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Abstract

We introduce neural networks for end-to-end differentiable proving of queries to
knowledge bases by operating on dense vector representations of symbols. These
neural networks are constructed recursively by taking inspiration from the backward
chaining algorithm as used in Prolog. Specifically, we replace symbolic unification
with a differentiable computation on vector representations of symbols using a
radial basis function kernel, thereby combining symbolic reasoning with learning
subsymbolic vector representations. By using gradient descent, the resulting neural
network can be trained to infer facts from a given incomplete knowledge base.
It learns to (i) place representations of similar symbols in close proximity in a
vector space, (ii) make use of such similarities to prove queries, (iii) induce logical
rules, and (iv) use provided and induced logical rules for multi-hop reasoning. We
demonstrate that this architecture outperforms ComplEXx, a state-of-the-art neural
link prediction model, on three out of four benchmark knowledge bases while at
the same time inducing interpretable function-free first-order logic rules.

1 Introduction

Current state-of-the-art methods for automated Knowledge Base (KB) completion use neural link pre-
diction models to learn distributed vector representations of symbols (i.e. subsymbolic representations)
for scoring fact triples [1-7]. Such subsymbolic representations enable these models to generalize
to unseen facts by encoding similarities: If the vector of the predicate symbol grandfather0f is
similar to the vector of the symbol grandpaOf, both predicates likely express a similar relation.
Likewise, if the vector of the constant symbol LISA is similar to MAGGIE, similar relations likely
hold for both constants (e.g. they live in the same city, have the same parents etc.).

This simple form of reasoning based on similarities is remarkably effective for automatically complet-
ing large KBs. However, in practice it is often important to capture more complex reasoning patterns
that involve several inference steps. For example, if ABE is the father of HOMER and HOMER is a
parent of BART, we would like to infer that ABE is a grandfather of BART. Such transitive reasoning
is inherently hard for neural link prediction models as they only learn to score facts locally. In
contrast, symbolic theorem provers like Prolog [8] enable exactly this type of multi-hop reasoning.
Furthermore, Inductive Logic Programming (ILP) [9] builds upon such provers to learn interpretable
rules from data and to exploit them for reasoning in KBs. However, symbolic provers lack the ability
to learn subsymbolic representations and similarities between them from large KBs, which limits
their ability to generalize to queries with similar but not identical symbols.

While the connection between logic and machine learning has been addressed by statistical relational
learning approaches, these models traditionally do not support reasoning with subsymbolic repre-
sentations (e.g. [10]), and when using subsymbolic representations they are not trained end-to-end
from training data (e.g. [11-13]). Neural multi-hop reasoning models [14—18] address the aforemen-
tioned limitations to some extent by encoding reasoning chains in a vector space or by iteratively
refining subsymbolic representations of a question before comparison with answers. In many ways,
these models operate like basic theorem provers, but they lack two of their most crucial ingredients:
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interpretability and straightforward ways of incorporating domain-specific knowledge in form of
rules.

Our approach to this problem is inspired by recent neural network architectures like Neural Turing
Machines [19], Memory Networks [20], Neural Stacks/Queues [21, 22], Neural Programmer [23],
Neural Programmer-Interpreters [24], Hierarchical Attentive Memory [25] and the Differentiable
Forth Interpreter [26]. These architectures replace discrete algorithms and data structures by end-to-
end differentiable counterparts that operate on real-valued vectors. At the heart of our approach is the
idea to translate this concept to basic symbolic theorem provers, and hence combine their advantages
(multi-hop reasoning, interpretability, easy integration of domain knowledge) with the ability to
reason with vector representations of predicates and constants. Specifically, we keep variable binding
symbolic but compare symbols using their subsymbolic vector representations.

Concretely, we introduce Neural Theorem Provers (NTPs): End-to-end differentiable provers for
basic theorems formulated as queries to a KB. We use Prolog’s backward chaining algorithm as
a recipe for recursively constructing neural networks that are capable of proving queries to a KB
using subsymbolic representations. The success score of such proofs is differentiable with respect to
vector representations of symbols, which enables us to learn such representations for predicates and
constants in ground atoms, as well as parameters of function-free first-order logic rules of predefined
structure. By doing so, NTPs learn to place representations of similar symbols in close proximity in a
vector space and to induce rules given prior assumptions about the structure of logical relationships
in a KB such as transitivity. Furthermore, NTPs can seamlessly reason with provided domain-specific
rules. As NTPs operate on distributed representations of symbols, a single hand-crafted rule can
be leveraged for many proofs of queries with symbols that have a similar representation. Finally,
NTPs demonstrate a high degree of interpretability as they induce latent rules that we can decode to
human-readable symbolic rules.

