Test (TMT) [1]. With the development of these
techniques, a wide range of work employed regression models to study the correlations between
neuroimaging data and cognitive measures [23, 16, 26, 25, 24].

However, existing methods use mean regression models based on the least-square estimator to predict
the relationship between neuroimaging features and cognitive assessment, which may fail when
the noise in the data is heavy-tailed or skewed. According to the complex data collection process
[13], the assumption of symmetric noise may not be guaranteed in biomedical data. Under such a
circumstance, modal regression model proves to be more appropriate due to its robustness to outliers,
heavy-tailed noise, and skewed noise. We applied our method to the ADNI cohort for the association
study between neuroimaging features and cognitive assessment. Experimental results illustrated the
effectiveness of our model. Moreover, with sparse constraints, our model found several imaging
features that have been reported to be crucial to the onset and progression of AD. The replication of
these results further support the validity of our model.

Our main works can be summarized as below:

1) Following the Tikhonov regularization and kernel density estimation, we develop a new Regularized
Modal Regression (RMR) for estimating the conditional mode function and selecting informative
variables, which can be considered as a natural extension of Lasso [22] and can be implemented
efficiently by half-quadratic minimization methods.

2) Learning theory analysis is established for RMR from three aspects: approximation ability, sparsity,
and robustness, which provide the theoretical foundations of the proposed approach.

3) By applying our RMR model to the ADNI cohort, we reveal interesting findings in cognitive
impairment prediction of Alzheimer’s disease.

2 Regularized Modal Regression

2.1 Modal regression

We consider learning problem with input space X ⊂ Rp and output space Y ⊂ R. Let pY |X=x be the
conditional density of Y ∈ Y for given X = x ∈ X . In the prediction of cognitive assessment, we
denote the neuroimaging data for the i-th sample as xi and the cognitive measure for the i-th sample
as yi. Suppose that training samples z = {(xi, yi)}ni=1 ⊂ X × Y are generated independently by:

Y = f∗(X) + ε, (1)

where mode(ε|X = x) = arg max
t

pε|X(t|X = x) = 0 for any x ∈ X . Here, pε|X , as the

conditional density of ε conditioned on X , is well defined. Then, the target function of modal
regression can be written as:

f∗(x) = mode(Y |X = x) = arg max
t

pY |X(t|X = x),∀x ∈ X . (2)

To assure f∗ is well defined on X , we require that the existence and uniqueness of pY |X(t|X = x)
for any given x ∈ X . The relationship (2) means f∗ is the maximum of the conditional density
pY |X , and also equals to maximize the joint density pX,Y [4, 29, 28]. Here, we formulate the modal
regression following the dimension-insensitive statistical learning framework [7].
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For feasibility, we denote ρ on X × Y as the intrinsic distribution for data generated by (1), and
denote ρX as the corresponding marginal distribution on X . It has been proved in Theorem 3 [6] that
f∗ is the maximizer of

R(f) =

∫
X
pY |X(f(x)|X = x)dρX (x) (3)

over all measurable function. Hence, we can adopt R(f) as the evaluation measure of modal
regression estimator f : X → R. However, we can not get the estimator directly by maximizing
this criterion since pY |X and ρX are unknown. Recently, Theorem 5.1 in [6] showsR(f) = pεf (0),
where pεf is the density function of random variable εf = Y − f(X). Then, the problem of
maximizingR(f) over some hypothesis spaces can be transformed to maximize the density of εf at
0. This density pεf can be estimated by nonparametric kernel density estimation.

For a kernel Kσ : R× R→ R+, we denote its representing function φ(u−u
′

σ ) = Kσ(u, u′), which
usually satisfies φ(u) = φ(−u), φ(u) ≤ φ(0) for any u ∈ R and

∫
R φ(u)du = 1. Typical examples

of kernel include Gaussian kernel, Epanechnikov kernel, quadratic kernel, triwight kernel, and
sigmoid function. The empirical estimation ofR(f) (also pεf (0)) can be obtained by kernel density
estimation, which is defined as:

Rσz (f) =
1

nσ

n∑
i=1

Kσ(yi − f(xi), 0) =
1

nσ

n∑
i=1

φ(
yi − f(xi)

σ
).

