
Supplementary Material:
Consistent Multitask Learning with Nonlinear Output Relations

Here we collect the proofs of the main results presented in the paper.

A Theoretical Analysis

In the following we will assume X , C to be Polish spaces, namely separable complete metrizable
spaces, equipped with the associated Borel sigma-algebra. In particular we will restrict to the case
where C is a subset of YT with Y = [a, b] and a, b ∈ R. For any y ∈ YT we denote with yt the t-th
element of y. In the rest of the section, we assume that there exists a probability measure ρX = ρ on
X such that ρt(y, x) = ρt(y|x)ρ(x) for all t = 1, . . . , T .

A.1 Characterization of the Nonlinear MTL Estimator

In order to prove that a solution of the nonlinear MTL problem has the form described in Prop. 2,
namely

f∗(x) = argmin
c∈C

T∑
t=1

〈 ψ(ct) , V g∗t (x) 〉H g∗t (x) =

∫
Y
ψ(y) dρt(y|x)

we start by providing an alternative characterization for the expected risk E(f) in terms of the
g∗t : X → H.

Lemma 9. Let ` : Y × Y → R be SELF with `(y, y′) = 〈ψ(y), V ψ(y′)〉H for all y, y′ ∈ Y . Then,
for any measurable function f : X → C, the expected risk E(f) defined at Eq. (3) is equal to

E(f) =
1

T

∫
X

T∑
t=1

〈ψ(ft(x)), V g∗t (x)〉H dρ(x) (23)

Note that by the definition of SELF (Def. 1), ψ is continuous on Y and therefore gt is measurable and
‖g∗t (x)‖H bounded a.e. on X for all t = 1, . . . , T .

Proof.

E(f) =
1

T

T∑
t=1

∫
X×R

`(ft(x), y) dρt(y, x) (24)

=
1

T

T∑
t=1

∫
X×R
〈ψt(ft(x)), V ψ(y)〉H dρt(y, x) (25)

=
1

T

T∑
t=1

∫
X

∫
R
〈ψ(ft(x)), V ψ(y)〉H dρt(y|x) dρ(x) (26)

=
1

T

∫
X

T∑
t=1

〈
ψ(ft(x)), V

∫
R
ψ(y)dρt(y|x)

〉
H
dρ(x) (27)

=
1

T

∫
X

T∑
t=1

〈ψ(ft(x)), V g∗t (x)〉H dρ(x). (28)

The result above implies that if there exists a function f∗ : X → C that minimizes the argument∑T
t=1〈ψ(f(x), V g∗t 〉 in the integral at Eq. (23) almost everywhere on X , then f∗ minimizes also the

expected risk E(f). The following result guarantees the existence of such a function.
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Proposition 2. Let ` : R× R→ R be SELF, with `(y, y′) = 〈ψ(y), V ψ(y′)〉H. Then, the expected
risk E(f) introduced at Eq. (3) admits a measurable minimizer f∗ : X → C. Moreover, any such
minimizer satisfies, almost everywhere on X ,

f∗(x) = argmin
c∈C

T∑
t=1

〈ψ(ct), V g
∗
t (x)〉H, with g∗t (x) =

∫
R
ψ(y) dρt(y|x). (10)

The result is a direct corollary of the following.
Lemma 10 (f∗ is a minimizer of E). Let g1, . . . , gT : X → H be measurable functions with
‖gt(x)‖H bounded a.e. and let Ē be defined as

Ē(f) =

∫
X
r(x, f(x))dρ(x), with r(x, c) :=

1

T

T∑
t=1

〈ψ(ct), V gt(x)〉HY

If ` : Y × Y → R is continuous, then there exists a measurable selector f◦(x) ∈ argminc∈C r(x, c)
and a measurable function m(x) = minc∈C r(x, c) a.e. such that, we have

Ē(f◦) =

∫
X

m(x)dρ(x) = inf
f :X→C

Ē(f),

In particular, by selecting gt := g∗t of Eq. (10), we have that Ē is equal to the expected risk E(f) in
Eq. (3), f◦ is equal to f∗ of Eq. (10) and minimizes E .