Our contributions are threefold: (i) We present the construction of NTPs inspired by Prolog’s back-
ward chaining algorithm and a differentiable unification operation using subsymbolic representations,
(ii) we propose optimizations to this architecture by joint training with a neural link prediction model,
batch proving, and approximate gradient calculation, and (iii) we experimentally show that NTPs can
learn representations of symbols and function-free first-order rules of predefined structure, enabling
them to learn to perform multi-hop reasoning on benchmark KBs and to outperform ComplEx [7], a
state-of-the-art neural link prediction model, on three out of four KBs.

2 Background

In this section, we briefly introduce the syntax of KBs that we use in the remainder of the paper.
We refer the reader to [27, 28] for a more in-depth introduction. An atom consists of a predicate
symbol and a list of terms. We will use lowercase names to refer to predicate and constant symbols
(e.g. father0f and BART), and uppercase names for variables (e.g. X, Y,Z). As we only consider
function-free first-order logic rules, a ferm can only be a constant or a variable. For instance,
[grandfather0f, Q, BART]| is an atom with the predicate grandfather0f, and two terms, the
variable Q and the constant BART. We consider rules of the form H :— B, where the body B is a
possibly empty conjunction of atoms represented as a list, and the head H is an atom. We call a rule
with no free variables a ground rule. All variables are universally quantified. We call a ground rule
with an empty body a fact. A substitution set 1 = {X1/t1,...,Xn/tn} is an assignment of variable
symbols X; to terms ¢;, and applying substitutions to an atom replaces all occurrences of variables
X; by their respective term ¢;.

Given a query (also called goal) such as [grandfather0f, Q, BART], we can use Prolog’s backward
chaining algorithm to find substitutions for Q [8] (see appendix A for pseudocode). On a high level,
backward chaining is based on two functions called OR and AND. OR iterates through all rules
(including rules with an empty body, i.e., facts) in a KB and unifies the goal with the respective
rule head, thereby updating a substitution set. It is called OR since any successful proof suffices
(disjunction). If unification succeeds, OR calls AND to prove all atoms (subgoals) in the body of
the rule. To prove subgoals of a rule body, AND first applies substitutions to the first atom that is
then proven by again calling OR, before proving the remaining subgoals by recursively calling AND.
This function is called AND as all atoms in the body need to be proven together (conjunction). As
an example, a rule such as [grandfather0f, X, Y] :- [[father0f, X, Z], [parent0£f, Z, Y]] is used



in OR for translating a goal like [grandfather0f, Q, BART] into subgoals [father0f, Q, 7] and
[parentOf, Z, BART] that are subsequently proven by AND.!

3 Differentiable Prover

In the following, we describe the recursive construction of NTPs — neural networks for end-to-end
differentiable proving that allow us to calculate the gradient of proof successes with respect to vector
representations of symbols. We define the construction of NTPs in terms of modules similar to
dynamic neural module networks [29]. Each module takes as inputs discrete objects (atoms and rules)
and a proof state, and returns a list of new proof states (see Figure 1 for a graphical representation).

A proof state S = (1, p) is a tuple consisting of
the substitution set ¢/ constructed in the proof
so far and a neural network p that outputs a
real-valued success score of a (partial) proof. X/Q
While discrete objects and the substitution set Y/BART
are only used during construction of the neu-
ral network, once the network is constructed a Sy Sp Sy, s,
continuous proof success score can be calcu-
lated for many different goals at training and
test time. To summarize, modules are instanti-
ated by discrete objects and the substitution set.
They construct a neural network representing
the (partial) proof success score and recursively
instantiate submodules to continue the proof.

X
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b

Figure 1: A module is mapping an upstream proof
state (left) to a list of new proof states (right),
thereby extending the substitution set S, and
adding nodes to the computation graph of the neu-
ral network S, representing the proof success.