Hence, the approximation of f∗ can be found by learning algorithms associated with Rσz (f). In
theory, for any f : X → R, the expectation version ofRσz (f) is:

Rσ(f) =
1

σ

∫
X×Y

φ(
y − f(x)

σ
)dρ(x, y).

In particular, there holdsR(f)−Rσ(f)→ 0 as σ → 0 [6].

2.2 Modal regression with coefficient-based regularization

In this paper, we assume that f∗(x) = mode(Y |X = x) = wT∗ x for some w∗ ∈ Rp. Following the
ideas of ridge regression and Lasso [22], we consider the robust linear estimator for learning the
conditional mode function.

Let F be a linear hypothesis space defined by:
F = {f(x) = wTx : w = (w1, ..., wp) ∈ Rp, x ∈ X}.

For any given positive tuning parameters {τj}pj=1, we denote:

Ω(f) = inf
{ p∑
j=1

τj |wj |q : f(x) = wTx, q ∈ [1, 2]
}
.

Given training set z, the regularized modal regression (RMR) can be formulated as below:

fz = arg max
f∈F

{
Rσz (f)− λΩ(f)

}
, (4)

where regularization parameter λ > 0 is used to balance the modal regression measure and hypothesis
space complexity. It is easy to deduce that fz(x) = wTz x with

wz = arg max
w∈Rp

{ 1

nσ

n∑
i=1

φ(
yi − wTxi

σ
)− λ

p∑
j=1

τj |wj |q
}
. (5)

When τj ≡ 1 for 1 ≤ j ≤ p and q = 1, (5) can be considered as an natural extension of Lasso in
[22] from learning the conditional mean function to estimating the conditional mode function. When
τj ≡ 1 for 1 ≤ j ≤ p and q = 2, (5) also can be regarded as the corresponding version of ridge
regression by replacing the MSE criterion with modal regression criterion. In particular, when Kσ is
Gaussian kernel and τj ≡ 1 for 1 ≤ j ≤ p, (5) can be rewritten as:

wz = arg max
w∈Rp

{ 1

nσ

n∑
i=1

exp
{ (yi − wTxi)2

σ2

}
− λ‖w‖qq

}
,

which is equivalent to correntropy regression under maximum correntropy criterion [19, 9, 7].

3



2.3 Optimization algorithm

We employ the half-quadratic (HQ) theory [18] in the optimization. For a convex problem min
s
u(s),

it is equivalent to solve the following half-quadratic reformulation:

min
s,t

Q(s, t) + v(t),

where Q(s, t) is quadratic for any t ∈ R and v : R→ R satisfies:

u(s) = min
t
Q(s, t) + v(t),∀s ∈ R.

Such a dual potential function v can be determined via convex conjugacy as shown below.

According to the convex optimization theory [20], for a closed convex function f(a), there exists a
convex function g(b), such that:

f(a) = max
b

(ab− g(b)),

where g is the conjugate of f , i.e., g = f?. Symmetrically, it is easy to prove f = g?.

Theorem 1 For a closed convex function f(a) = max
b

(ab− g(b)), we have arg max
b

(ab− g(b)) =

f ′(a) for any a ∈ R.

When Kσ is Gaussian kernel, the optimization steps can be found in [9]. Here we take Epanechnikov
kernel (a.k.a., parabolic kernel) as an example to show the optimization of Problem (5) via HQ theory.
The kernel-induced representing function of Epanechnikov kernel is φ(e) = 3

4 (1− e2)1[|e|≤1].

Define a closed convex function f as:

f(a) =

{
3
4 (1− a), 0 ≤ a ≤ 1
0, a ≥ 1.

There exists a convex function g such that f(a) = max
b

(ab− g(b)) and φ(e) = f(e2) = max
b

(e2b−
g(b)). Thus, when τj ≡ 1 for 1 ≤ j ≤ p, the optimization problem (5) can be rewritten as:

max
w∈Rp,b∈Rn

{ 1

nσ

n∑
i=1

(
bi(
yi − wTxi

σ
)2 − g(bi)

)
− λ

p∑
j=1

τj |wj |q
}
. (6)

Problem (6) can be easily optimized via alternating optimization algorithm. Note that according
to Theorem 1, when w is fixed, b can be updated as bi = f ′((yi−w

T xi
σ )2) = − 3

41[| yi−w
T xi
σ |≤1]

for

i = 1, 2, . . . , n. For the space limitation, we provide the proof of Theorem 1 and the optimization
steps of RMR in the supplementary material.

