
Supplementary Material for Active Learning from
Peers

Keerthiram Murugesan Jaime Carbonell
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213
{kmuruges,jgc}@cs.cmu.edu

Appendix A Proof of Theorem 1

Proof. We prove our theorem 1 for Algorithm 1 using the following lemma [1].

Lemma 1. For a given example at round t,
(
(x(t), k), y(t)

)
, let α be some constant and γ be the

margin. Let {w∗k}k∈[K] be any arbitrary vectors where w∗k ∈ Rd and its hinge loss on the examples(
x(t), y(t)

)
is given by `(t)∗kk =

(
γ − y(t)〈x(t), w∗k〉

)
+

. We have the following inequality:

αγ + |p̂(t)k | ≤ α`
(t)∗
kk ≤ α`

(t)∗
kk +

1

2
‖αw∗k − w

(t−1)
k ‖2 − 1

2
‖αw∗k − w

(t)
k ‖

2 +
1

2
‖w(t−1)

k − w(t)
k ‖

2 +
1

2
‖w(t−1)

k − w(t)
k ‖

2

Proof.

γ − `(t)∗kk = γ −
(
γ − y(t)〈x(t), w∗k〉

)
+

≤ y(t)〈x(t), w∗k〉

= y(t)〈x(t), (w∗k − w
(t−1)
k + w

(t−1)
k)〉

= y(t)〈x(t), w(t−1)
k 〉+ 1

2
‖w∗k − w

(t−1)
k ‖2 − 1

2
‖w∗k − w

(t)
k ‖

2 +
1

2
‖w(t−1)

k − w(t)
k ‖

2

The above inequality holds for any γ > 0 and any arbitrary vector w∗k, we replace γ by αγ and w∗k
by αw∗k where α is some constant to be optimized. Since y(t)〈x(t), w(t−1)

k 〉 ≤ 0 when we make a
mistake at round t, we get our inequality by using the notation p̂(t)k = 〈x(t), w(t−1)

k 〉.

αγ + |p̂(t)k | ≤ α`
(t)∗
kk +

1

2
‖αw∗k − w

(t−1)
k ‖2 − 1

2
‖αw∗k − w

(t)
k ‖

2 +
1

2
‖w(t−1)

k − w(t)
k ‖

2

Note that, for a taskm (m 6= k), y(t)〈x(t), w(t−1)
m 〉 ≤ 0 is not necessarily true and ‖w(t−1)

m −w(t)
m ‖2 =

0 since w(t)
m = w

(t−1)
m at round t.

To prove theorem 1, we bound the following two terms: b2
(
αγ + |p̂(t)k |

)
+
∑
m∈[K]
m6=k

τ
(t)
km|p̂

(t)
m |
(
αγ +

|p̂(t)k |
)

where p̂
(t)
m = 〈x(t), w(t−1)

m 〉. Summing over t, we use w
(t)
k = w

(t−1)
k when

there is no mistake (M (t) = 0) and ‖w(t−1)
k − w

(t)
k ‖2 ≤ X2 otherwise. We use∑T

t=1[
1
2‖αw

∗
k − w

(t−1)
k ‖2 − 1

2‖αw
∗
k − w

(t)
k ‖2] = α2

2 ‖w
∗
k‖2 and w

(0)
k = 0. Consider the

mth task in the second term (m 6= k), we have:

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.