The shared signature of modules is D xS — S~ where D is a domain that controls the construction of
the network, S is the domain of proof states, and /V is the number of output proof states. Furthermore,
let S, denote the substitution set of the proof state S and let S, denote the neural network for
calculating the proof success.

We use pseudocode in style of a functional programming language to define the behavior of modules
and auxiliary functions. Particularly, we are making use of pattern matching to check for properties
of arguments passed to a module. We denote sets by Euler script letters (e.g. £), lists by small capital
letters (e.g. E), lists of lists by blackboard bold letters (e.g. [E) and we use : to refer to prepending an
element to a list (e.g. e : E or E : E). While an atom is a list of a predicate symbol and terms, a rule
can be seen as a list of atoms and thus a list of lists where the head of the list is the rule head.?

3.1 Unification Module

Unification of two atoms, e.g., a goal that we want to prove and a rule head, is a central operation
in backward chaining. Two non-variable symbols (predicates or constants) are checked for equality
and the proof can be aborted if this check fails. However, we want to be able to apply rules even
if symbols in the goal and head are not equal but similar in meaning (e.g. grandfather0f and
grandpa0f) and thus replace symbolic comparison with a computation that measures the similarity
of both symbols in a vector space.

The module unify updates a substitution set and creates a neural network for comparing the vector
representations of non-variable symbols in two sequences of terms. The signature of this module
is L x L xS — S where L is the domain of lists of terms. unify takes two atoms represented
as lists of terms and an upstream proof state, and maps these to a new proof state (substitution set
and proof success). To this end, unify iterates through the list of terms of two atoms and compares
their symbols. If one of the symbols is a variable, a substitution is added to the substitution set.
Otherwise, the vector representations of the two non-variable symbols are compared using a Radial
Basis Function (RBF) kernel [30] where 1 is a hyperparameter that we set to = in our experiments.

V2
The following pseudocode implements unify. Note that "_" matches every argument and that the

"For clarityy, we will sometimes omit lists when writing rules and atoms, e.g.,
grandfather0f(X,Y) :— father0f(X,Z), parent0f(Z, Y).
?For example, [[grandfather0f, X, Y], [father0f, X, Z], [parent0f, Z, Y]].



order matters, i.e., if arguments match a line, subsequent lines are not evaluated.

1. unityo((],[1,8) = §

2. unifyg([],_,_) = FAIL

3. unifyg(_,[],_) = FAIL

4. unifyg(h: H,g:G,S) =unifye(H,G,S") = (S%S;) where

Sy U{h/g} ifheV on—0ull2)
S{F{ Sy U{g/h} ifgeV,hgV 4, S;=min<5p,{i’{p(2#2g) fh,g ¢V })

Sy otherwise otherwise

Here, S’ refers to the new proof state, V refers to the set of variable symbols, //g is a substitution
from the variable symbol A to the symbol g, and 8. denotes the embedding lookup of the non-variable
symbol with index g. unify is parameterized by an embedding matrix € RIZ1** where Z is the set
of non-variables symbols and k is the dimension of vector representations of symbols. Furthermore,
FAIL represents a unification failure due to mismatching arity of two atoms. Once a failure is reached,
we abort the creation of the neural network for this branch of proving. In addition, we constrain
proofs to be cycle-free by checking whether a variable is already bound. Note that this is a simple
heuristic that prohibits applying the same non-ground rule twice. There are more sophisticated ways
for finding and avoiding cycles in a proof graph such that the same rule can still be applied multiple
times (e.g. [31]), but we leave this for future work.

Example Assume that we are unifying two atoms [grandpa0Of, ABE, BART] and [s, Q, 4] given an
upstream proof state S = (&, p) where the latter input atom has placeholders for a predicate s
and a constant ¢, and the neural network p would output 0.7 when evaluated. Furthermore, assume
grandpaOf, ABE and BART represent the indices of the respective symbols in a global symbol
vocabulary. Then, the new proof state constructed by unify is:

unifye([grandpadf, ABE, BART], [5, Q. ], (2, p)) = (S, S}) =
({Q/ABE}v min (pv eXp(_”egrandpan: - 03: ||2)7 eXp(_HeBART: - 01”2)))

Thus, the output score of the neural network S ; will be high if the subsymbolic representation of the
input s is close to grandpaOf and the input  is close to BART. However, the score cannot be higher
than 0.7 due to the upstream proof success score in the forward pass of the neural network p. Note
that in addition to extending the neural networks p to S?, this module also outputs a substitution set
{Q/ABE} at graph creation time that will be used to instantiate submodules.