Proof. Note that r(x, c) is Charatéodory since ` is continuous and the gt are measurable. Then, by
the compactness of C, we can invoke Aumann’s Measurable Selection Principle (see e.g. Lemma
A.3.18 in [1]), to guarantee that m is measurable and there exists a measurable f◦ : X → C such that
r(x, f◦(x)) = m(x) for any x ∈ X . Moreover, by definition of m, we have r(x, f◦(x)) = m(x) ≤
r(x, f(x)) a.e. on X for any measurable function f : X → C. So we have

Ē(f◦) =

∫
X
r(x, f◦(x))dρ(x) =

∫
X
m(x)dρ(x) ≤

∫
X
r(x, f(x))dρ(x) = E(f),

for any measurable function f : X → C. Then E(f) = inff :X→C E(f).

Nonlinear Multitask Learning. Following the intuition provided in Sec. 2.1 for the original SELF
algorithm, a natural approach to approximate f∗ : X → C is to consider the estimators ĝt : X → H
for the individual g∗t : X → H and then define f̂ : X → C such that

f̂(x) = argmin
c∈C

T∑
t=1

〈 ψ(ct) , V ĝt(x) 〉H (29)

In particular, the following Lemma provides the characterization of f̂ for the case where the ĝt are
the solution of kernel ridge regression applied independently for each task t = 1, . . . , T with training
set (xit, ψ(yit))

nt
i=1

ĝt(x) = argmin
g∈H⊗G

1

nt

nt∑
i=1

‖ψ(yit)− g(xit)‖2 + λ‖g‖2H⊗G

where G is a reproducing kernel Hilbert space with associated reproducing kernel k : X × X → R.
Recall that sinceH and G are reproducing kernel Hilbert spaces, alsoH⊗ G is.
Proposition 3 (The Nonlinear MTL Estimator). Let k : X × X → R be a reproducing kernel with
associated reproducing kernel Hilbert space G. Let ĝt : X → H be the solution of Eq. (12) for
t = 1, . . . , T . Then the estimator f̂ : X → C defined at Eq. (11) is such that

f̂(x) = argmin
c∈C

T∑
t=1

nt∑
i=1

αit(x)`(ct, yit), (α1t(x), . . . , αntt(x))> = (Kt + ntλtI)−1Ktx (13)

for all x ∈ X and t = 1, . . . , T , where Kt ∈ Rnt×nt denotes the kernel matrix of the t-th task,
namely (Kt)ij = k(xit, xjt), and Ktx ∈ Rnt the vector with i-th component equal to k(x, xit).
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Proof. First, note that the solution of the problem above has the form of

ĝt(x) =

nt∑
i=1

αit(x)ψ(yit)

with αit : X → R defined as in Eq. (13) (This is a standard result when H is finite dimensional,
see [2] Lemma 17 and Eq.(88)-(89) for the infinite dimensional case. Then, according to the SELF
characterization of the loss ` in terms of ψ and V , we have for any x ∈ X

1

T

T∑
t=1

nt∑
i=1

αit(x)`(ct, yit) =
1

T

T∑
t=1

nt∑
i=1

αit(x)〈ψ(ct), V yit〉H (30)

=
1

T

T∑
t=1

〈ψ(ct), V

nt∑
i=1

αit(x)yit〉H (31)

=
1

T

T∑
t=1

〈ψ(ct), V ĝt(x)〉H . (32)

In the following section we study the generalization properties of such estimator as the number of
examples per task grows.

A.2 A Comparison Inequality for Multitask Learning

In this section we prove the comparison inequality of Thm. 5, which is key to study the generalization
performance of nonlinear MTL.

Theorem 5 (Comparison Inequality). With the same assumptions of Prop. 2, for t = 1, . . . , T let
f∗ : X → C and g∗t : X → H be defined as in Eq. (10), let ĝt : X → H be measurable functions
and let f̂ : X → C satisfy Eq. (11). Let V ∗ be the adjoint of V . Then,

E(f̂)− E(f∗) ≤ qC,`,T

√√√√ 1

T

T∑
t=1

‖ĝt − g∗t ‖2L
ρ2X
, qC,`,T = 2 sup

c∈C

√√√√ 1

T

T∑
t=1

‖V ∗ψ(ct)‖2H. (18)

Proof. Recall that for any measurable gt : X → H,

‖g∗t − gt‖2L2(X ,H,ρ) :=

∫
‖g∗t (x)− gt(x)‖2Hdρ(x).

