
A Appendix

The appendix is devoted to proofs of various results from the main text.

A.1 Proof of Lemma 1

Suppose there exist two distributions P,Q on Rm such that EP (X)[
ek(y,X)] = EQ(X)[

ek1(y,X)]

for any y 2 Rm. Consider Rm as a subspace embedded in Rd. The probability distributions P
and Q can be extended to Rd by by setting the remaining components to zero. Then we also have
EP (X)[

ek1(y,X)] = EQ(X)[
ek1(y,X)] for any y 2 Rd. As k1 is characteristic, P = Q.

A.2 Proof of Theorem 2 and Corollary 3

Theorem 2 and Corollary 3 can be proved simultaneously. The proof of Theorem 2 parallels the proof
of the corresponding theorem in the setting of dimension dimension reduction by Fukumizu et al.
[10].

We can interpret ˜H1 as a subset of H1, so Equation 7 implies ⌃Y Y |XT � ⌃Y Y |X . In the univariate
case, this is equivalent to saying trace[⌃Y Y |XT ] � trace[⌃Y Y |X ].

By the law of total variance, we have for any g 2 H2,
EXT varY |XT [g(Y )|XT ] = EX [var[g(Y )|X]] + EXT varY |XT [EY |X [g(Y )|X]]. (21)

By Lemma 1, the kernel ek1 is characteristic, so the conditional covariance operator characterizes the
conditional dependence, which reduces Equation 21 to

hg, (⌃Y Y |XT � ⌃Y Y |X)gi = EXT varY |XT [EY |X [g(Y )|X]]. (22)

Hence ⌃Y Y |XT = ⌃Y Y |X if and only if given XT , EY |X [g(Y )|X] is almost surely determined.
Because k2 is characteristic, we have Y ?? X|XT . Suppose Y is univariate and k2 is the linear
kernel. Then both ⌃Y Y |X and ⌃Y Y |XT can be equivalently interpreted as linear functions that map
real numbers to real numbers. When g = IdY , the identity function on Y , we have

hIdY , (⌃Y Y |XT � ⌃Y Y |X)IdY i = EXT varY |XT [EY |X [Y |X]] = 0. (23)

This implies Y ?? X|XT directly.

A.3 Proof of Theorem 5

We provide a simpler proof than the one for Theorem 6 in the paper [10], where the consistency result
for dimension reduction was established.

For any subset of features T , we have

| trace[ˆ⌃Y Y |XT ]� trace[⌃Y Y |XT ]|
 | trace[⌃Y Y |XT ]� trace[⌃Y Y � ⌃Y XT (⌃XT XT + "nI)

�1
⌃XT Y ]|+

+ | trace[⌃Y Y � ⌃Y XT (⌃XT XT + "nI)
�1

⌃XT Y ]� trace[

ˆ

⌃Y Y |XT ]|,
where the second term converges to zero by the law of large numbers, whereas Fukumizu et al. [10]
proved that the second term can be upper bounded as

1

"n
{(kˆ⌃

Y X
(n)
T

kHS + k⌃Y XT kHS)kˆ⌃Y XT � ⌃Y XT kHS

+ k⌃Y Y ktracekˆ⌃(n)
XT XT

� ⌃XT XT kHS

+ | trace[ˆ⌃Y Y � ⌃Y Y ]|},
where k · kHS is the HSIC norm of an operator. By the Central Limit Theorem, both of the terms

kˆ⌃Y XT � ⌃Y XT kHS, kˆ⌃(n)
XT XT

� ⌃XT XT kHS and | trace[ˆ⌃Y Y � ⌃Y Y ]|
are guaranteed to be of order Op(n

�1/2
). Hence, the second term also converges to 0. This establishes

the convergence of trace[ˆ⌃Y Y |XT ] towards trace[⌃Y Y |XT ], which yields the claim (15) by standard
"–� arguments.

11


	Introduction
	Formulating feature selection
	From a dependence perspective
	From a prediction perspective

	Conditional Covariance Operator
	Proposed method
	Criterion with its derivation

	Optimization
	Initial relaxation
	Computational issues

	Experiments
	Synthetic data
	Real-world data

	Conclusion
	Appendix
	Proof of Lemma 1
	Proof of Theorem 2 and Corollary 3
	Proof of Theorem 5