∑
tM

(t)Z(t)|p̂(t)m |
(
αγ + |p̂(t)k | −

X2

2

)
≤
∑
t

M (t)Z(t)
[
α|p̂(t)m |`

(t)∗
kk +

α2

2
|p̂(t)m |‖w∗k‖2

]
≤
∑
t

M (t)Z(t)
[
α
(
γb2 − |p̂(t)m |y(t)〈x(t), w∗k〉

)
+
+
α2b2
2
‖w∗k‖2

]
≤
∑
t

M (t)Z(t)
[
α
(
γb2 − (y(t)〈x(t), w∗m〉 −

1

2
‖w∗m‖2)(y(t)〈x(t), w

(t−1)
k 〉+ 1

2
‖w∗k‖2 +

X2

2
)
)
+
+
α2b2
2
‖w∗k‖2

]
≤
∑
t

M (t)Z(t)
[
α
(
γb2 − (y(t)〈x(t), w∗m〉 −

1

2
‖w∗m‖2)b2

)
+
+
α2b2
2
‖w∗k‖2

]
≤
∑
t

M (t)Z(t)
[
b2
(
α`

(t)∗
km +

α2

2
‖w∗m‖2 +

α2

2
‖w∗k‖2

)]

where we have used the inequalities in Lemma 1 for both the tasks k and m (m 6= k). We set
b2 = b1 +

1
2‖w

∗
k‖2 + X2

2 . We choose α = (2b1 + X2)/2γ. Now, combining both the terms, we
have:

T∑
t=1

M (t)Z(t)

[(
b1 + |p̂(t)k |

)
(b2 +

∑
m∈[K]
m 6=k

τ
(t)
km|p̂

(t)
m |)

]
≤ b2

[
(2b1 +X2)2

8γ2
(
‖w∗k‖2 +

∑
m∈[K]
m 6=k

τ
(t)
km‖w

∗
m‖2

)
(2b1 +X2)

2γ

(∑
t

M (t)Z(t)`
(t)∗
kk +

∑
t

∑
m∈[K]
m 6=k

τ
(t)
kmM

(t)Z(t)`
(t)∗
km

)]

Taking expectation on both side and using L̃kk = E
[∑

tM
(t)Z(t)`

(t)∗
kk

]
gives the desired result.

Appendix B Learning Multiple Tasks in Parallel

In this section, we explore a related approach where multiple tasks are learned in parallel. In this
setting, we assume that all tasks will be performed at each round. At time t, the kth task receives a
training instance x(t)k , makes a prediction 〈x(t)k , w

(t)
k 〉 and suffers a loss after y(t) is revealed. Unlike

the problem setting in Algorithm 1, we are allowed to query the Oracle for at most κ examples out of
the K examples received at round t where κ ≤ K. Our algorithm follows a perceptron-based update
rule, as in Algorithm 1, in which the model is updated only when a task makes a mistake. The key
idea is that the algorithm picks κ examples from K tasks that desperately need human assistance.

Most recently, Cohen et. al. [2] proposed a selective sampling-based approach called SHAMPO
for this problem setting. Each task k is chosen for label request from oracle with probability
Pr(Ji = k) ∝ b1/(b1 + |p̂(t)kk | −minKm=1 |p̂

(t)
mm|), ∀i ∈ [κ] and we choose at most κ tasks for label

requests to oracle. We define J = {Ji : i ∈ [κ]}. Unlike in Algorithm 1, we perform a perceptron
update when we make a mistake M (t)

k = I(y(t)k 6= ŷ
(t)
k) or when the example has less confidence

A
(t)
k = I(0 < y

(t)
k p̂

(t)
kk ≤

γ
2). In their proposed method, the examples from the other tasks k /∈ J

are not updated on this round. In addition, their methods doesn’t take into account the relationship
between the tasks. Our learning procedure from Algorithm 1 provides a natural way to extend their
method to learn from peers and to utilize the relationship between the tasks efficiently.