Let Ē be defined as

Ē(f) =

∫
X

1

T

T∑
t=1

〈ψ(f(x)t), V ĝt(x)〉HY
dρ(x),

for any measurable function f : X → C. We have

E(f)− E(f∗) = E(f)− Ē(f) + Ē(f)− E(f∗) = A+B (33)
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We will bound separately the terms A and B. By the characterization of E in Lemma 9, we have

A = E(f)− Ē(f) =
1

T

∫
X

T∑
t=1

〈ψ(f(x)t), V (g∗t (x)− ĝt(x))〉Hdρ(x) (34)

≤ 1

T

∫
X

T∑
t=1

‖V ∗ψ(f(x)t)‖H‖g∗t (x)− ĝt(x)‖Hdρ(x) (35)

≤ 1

T

T∑
t=1

sup
c∈C
‖V ∗ψ(ct)‖H

∫
X
‖g∗t (x)− ĝt(x)‖Hdρ(x) (36)

=
1

T

T∑
t=1

sup
c∈C
‖V ∗ψ(ct)‖H

√∫
X
‖g∗t (x)− ĝt(x)‖2Hdρ(x) (37)

=
1

T

√√√√ T∑
t=1

sup
c∈C
‖V ∗ψ(ct)‖2H

√√√√ T∑
t=1

∫
X
‖g∗t (x)− ĝt(x)‖2Hdρ(x). (38)

Since, by Lemma 10 f∗ is a minimizer of E and with the same reasoning f is a minimizer of Ē , we
have

B = Ē(f)− E(f∗) (39)

=

∫
X

min
c∈C

1

T

T∑
t=1

〈ψ(ct), V ĝt(x)〉H dρ(x) −
∫

min
c∈C

1

T

T∑
t=1

〈ψ(ct), V g
∗
t (x)〉H dρ(x) (40)

=
1

T

∫
X

min
c∈C

T∑
t=1

〈ψ(ct), V ĝt(x)〉H − min
c∈C

T∑
t=1

〈ψ(ct), V g
∗
t (x)〉H dρ(x) (41)

≤ 1

T

∫
X

sup
c∈C

∣∣∣∣∣
T∑
t=1

〈ψ(ct), V ĝt(x)〉HY −
T∑
t=1

〈ψ(ct), V g
∗
t (x)〉H

∣∣∣∣∣ dρ(x) (42)

=
1

T

∫
X

sup
c∈C

∣∣∣∣∣
T∑
t=1

〈V ∗ψ(ct), (ĝt(x)− g∗t (x))〉H

∣∣∣∣∣ dρ(x) (43)

≤ 1

T

∫
X

sup
c∈C

T∑
t=1

‖V ∗ψ(ct)‖H ‖ĝt(x)− g∗t (x)‖H dρ(x) (44)

≤ 1

T

∫
X

sup
c∈C

√√√√ T∑
t=1

‖V ∗ψ(ct)‖2H

√√√√ T∑
t=1

‖ĝt(x)− g∗t (x)‖2H dρ(x) (45)

≤ 1

T

√√√√sup
c∈C

T∑
t=1

‖V ∗ψ(ct)‖2H

√√√√∫
X

T∑
t=1

‖ĝt(x)− g∗t (x)‖2Hdρ(x). (46)

as desired.

A.3 Consistency and Generalization Bounds

The comparison inequality provided by Thm. 5 allows to characterize the generalization properties
of the estimator f̂ : X → C by studying the functions ĝt : X → H. In particular, if ĝt → g∗t in
L2 for all t = 1, . . . , T , the comparison inequality automatically guarantees that the excess risk
E(f̂)− E(f∗)→ 0. Moreover, if we are able to determine the rate for which the ĝt converge to the
g∗t , we can provide generalization bounds for the SELF estimator f̂ .