3 Learning Theory Analysis

This section presents the theoretical foundations of RMR from approximation ability, variable sparsity,
and algorithmic robustness. Detail proofs of these results can be found in the supplementary material.

3.1 Approximation ability analysis

Besides the linear requirement for the conditional mode function, we also need some basic conditions
on the kernel-induced representing function φ [6, 28].

Assumption 1 The representing function φ satisfies the following conditions: 1) ∀u ∈ R, φ(u) ≤
φ(0) <∞, 2) φ is Lipschitz continuous with constant Lφ, 3)

∫
R φ(u)du = 1 and

∫
R u

2φ(u)du <∞.

It is easy to verify that most of kernels used for density estimation satisfy the above conditions,
e.g., Gaussian kernel, Epanechnikov kernel, quadratic kernel, etc. Since RMR is associated with
Rσz (f), we need to establish quantitative relationship betweenRσ(f) andR(f). Recently, the modal
regression calibration has been illustrated in Theorem 10 [6] under the following restrictions on the
conditional density pε|X .
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Assumption 2 The conditional density pε|X is second-order continuously differentiable and uniform
bounded.

Now, we present the approximation bound onR(f∗)−R(fz).

Theorem 2 Let ‖x‖ q
q−1
≤ a for q ∈ (1, 2] for any x ∈ X and f∗ ∈ F . Under Assumptions 1-2, for

q ∈ (1, 2], by taking λ = σ2 = O(n−
q

4q+3 ), we have:

R(f∗)−R(fz) ≤ C log(4/δ)n−
q

4q+3

with confidence at least 1− δ. In particular, for q = 1 and ‖x‖∞ ≤ a, choosing λ = σ2 = ( ln p
n )

1
7 ,

we have:

R(f∗)−R(fz) ≤ C log(4/δ)
( ln p

n

) 1
7

with confidence at least 1− δ, Here C1, C2 is a constant independent of n, δ.

Theorem 2 shows that the excess risk of R(f∗) −R(fz) → 0 with the polynomial decay and the
estimation consistency is guaranteed as n→∞. Moreover, under Assumption 3 in [6], we can derive
that fz tends to f∗ with approximation order O(n−

q
4q+3 ) for q ∈ (1, 2] and O( ln p

n )
1
7 ) for q = 1.

Although approximation analysis has been provided for modal regression in [6, 28], both of them are
limited to the empirical risk minimization. This is different from our result for regularized modal
regression under structural risk minimization.

3.2 Sparsity analysis

To characterize the variable selection ability of RMR, we first present the properties for nonzero
component of wz.

Theorem 3 Assume that φ is differentiable for any t ∈ R. For j ∈ {1, 2, ..., p} satisfying wzj 6= 0,
there holds: ∣∣∣ 1

nσ2

n∑
i=1

φ′(
yi − fz(xi)

σ
)xij

∣∣∣ =
pλτj |wzj |p−1

2
.

Observe that the condition on φ holds true for Gaussian kernel, sigmoid function, and logistic function.
Theorem 3 demonstrates the necessary condition for the non-zero wzj . Without loss of generality, we
set S0 = {1, 2, ..., p0} as the index set of truly informative variables and denote Sz = {j : wzj 6= 0}
as the set of identified informative variables by RMR in (4).

Theorem 4 Assume that ‖x‖∞ ≤ a for any x ∈ X and λτj ≥ ‖φ′‖∞σ for any j > p0. Then, for
RMR (4) with q = 1, there holds Sz ⊂ S0 for all z ∈ (X × Y)n.

Theorem 4 assures that RMR has the capacity to identify the truly informative variable in theory.
Combining Theorem 4 and Theorem 2, we provide the asymptotic theory of RMR on estimation and
model selection.

3.3 Robustness analysis

To quantify the robustness of RMR, we calculate its finite sample breakdown point, which reflects the
largest amount of contamination points that an estimator can tolerate before returning arbitrary values
[11, 12]. Recently, this index has been used to investigate the robustness of modal linear regression
[28] and kernel-based modal regression [6].