3.2 OR Module

Based on unify, we now define the or module which attempts to apply rules in a KB. The signature
of oris £ x N x S — SN where L is the domain of goal atoms and N is the domain of integers used
for specifying the maximum proof depth of the neural network. Furthermore, IV is the number of
possible output proof states for a goal of a given structure and a provided KB.? We implement or as

1. or§(G,d,S) =[S"| S’ € and}(B,d,unifye(H,G,S)) for H:~B € £]

where H :— B denotes a rule in a given KB £ with a head atom H and a list of body atoms B. In
contrast to the symbolic OR method, the or module is able to use the grandfather0f rule above
for a query involving grandpaOf provided that the subsymbolic representations of both predicates
are similar as measured by the RBF kernel in the unify module.

Example For a goal [s,Q,i], or would instantiate an and submodule based on the rule
[grandfather0f, X, Y] :— [[father0f, X, Z], [parent0f, Z, Y]] as follows

org([s7 Q,i],d,S) =[9'|S" € andg([[fatherOf, X, 7], [parent0f,Z, Y]], d, ({X/Q, Y /i}, 5'p)), o]
—_—

result of unify

3The creation of the neural network is dependent on the KB but also the structure of the goal. For instance,
the goal s(Q, 7) would result in a different neural network, and hence a different number of output proof states,
than s(%, 7).



3.3 AND Module

For implementing and we first define an auxiliary function called substitute which applies substitu-
tions to variables in an atom if possible. This is realized via

1. substitute([],_) =[]

2. substitute(g : G, 1)) = { ;f ige{rﬁviesew } : substitute(G, 1))

For example, substitute([father0f, X, Z], {X/Q, Y/i}) results in [father0f, Q, Z].

The signature of and is £ x N x S — S¥ where £ is the domain of lists of atoms and N is the
number of possible output proof states for a list of atoms with a known structure and a provided KB.
This module is implemented as

1. andj(_,_,FAIL) = FAIL

2. andj(_,0,_) = FAIL

3. and3([],_,8) =S

4. and§ (G : G,d,S) = [S" | S” € andg(G,d, S') for S" € org (substitute(G, Sy),d — 1, S)]

where the first two lines define the failure of a proof, either because of an upstream unification
failure that has been passed from the or module (line 1), or because the maximum proof depth has
been reached (line 2). Line 3 specifies a proof success, i.e., the list of subgoals is empty before the
maximum proof depth has been reached. Lastly, line 4 defines the recursion: The first subgoal G is
proven by instantiating an or module after substitutions are applied, and every resulting proof state
S’ is used for proving the remaining subgoals G by again instantiating and modules.

Example Continuing the example from Section 3.2, the and module would instantiate submodules
as follows:

andg ([[father0f, X, 7], [parent0f, 7, Y]], d, ({X/Q, Y /i},S,)) =
N e’
result of UN1fy in OT

[S”|8" € andg([[paren‘c[)f7 7,Y]],d,S") for S’ € org([father[]f, Q,7],d—1,{X/Q,Y/i}, gp))]

result of substitute result of UN1fy in OT

3.4 Proof Aggregation

Finally, we define the overall success score of proving a goal G using a KB £ with parameters 6 as

ntpy (G, d) = argmax S,
S € 0T (G,d,(@,1))
S#FAIL
where d is a predefined maximum proof depth and the initial proof state is set to an empty substitution
set and a proof success score of 1.

Example Figure 2 illustrates an examplary NTP computation graph constructed for a toy KB. Note
that such an NTP is constructed once before training, and can then be used for proving goals of the
structure [s, 4, j] at training and test time where s is the index of an input predicate, and ¢ and j are
indices of input constants. Final proof states which are used in proof aggregation are underlined.

3.5 Neural Inductive Logic Programming

We can use NTPs for ILP by gradient descent instead of a combinatorial search over the space of
rules as, for example, done by the First Order Inductive Learner (FOIL) [32]. Specifically, we are
using the concept of learning from entailment [9] to induce rules that let us prove known ground
atoms, but that do not give high proof success scores to sampled unknown ground atoms.