The following results formalize these ideas, proving consistency and learning rates for f̂ .
Theorem 6. Let C ⊆ [a, b]T , let X be a compact set and k : X × X → R a continuous universal
reproducing kernel (e.g. Gaussian). Let ` : [a, b]× [a, b]→ R be a SELF. Let f̂N : X → C denote
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the estimator at Eq. (13) with N = (n1, . . . , nT ) training points independently sampled from ρt for
each task t = 1, . . . , T and λt = n

−1/4
t . Let n0 = min1≤t≤T nt. Then, with probability 1

lim
n0→+∞

E(f̂N ) = inf
f :X→C

E(f). (19)

Proof. By the comparison inequality in Thm. 5 it is sufficient to prove that ĝt → g∗t in L2 in
probability as the number of training point increases. However note that g∗t : X → H such that
g∗t (x) =

∫
R ψ(y) dρt(y|x) is the minimizer of the least squares expected risk

minimize
g:X→H

∫
X×Y

‖g(x)− ψ(y)‖2H dρt(x, y). (47)

Indeed,∫
X×Y

‖g(x)− ψ(y)‖2H dρt(x, y) =

∫
X×Y

‖g(x)‖2H − 2〈g(x), ψ(y)〉 dρt(x, y) + const

=

∫
X
‖g(x)‖2H − 2〈g(x),

∫
Y
ψ(y) dρt(y|x)〉 dρX (x) + const

=

∫
X
‖g(x)‖2H − 2〈g(x), g∗t (x)〉 dρX (x) + const

Which is clearly minimized pointwise for each x ∈ X by g(x) = g∗t (x).

Therefore, in order to study the convergence of the kernel ridge regression estimator ĝt to g∗t we can
leverage on either standard results for kernel ridge regression (e.g. see [3]) ifH is finite dimensional
or the result in [2] (Lemma 18 see Eq. 96) when H is infinite dimensional. Both analyses provide
analogous bounds on ‖ĝt − g∗t ‖L2 with respect to the number of training examples nt. In particular,
the direct application of [2] (Lemma 18) to our setting, leads to the desired convergence of ĝt to g∗t ,
and consequently of E(f̂) to E(f∗) as desired.

Theorem 7. With the same assumptions and notation of Thm. 6 let f̂N : X → C denote the estimator
at Eq. (13) with λt = n

−1/2
t and assume g∗t ∈ H ⊗ G, for all t = 1, . . . , T . Then for any τ > 0 we

have, with probability at least 1− 8e−τ , that

E(f̂N )− inf
f :X→C

E(f) ≤ qC,`,T h` τ
2 n
−1/4
0 log T, (20)

where qC,`,T is defined as in Eq. (18) and h` is a constant independent of C, N, nt, λt, τ, T .

Proof. The same reasoning in the proof of Thm. 6 applies. In particular, since g∗t ∈ H ⊗ G for every
t = 1, . . . , T , we can improve the bound in [2, Lemma 18] analogously to what is done in [2, Thm.
5], leading, for any η > 0, to the bound

‖gt − g∗t ‖L2 ≤ h`,t η2 n−1/4t

holding with probability at least 1− 8e−η , where

h`,t = 12(Ψ + κ‖g∗t ‖H⊗G + κ) with Ψ = sup
y∈Y=[a,b]

‖ψ(y)‖H and κ =
√

sup
x∈X

k(x, x)

is a constant not depending on C, N, nt, η, λt. By taking the intersection bound of these events, we
have that the following holds with probability 1− T8e−η√√√√ 1

T

T∑
t=1

‖gt − g∗t ‖2L2 ≤

√√√√ 1

T

T∑
t=1

h2`,t η
4 n
−1/2
t ≤ h` η2 n−1/40 .

with h` = maxt=1,...,T h`,t. Then, by choosing η := τ log(T ) we have√√√√ 1

T

T∑
t=1

‖gt − g∗t ‖2L2 ≤ h` τ2 n−1/40 log(T ),

with probability 1− 8e−τ . Combining the equation above with the comparison inequality we have
the desired generalization bound.
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We conclude proving the result studying the constant qC,`,T in the case of C = [−B,B]2 and C = ST
the sphere of radius B.
Lemma 8. Let B ≥ 1, B = [−B,B]T , S ⊂ RT be the sphere of radius B centered at the origin
and let ` be the square loss. Then qB,`,T ≤ 2

√
5 B2 and qS,`,T ≤ 2

√
5 B2 T−1/2.

Proof. We begin by observing that the least square expected risk can be equivalently written as

E(f) = min
f :X→C

1

T

T∑
t=1

∫
X×Y

(f(x)− y)2 dρt(x, y) (48)

= min
f :X→C

1

T

T∑
t=1

∫
X×Y

f(x)2 − f(x)y + y2 dρt(x, y) (49)

= min
f :X→C

1

T

T∑
t=1

∫
X×Y

f(x)2 − 2f(x)y dρt(x, y). (50)

Therefore we can equivalently study the asymmetric loss ` : R×R→ R such that `(y, y′) = y2−2yy′.
Such loss can be written in SELF form `(y, y′) = 〈ψ(y), V ψ(y′)〉H withH = R3,

ψ(y) = (y2, y, 1)> ∈ R2 and V =

(
0 0 1
0 −2 0
1 0 0

)
.