Recall that the derived weight wz defined in (5) is dependent on any given sampling set z =
{(xi, yi)}ni=1. By adding m arbitrary points z′ = {(xn+j , yn+j)}mj=1 ⊂ X × Y , we obtain the
corrupted sample set z∪ z′. For given λ, σ, {τj}pj=1, we denote wz∪z′ be the maximizer of (5). Then,
the finite sample breakdown point of wz is defined as:

ε(wz) = min
1≤m≤n

{ m

n+m
: sup

z′
‖wz∪z′‖2 =∞

}
.
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Theorem 5 Assume that φ(u) = φ(−u) and φ(t) → 0 as t → ∞. For given λ, σ, {τj}pj=1, we
denote:

M =
1

φ(0)

n∑
i=1

φ(
ỹi − fz(xi))

σ
)− λσ(φ(0))−1Ω(fz).

Then the finite sample breakdown point of wz in (5) is ε(wz) = m∗

n+m∗ , where m∗ ≥ dMe and dMe
is the smallest integer not less than M .

From Theorem 5, we know that the finite breakdown point of RMR depends on φ, σ, and the sample
configuration, which is similar with re-descending M-estimator and recent analysis for modal linear
regression in [28]. As illustrated in [11, 12], the finite sample breakdown point is high when the
bandwidth σ only depends on the training samples. Hence, RMR can achieve satisfactory robustness
when λ, τj are chosen properly and σ is determined by data-driven techniques.

4 Experimental Analysis

In this section, we conduct experiments on both toy data, benchmark data as well as the ADNI
cohort data to evaluate our RMR model. We compare several regression methods in the experiments,
including: LSR (traditional mean regression based on the least square estimator), LSR-L2 (LSR with
squared `2-norm regularization, i.e., ridge regression) LSR-L1 (LSR with `1-norm regularization),
MedianR (median regression), HuberR (regression with huber loss), RMR-L2 (RMR with squared
`2-norm regularization), and RMR-L1 (RMR with `1-norm regularization).

For evaluation, we calculate root mean square error (RMSE) between the predicted value and
ground truth in out-of-sample prediction. The RMSE value is normalized via Frobenius norm of
the ground truth matrix. We employ 2-fold cross validation and report the average performance for
each method. For each method, we set the hyper-parameter of the regularization term in the range of
{10−4, 10−3.5, . . . , 104}. We tune the hyper-parameters via 2-fold cross validation on the training
data and report the best parameter w.r.t. RMSE of each method. For RMR methods, we adopt the
Epanechnikov kernel and set the bandwidth as σ = max(|y − wTx|).

4.1 Performance comparison on toy data

Following the design in [28], we generate the toy data by sampling i.i.d. from the model: Y =
−2 + 3X + τ(X)ε, where X ∼ U(0, 1), σ(X) = 1 + 2X and ε ∼ 0.5N (−2, 32) + 0.5N (2, 12).
We can derive that E(ε) = 0, Mode(ε) = 1.94 and Median(ε) = 1, hence the conditional mean
regression function of the toy data is E(Y |X) = −2 + 3X , the conditional median function is
Median(Y |X) = 1 + 5X , while the conditional mode is Mode(Y |X) = −0.06 + 6.88X .

We consider three different number of samples: 100,200,500, and repeat the experiments 100 times
for each setting. We present the RMSE in Table 1, which shows that RMR models get lower RMSE
values than all comparing methods. It indicates that RMR models make better estimation of the
output when the noise in data is skewed and relatively heavy-tailed. Moreover, we compare the
coverage probabilities for prediction intervals centered around the predicted value from each method.
We set the length of coverage intervals to be {0.1ν, 0.2ν, 0.3ν} respectively with ν = 3 being the
approximate standard error of ε. From Table 2 we can find that RMR models provide larger coverage
probabilities than the counterparts.

4.2 Performance comparison on benchmark data

Here we present the comparison results on six benchmark datasets from UCI repository [15] and
StatLib2, which include: slumptest, forestfire, bolts, cloud, kidney, and lupus. We summarize the
results in Table 3. From the comparison we notice that RMR models tend to perform better on all
datasets. Also, RMR-L1 obtains lower RMSE value since the RMR-L1 model is more robust with
the `1-norm regularization term.