Let 0,.,0,.,0,. € R be representations of some unknown predicates with indices r, s and ¢ respec-
tively. The prior knowledge of a transitivity between three unknown predicates can be specified via



org([s,i,4].2,(2,1))

[2.
unifyg([fatherOf, ABE, HOMER], [s, i, j], (@, 1)) e unifyg([grandfather0f, X, Y], [s,4, 7], (2,1))

Y

S = (2,p1) So = (2, p2) Ss = ({X/i,Y/j}. ps) :Example Knowledge Base:
\1. fatherOf(ABE, HOMER).

' 2. parentOf(HOMER, BART).

'3. grandfather0f(X,Y) -

3.

and$ ([[father0f, X, 7], [parent0f,Z, Y]],2, S3)

Ysubstitute : father0f(X,Z),
1 org([father0f,i,7], 1, S5) ' parent0£(Z, Y).
. 3. .
unifyg([fatherOf, ABE, HOMER], [father0f, 4, Z], S) e unifyg([parentOf, HOMER, BART], [father0f, i, Z], S3)
I
Su1 = ({X/i, ¥ /1,7 /HOMER}, ps1) Sy = FAIL S0z = ([X/i, Y /1,7/BART}, psz)
and§ ([parent0f, Z, Y], 2, S31) andy ([parent0f, Z, Y], 2, S32)
Ysubstitute Y substitute
org([parentOf, HOMER, j], 1, S31) ory ([parent0f, BART, /] 1, S32)
> =N
Sain = ({X/i, Y/j, Z/HOMER}, p311) ¢ S313 = FAIL S323 = FAIL * Saa1 = ({X/1,Y /), Z/BART}, pso1)
Sa12 = ({X/i,Y/j,7Z/HOMER}, p312) S22 = ({X/4,Y /4, Z/BART}, p32s)

Figure 2: Exemplary construction of an NTP computation graph for a toy knowledge base. Indices
on arrows correspond to application of the respective KB rule. Proof states (blue) are subscripted
with the sequence of indices of the rules that were applied. Underlined proof states are aggregated to
obtain the final proof success. Boxes visualize instantiations of modules (omitted for unify). The
proofs Ss3,.S313 and Sso3 fail due to cycle-detection (the same rule cannot be applied twice).

r(X,Y) = s(X,Z2),t(Z,Y). We call this a parameterized rule as the corresponding predicates are
unknown and their representations are learned from data. Such a rule can be used for proofs at training
and test time in the same way as any other given rule. During training, the predicate representations
of parameterized rules are optimized jointly with all other subsymbolic representations. Thus, the
model can adapt parameterized rules such that proofs for known facts succeed while proofs for
sampled unknown ground atoms fail, thereby inducing rules of predefined structures like the one
above. Inspired by [33], we use rule templates for conveniently defining the structure of multiple
parameterized rules by specifying the number of parameterized rules that should be instantiated for
a given rule structure (see appendix E for examples). For inspection after training, we decode a
parameterized rule by searching for the closest representations of known predicates. In addition,
we provide users with a rule confidence by taking the minimum similarity between unknown and
decoded predicate representations using the RBF kernel in unify. This confidence score is an upper
bound on the proof success score that can be achieved when the induced rule is used in proofs.

4 Optimization

In this section, we present the basic training loss that we use for NTPs, a training loss where a neural
link prediction models is used as auxiliary task, as well as various computational optimizations.

4.1 Training Objective

Let K be the set of known facts in a given KB. Usually, we do not observe negative facts and thus
resort to sampling corrupted ground atoms as done in prev10us work [34]. Spemﬁcally, for every
[s,4,] € K we obtain corrupted ground atoms [s, 7, j], [s, 4, j], [s, %, ] & K by sampling 7, 7,7 and j
from the set of constants. These corrupted ground atoms are resampled in every iteration of training,
and we denote the set of known and corrupted ground atoms together with their target score (1.0 for
known ground atoms and 0.0 for corrupted ones) as 7. We use the negative log-likelihood of the
proof success score as loss function for an NTP with parameters 6 and a given KB &

Entpg = Z _ylog(ntpg([s? iaj]v d)P) - (1 - y) log(l - ntpg([sa iaj]a d)P)
([s:i,3ly) € T

where [s, i, j] is a training ground atom and y its target proof success score. Note that since in our
application all training facts are ground atoms, we only make use of the proof success score p and not



the substitution list of the resulting proof state. We can prove known facts trivially by a unification
with themselves, resulting in no parameter updates during training and hence no generalization.
Therefore, during training we are masking the calculation of the unification success of a known
ground atom that we want to prove. Specifically, we set the unification score to 0 to temporarily hide
that training fact and assume it can be proven from other facts and rules in the KB.