The pseudo-code is in Algorithm 2. Lines (9− 12) is similar to their proposed learning framework.
We add the lines (15 − 18) to query the peers for labels for the tasks that are not selected at this

2

Algorithm 2: Learning Multiple Tasks in Parallel from Peers
Input : b1 > 0, b2 > 0 s.t., b2 ≥ b1, λ > 0, γ > 0 Number of rounds T

1 Initialize w(0)
m = 0 ∀m ∈ [K], τ (0).

2 for t = 1 . . . T do
3 Receive K examples: {x(t)k : k ∈ [K]}
4 Compute p̂(t)kk = 〈x(t)k , w

(t−1)
k 〉, k ∈ [K]

5 Predict K labels: ŷ(t)k = sign(p̂
(t)
kk), k ∈ [K]

6 Draw κ tasks for query with probability
Pr(Ji = k) ∝ b1/(b1 + |p̂(t)kk | −minKm=1 |p̂

(t)
mm|), ∀i ∈ [κ]

7 for k = 1 . . . [K] do
8 if k ∈ J then
9 Query true label y(t)k

10 Set M (t)
k = 1 if ŷ(t)k 6= y

(t)
k

11 Set A(t)
k = 1 if 0 < y

(t)
k p̂

(t)
kk ≤

γ
2

12 Update w(t)
k = w

(t−1)
k + (M

(t)
k +A

(t)
k)y

(t)
k x

(t)
k .

13 Update τ (t) as in Equation 1.
14 else
15 Compute p̂(t)km = 〈x(t)k , w

(t−1)
m 〉 ∀m 6= k,m ∈ [K]

16 Compute p̃(t)k =
∑
m 6=k,m∈[K] τ

(t−1)
km p̂

(t)
km and ỹ(t)k = sign(p̃

(t)
k)

17 Draw a Bernoulli random variable Z̃(t)
k with probability |p̃(t)

k
|

b2+|p̃
(t)
k
|

18 Update w(t)
k = w

(t−1)
k + Z̃

(t)
k ỹ

(t)
j x

(t)
k

19 end
20 end
21 end

round k /∈ J and the line 13 to incorporate the relationship between the tasks when the true labels
are available. We give the (expected) mistake bound for the Algorithm 2 in Theorem 2.

Theorem 2. ∀k ∈ [K], let Sk =
{(
x
(t)
k , y

(t)
k

)}T
t=1

be a sequence of T examples for the kth task

where x(t)k ∈ Rd, y(t)k ∈ {−1,+1} and ‖x(t)k ‖2 ≤ R, ∀t ∈ [T]. Let M (t)
k = I(y(t)k 6= ŷ

(t)
k) and

A
(t)
k = I(0 < y

(t)
k p̂

(t)
kk ≤

γ
2).

If {Sk}k∈[K] is presented to Algorithm 2 with b1 > 0 (b1 ≥ γ) and b2 > 0 (b2 ≥ b1), then ∀t ≥ 1
and γ > 0 we have

E
[∑
k∈[K]

∑
t∈[T]

M
(t)
k

]
≤b2K

γ

[
(2b1 +X2)2

8b1γ

(
‖w∗k‖2 + max

m∈[K],m 6=k
‖w∗m‖2

)
+
(
1 +

X2

2b1

)(
L̃kk + max

m∈[K],m 6=k
L̃km

)]
+

(
γ

b1
− 1

)
E
[∑
k∈[K]

∑
t∈[T]

A
(t)
k

]

The proof is straight-forward and follows directly from the proof of Theorem 1 and Theorem 1 in [2].
The first two terms in the bound is same as in Theorem 1. The last term in the bound accounts for the
aggressiveness of the algorithm. The intuition is that when we set b1 to the margin (i.e., b1 = γ), the
last term will become 0 and the bound reduces to the one given in Theorem 1. When b1 > γ, the
aggressive term in the bound reduces the expected number of the mistakes made by Algorithm 2 and
increases the expected number of label requests to the peers and eventually to the oracle.

3

References
[1] Nicolo Cesa-Bianchi, Claudio Gentile, and Luca Zaniboni. Worst-case analysis of selective

sampling for linear classification. Journal of Machine Learning Research, 7(Jul):1205–1230,
2006.

[2] Haim Cohen and Koby Crammer. Learning multiple tasks in parallel with a shared annotator. In
Advances in Neural Information Processing Systems, pages 1170–1178, 2014.

4

	Proof of Theorem 1
	Learning Multiple Tasks in Parallel