2http://lib.stat.cmu.edu/datasets/
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Table 1: Average RMSE and standard deviation with different number (n) of toy samples.

n=100 n=200 n=500
LSR 0.9687±0.0699 0.9477±0.0294 0.9495±0.0114

LSR-L2 0.9671±0.0685 0.9469±0.0284 0.9495±0.0114
LSR-L1 0.9672±0.0685 0.9473±0.0288 0.9495±0.0114

MedianR 0.9944±0.0806 0.9568±0.0350 0.9542±0.0120
HuberR 0.9725±0.0681 0.9485±0.0296 0.9502±0.0116
RMR-L2 0.9663±0.0683 0.9466±0.0282 0.9493±0.0114
RMR-L1 0.9662±0.0679 0.9465±0.0281 0.9492±0.0114

Table 2: Average coverage possibilities and standard deviation on toy data.

n=100 n=200 n=500

0.1ν

LSR 0.0730±0.0247 0.0702±0.0166 0.0702±0.0106
LSR-L2 0.0753±0.0247 0.0731±0.0155 0.0709±0.0108
LSR-L1 0.0747±0.0246 0.0719±0.0161 0.0706±0.0106

MedianR 0.0563±0.0255 0.0626±0.0124 0.0654±0.0097
HuberR 0.0710±0.0258 0.0698±0.0160 0.0694±0.0101
RMR-L2 0.0760±0.0254 0.0740±0.0161 0.0719±0.0111
RMR-L1 0.0760±0.0255 0.0742±0.0156 0.0720±0.0111

0.2ν

LSR 0.1313±0.0338 0.1450±0.0255 0.1430±0.0193
LSR-L2 0.1337±0.0334 0.1461±0.0251 0.1429±0.0196
LSR-L1 0.1337±0.0337 0.1458±0.0258 0.1430±0.0193

MedianR 0.1087±0.0351 0.1331±0.0239 0.1377±0.0182
HuberR 0.1237±0.0347 0.1442±0.0257 0.1421±0.0188
RMR-L2 0.1340±0.0336 0.1477±0.0256 0.1441±0.0199
RMR-L1 0.1343±0.0340 0.1481±0.0247 0.1441±0.0198

0.3ν

LSR 0.1923±0.0402 0.2142±0.0342 0.2150±0.0229
LSR-L2 0.1940±0.0415 0.2165±0.0331 0.2156±0.0222
LSR-L1 0.1940±0.0415 0.2153±0.0334 0.2153±0.0226

MedianR 0.1750±0.0414 0.2031±0.0299 0.2095±0.0233
HuberR 0.1873±0.0389 0.2132±0.0333 0.2144±0.0224
RMR-L2 0.1943±0.0420 0.2179±0.0327 0.2168±0.0220
RMR-L1 0.1950±0.0406 0.2177±0.0323 0.2167±0.0219

Table 3: Average RMSE and standard deviation on benchmark data.

slumptest forestfire bolts cloud kidney lupus
LSR 0.2689±0.0295 0.9986±0.0874 0.4865±0.0607 0.6178±0.0190 0.5077±0.0264 0.8646±0.3703

LSR-L2 0.2616±0.0266 0.9822±0.0064 0.4687±0.0137 0.5782±0.0029 0.5106±0.0219 0.8338±0.3282
LSR-L1 0.2571±0.0277 0.9822±0.0079 0.4713±0.0172 0.5802±0.0043 0.5196±0.0089 0.8408±0.3366

MedianR 0.2810±0.0024 0.9964±0.0050 0.4436±0.0232 0.6457±0.0301 0.5432±0.0160 1.2274±0.6979
HuberR 0.2669±0.0268 0.9874±0.0299 0.4841±0.0661 0.6178±0.0190 0.5447±0.0270 0.9198±0.4226
RMR-L2 0.2538±0.0185 0.9817±0.0093 0.4782±0.0107 0.5702±0.0131 0.4871±0.0578 0.8071±0.3053
RMR-L1 0.2517±0.0240 0.9802±0.0198 0.3298±0.1313 0.5663±0.0305 0.4989±0.0398 0.7885±0.2910
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Table 4: Average RMSE and standard deviation on the ADNI data.