4.2 Neural Link Prediction as Auxiliary Loss

At the beginning of training all subsymbolic representations are initialized randomly. When unifying
a goal with all facts in a KB we consequently get very noisy success scores in early stages of training.
Moreover, as only the maximum success score will result in gradient updates for the respective
subsymbolic representations along the maximum proof path, it can take a long time until NTPs learn
to place similar symbols close to each other in the vector space and to make effective use of rules.

To speed up learning subsymbolic representations, we train NTPs jointly with ComplEx [7] (Ap-
pendix B). ComplEx and the NTP share the same subsymbolic representations, which is feasible
as the RBF kernel in unify is also defined for complex vectors. While the NTP is responsible for
multi-hop reasoning, the neural link prediction model learns to score ground atoms locally. At test
time, only the NTP is used for predictions. Thus, the training loss for ComplEx can be seen as an
auxiliary loss for the subsymbolic representations learned by the NTP. We term the resulting model
NTPA. Based on the loss in Section 4.1, the joint training loss is defined as

ﬁntpAg = ﬁntpg + Z —ylog(complexg(s,i, ) — (1 — y)log(l — complexg(s, i, j))
([s;5:5ly) € T

where [s, 4, j] is a training atom and y its ground truth target.

4.3 Computational Optimizations

NTPs as described above suffer from severe computational limitations since the neural network is
representing all possible proofs up to some predefined depth. In contrast to symbolic backward
chaining where a proof can be aborted as soon as unification fails, in differentiable proving we only get
a unification failure for atoms whose arity does not match or when we detect cyclic rule application.
We propose two optimizations to speed up NTPs in the Appendix. First, we make use of modern
GPUs by batch processing many proofs in parallel (Appendix C). Second, we exploit the sparseness
of gradients caused by the min and max operations used in the unification and proof aggregation
respectively to derive a heuristic for a truncated forward and backward pass that drastically reduces
the number of proofs that have to be considered for calculating gradients (Appendix D).

S Experiments

Consistent with previous work, we carry out experiments on four benchmark KBs and compare
ComplEx with the NTP and NTPA in terms of area under the Precision-Recall-curve (AUC-PR) on
the Countries KB, and Mean Reciprocal Rank (MRR) and HITS @m [34] on the other KBs described
below. Training details, including hyperparameters and rule templates, can be found in Appendix E.

Countries The Countries KB is a dataset introduced by [35] for testing reasoning capabilities of
neural link prediction models. It consists of 244 countries, 5 regions (e.g. EUROPE), 23 subregions
(e.g. WESTERN EUROPE, NORTHERN AMERICA), and 1158 facts about the neighborhood of countries,
and the location of countries and subregions. We follow [36] and split countries randomly into a train-
ing set of 204 countries (train), a development set of 20 countries (dev), and a test set of 20 countries
(test), such that every dev and test country has at least one neighbor in the training set. Subsequently,
three different task datasets are created. For all tasks, the goal is to predict locatedIn(c, ) for every
test country c and all five regions r, but the access to training atoms in the KB varies.

S1: All ground atoms locatedIn(c,r) where ¢ is a test country and r is a re-
gion are removed from the KB. Since information about the subregion of test coun-
tries is still contained in the KB, this task can be solved by using the transitivity rule
locatedIn(X,Y) :— locatedIn(X,Z),locatedIn(Z,Y).

S2: In addition to S1, all ground atoms locatedIn(c, s) are removed where c is a test country and s



Table 1: AUC-PR results on Countries and MRR and HITS @m on Kinship, Nations, and UMLS.

Corpus | Metric Model | Examples of induced rules and their confidence
| ComplEx NTP NTPX |
S1 | AUC-PR  99.37+0.4 90.83+154 100.00+ 0.0 | 0.90 locatedIn(X,Y) :—locatedIn(X,Z), locatedIn(Z,Y).
Countries S2 | AUC-PR  87.95+2.8 8740+11.7 93.04+ 0.4 | 0.63 locatedIn(X,Y) :—neighbor0£f(X,Z), locatedIn(Z,Y).
S3 | AUC-PR  48.44+6.3 56.68+17.6 77.26 £17.0 | 0.32 locatedIn(X,Y) -
neighbor0£f(X,7), neighbor0f(Z,W), locatedIn(W,Y).
MRR 0.81 0.60 0.80 | 0.98 term15(X,Y) :—term5(Y,X)
Kinshi HITS@1 0.70 0.48 0.76 | 0.97 term18(X,Y) - term18(Y,X)
Ship HITS@3 0.89 0.70 0.82 | 0.86 term4(X,Y) :—term4(Y,X)
HITS@10 0.98 0.78 0.89 | 0.73 term12(X,Y) :—term10(X, Z), term12(Z, Y).
MRR 0.75 0.75 0.74 | 0.68 blockpositionindex(X,Y) :—blockpositionindex(Y,X).
Nations HITS@1 0.62 0.62 0.59 | 0.46 expeldiplomats(X,Y) :—negativebehavior(X,Y).
HITS@3 0.84 0.86 0.89 | 0.38 negativecomm(X,Y) :— commonblocO(X,Y).
HITS@10 0.99 0.99 0.99 | 0.38 intergovorgs3(X,Y) :— intergovorgs(Y,X).
MRR 0.89 0.88 0.93 | 0.88 interacts_with(X,Y) -
UMLS HITS@1 0.82 0.82 0.87 interacts_with(X,Z), interacts_with(Z,Y).
HITS@3 0.96 0.92 0.98 | 0.77 isa(X,Y) - isa(X,Z), isa(Z,Y).
HITS@10 1.00 0.97 1.00 | 0.71 derivative_of(X,Y) -
derivative_of(X,Z), derivative_of(Z,Y).

is a subregion. The location of test countries needs to be inferred from the location of its neighboring
countries: locatedIn(X,Y) :— neighbor0f(X,Z),locatedIn(Z, Y). This task is more difficult
than S1, as neighboring countries might not be in the same region, so the rule above will not always
hold.

S3: In addition to S2, all ground atoms locatedIn(c,r) where r is a region and c
is a training country that has a test or dev country as a neighbor are also removed.
The location of test countries can for instance be inferred using the three-hop rule
locatedIn(X,Y) :—neighbor0f(X,Z),neighbor0f(Z, W), locatedIn(W,Y).

Kinship, Nations & UMLS We use the Nations, Alyawarra kinship (Kinship) and Unified Medical
Language System (UMLS) KBs from [10]. We left out the Animals dataset as it only contains unary
predicates and can thus not be used for evaluating multi-hop reasoning. Nations contains 56 binary
predicates, 111 unary predicates, 14 constants and 2565 true facts, Kinship contains 26 predicates,
104 constants and 10686 true facts, and UMLS contains 49 predicates, 135 constants and 6529 true
facts. Since our baseline ComplEx cannot deal with unary predicates, we remove unary atoms from
Nations. We split every KB into 80% training facts, 10% development facts and 10% test facts. For
evaluation, we take a test fact and corrupt its first and second argument in all possible ways such that
the corrupted fact is not in the original KB. Subsequently, we predict a ranking of every test fact and
its corruptions to calculate MRR and HITS @m.

6 Results and Discussion

Results for the different model variants on the benchmark KBs are shown in Table 1. Another method
for inducing rules in a differentiable way for automated KB completion has been introduced recently
by [37] and our evaluation setup is equivalent to their Protocol II. However, our neural link prediction
baseline, ComplEx, already achieves much higher HITS@ 10 results (1.00 vs. 0.70 on UMLS and
0.98 vs. 0.73 on Kinship). We thus focus on the comparison of NTPs with ComplEx.

First, we note that vanilla NTPs alone do not work particularly well compared to ComplEx. They only
outperform ComplEx on Countries S3 and Nations, but not on Kinship or UMLS. This demonstrates
the difficulty of learning subsymbolic representations in a differentiable prover from unification
alone, and the need for auxiliary losses. The NTPA with ComplEx as auxiliary loss outperforms the
other models in the majority of tasks. The difference in AUC-PR between ComplEx and NTP) is
significant for all Countries tasks (p < 0.0001).