Fluency ADAS TRAILS
LSR 0.3856±0.0034 0.4397±0.0112 0.6798±0.0538

LSR-L2 0.3269±0.0069 0.4116±0.0208 0.5443±0.0127
LSR-L1 0.3295±0.0035 0.4121±0.0100 0.5476±0.0115

MedianR 0.4164±0.0291 0.4700±0.0151 0.6702±0.1184
HuberR 0.3856±0.0034 0.4383±0.0133 0.6621±0.0789
RMR-L2 0.3256±0.0049 0.4105±0.0216 0.5342±0.0186
RMR-L1 0.3269±0.0057 0.4029±0.0234 0.5423±0.0123

4.3 Performance comparison on the ADNI cohort data

Now we look into a practical problem in Alzheimer’s disease, i.e., prediction of cognitive scores
via neuroimaging features. Data used in this article were obtained from the ADNI database (adni.
loni.usc.edu). We extract 93 regions of interest (ROIs) as neuroimaging features and use
cognitive scores from three tests: Fluency Test, Alzheimer’s Disease Assessment Scale (ADAS) and
Trail making test (TRAILS). 795 sample subjects were involved in our study, including 180 AD
samples, 390 MCI samples and 225 normal control (NC) samples. Detailed data description can be
found in the supplementary material.

Our goal is to construct an appropriate model to predict cognitive performance given neuroimaging
data. Meanwhile, we expect the model to illustrate the importance of different features in the
prediction, which is fundamental to understanding the role of each imaging marker in the study of AD.
From Table 4, we find that RMR models always perform equal or better than the comparing methods,
which verifies that RMR is more appropriate to learn the association between neuroimaging markers
and cognitive performance. We can notice that RMR-L2 always performs better than LSR-L2, and
RMR-L1 outperforms LSR-L1. This is because the symmetric noise assumption in least square
models may not be guaranteed on the ADNI cohort. Compared with HuberR, our RMR model is
shown to be less sensitive to outliers. Moreover, from the comparison between MedianR and RMR
models, we can infer that conditional mode is more suitable than conditional median for the prediction
of cognitive scores.

RMR-L1 imposes sparse constraints on the learnt weight matrix, which naturally achieves the goal
of feature selection in the association study. Here we take TRAILS cognitive assessment as an
example and look into the important neuroimaging features in the prediction. From the heat map
and brain map in Fig. 1 and 2, we obtain several interesting findings. In the prediction, temporal
lobe white matter has been picked out as a predominant feature. [10, 2] reported decreased fractional
anisotropy (FA) and increased radial diffusivity (DR) in the white matter of the temporal lobe among
AD and Mild Cognitive Impairment (MCI) subjects. [10] also revealed the correlation between
temporal lobe FA and episodic memory, which may account for the influence of temporal lobe to
TMT results. Besides, there is evidence in [17] supporting the association between left temporal lobe
and the working memory component involving letters and numbers in TMT. Moreover, angular gyrus
indicates high correlation with TRAILS scores in our analysis. Previous research has revealed that
angular gyrus share many clinical features with AD. [14] presented structural MRI findings showing
more left anular gyrus in MCI converters than non-converters, which pointed out the role of atrophy
of structures like angular gyrus in the progression of dementia. [3] showed evidence for the role
of angular gyrus in orienting spatial attention, which serves as a key factor in TMT results. The
replication of these results supports the effectiveness of our model.

5 Conclusion

This paper proposes a new regularized modal regression and establishes its theoretical foundations
on approximation ability, sparsity, and robustness. These characterizations fill in the theoretical
gaps for modal regression under Tikhonov regularization. Empirical results verify the competitive
performance of the proposed approach on simulated data, benchmark data and real biomedical data.
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Figure 1: Heatmap showing the weights of each neuroimaging feature via RMR-L1 model for the
prediction of TRAILS cognitive measures. We draw two matrices, where the upper figure is for the
left hemisphere and the lower figure for the right hemisphere. Imaging markers (columns) with larger
weights indicate higher correlation with corresponding cognitive measure in the prediction.

Figure 2: Cortical maps of ROIs identified in RMR-L1 model for the prediction of TRAILS cognitive
measures. The brain maps show one slice of multi-view. The three maps correspond to three different
cognitive measures in TRAILS cognitive test, respectively.

With the sparsity property of our model, we identified several biological meaningful neuroimaging
markers, showing the potential to enhance the understanding of onset and progression of AD.
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