A major advantage of NTPs is that we can inspect induced rules which provide us with an interpretable
representation of what the model has learned. The right column in Table 1 shows examples of induced
rules by NTPA (note that predicates on Kinship are anonymized). For Countries, the NTP recovered
those rules that are needed for solving the three different tasks. On UMLS, the NTP induced
transitivity rules. Those relationships are particularly hard to encode by neural link prediction models
like ComplEx, as they are optimized to locally predict the score of a fact.



7 Related Work

Combining neural and symbolic approaches to relational learning and reasoning has a long tradition
and let to various proposed architectures over the past decades (see [38] for a review). Early proposals
for neural-symbolic networks are limited to propositional rules (e.g., EBL-ANN [39], KBANN [40]
and C-IL2P [41]). Other neural-symbolic approaches focus on first-order inference, but do not
learn subsymbolic vector representations from training facts in a KB (e.g., SHRUTI [42], Neural
Prolog [43], CLIP++ [44], Lifted Relational Neural Networks [45], and TensorLog [46]). Logic
Tensor Networks [47] are in spirit similar to NTPs, but need to fully ground first-order logic rules.
However, they support function terms, whereas NTPs currently only support function-free terms.

Recent question-answering architectures such as [15, 17, 18] translate query representations implicitly
in a vector space without explicit rule representations and can thus not easily incorporate domain-
specific knowledge. In addition, NTPs are related to random walk [48, 49, 11, 12] and path encoding
models [14, 16]. However, instead of aggregating paths from random walks or encoding paths to
predict a target predicate, reasoning steps in NTPs are explicit and only unification uses subsymbolic
representations. This allows us to induce interpretable rules, as well as to incorporate prior knowledge
either in the form of rules or in the form of rule templates which define the structure of logical
relationships that we expect to hold in a KB. Another line of work [50-54] regularizes distributed
representations via domain-specific rules, but these approaches do not learn such rules from data and
only support a restricted subset of first-order logic. NTPs are constructed from Prolog’s backward
chaining and are thus related to Unification Neural Networks [55, 56]. However, NTPs operate on
vector representations of symbols instead of scalar values, which are more expressive.

As NTPs can learn rules from data, they are related to ILP systems such as FOIL [32], Sherlock
[57] and meta-interpretive learning of higher-order dyadic Datalog (Metagol) [58]. While these ILP
systems operate on symbols and search over the discrete space of logical rules, NTPs work with
subsymbolic representations and induce rules using gradient descent. Recently, [37] introduced
a differentiable rule learning system based on TensorLog and a neural network controller similar
to LSTMs [59]. Their method is more scalable than the NTPs introduced here. However, on
UMLS and Kinship our baseline already achieved stronger generalization by learning subsymbolic
representations. Still, scaling NTPs to larger KBs for competing with more scalable relational learning
methods is an open problem that we seek to address in future work.

8 Conclusion and Future Work

We proposed an end-to-end differentiable prover for automated KB completion that operates on
subsymbolic representations. To this end, we used Prolog’s backward chaining algorithm as a recipe
for recursively constructing neural networks that can be used to prove queries to a KB. Specifically,
we introduced a differentiable unification operation between vector representations of symbols. The
constructed neural network allowed us to compute the gradient of proof successes with respect to
vector representations of symbols, and thus enabled us to train subsymbolic representations end-to-
end from facts in a KB, and to induce function-free first-order logic rules using gradient descent. On
benchmark KBs, our model outperformed ComplEXx, a state-of-the-art neural link prediction model,
on three out of four KBs while at the same time inducing interpretable rules.

To overcome the computational limitations of the end-to-end differentiable prover introduced in
this paper, we want to investigate the use of hierarchical attention [25] and reinforcement learning
methods such as Monte Carlo tree search [60, 61] that have been used for learning to play Go [62]
and chemical synthesis planning [63]. In addition, we plan to support function terms in the future.
Based on [64], we are furthermore interested in applying NTPs to automated proving of mathematical
theorems, either in logical or natural language form, similar to recent approaches by [65] and [66].
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