Therefore we have ‖V ∗ψ(y)‖2 = 4y2 + y4 for all y ∈ R. In particular we have that for every
c = (c1, . . . , cT )> ∈ C ⊆ R√√√√ 1

T

T∑
t=1

‖V ∗ψ(ct)‖2H =

√√√√ 1

T

T∑
t=1

4c2t + c4t

Now we can provide the value for the constant qC,`,T for the two case considered in this work.

Case C = B = [−B,B]T . The supremum is achieved at the edges of the cube B, e.g. c =
B(1, . . . , 1)> ∈ RT , namely

qB,`,T = 2 sup
c∈C

√√√√ 1

T

T∑
t=1

‖V ∗ψ(ct)‖2H = 2
√

4B2 +B4 ≤ 2
√

5 B2

Case C = SB,T . the sphere of radius B in RT centered in zero. Since ‖c‖ = B for any c ∈ SB we
have

qSB,T ,` = 2

√
4B2 +B4

T

Since c2t ≤ B2 for all c ∈ SB,T and t = 1, . . . , T . Therefore
∑T
t=1 c

4
t ≤ B2

∑T
t=1 ct = B4.

However such value is achieved for c = (B, 0, . . . , 0)> ∈ RT , hence qC,`,T = B
√

4 +B2. We
conclude

q(SB,T , `) ≤ 2
√

5 B2 T−1/2

as desired.

B (Most) MTL Loss Functions are SELF

We conclude with a note on the results reported in Sec. 4 characterizing sufficient conditions for the
SELF property to be satisfied by either mono-variate loss functions or a separable loss sum of SELF
functions.
Proposition 4. Let ¯̀ : [a, b] → R be differentiable almost everywhere with derivative Lipschitz
continuous almost everywhere. Let ` : [a, b] × [a, b] → R be such that `(y, y′) = ¯̀(y − y′)
or `(y, y′) = ¯̀(yy′) for all y, y′ ∈ R. Then: (i) ` is SELF and (ii) the separable function
L : YT × YT → R such that L(y, y′) = 1

T

∑
T

t=1 `(yt, y
′
t) for all y, y′ ∈ YT is SELF.
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Proof. The result is a corollary of Thm. 19 in [2]. In particular (i) is a direct application of Thm.
19 point 2, while (ii) follows from the combination of Thm. 19 point 4, namely the fact that we are
studing the separable loss on a compact subset of RT and point 6, implying that the sum of SELF
functions is indeed SELF.

C Nonlinear Multitask learning and Square Loss

We observed that for the square loss it is possible to derive a more compact and interpretable
formulation for the solutions of the algorithms considered in this work (see Example 1 and Example 3).
Here we show how these solution are derived in detail. In particular, in the notation of Example 3
denote the solution f̂0 : X → C to the exact MTL problem with nonlinear constraints C. f0 needs to
satisfy Eq. (8), where, for L(y, y′) = ‖y = y′‖2 the weighted sum

∑n
i=1 αi(x) L(y, yi) is

n∑
i=1

αi(x)‖c− yi‖2 = a(x)‖c‖2 − 2c>b(x) + const (51)

with a(x) =
∑n
i=1 αi(x) and b(x) =

∑n
i=1 αi(x)yi. Therefore f0 corresponds to the projection

f̂0(x) = argmin
c∈C

‖c− b(x)/a(x)‖2 = ΠC (b(x)/a(x)) (52)

Solution for the Robust Cδ in Example 3. The algorithm with constraint set Cδ takes the form

f̂δ(x) = argmin
c∈C,‖r‖≤δ

n∑
i=1

αi(x)‖c+ r − yi‖2. (53)

Following the same reasoning as in Example 1, we have that this problem is equivalent to

f̂δ(x) = argmin
c∈C,‖r‖≤δ

‖c+ r − b(x)/a(x)‖2. (54)

By solving Eq. (54) in r we have

r(c) = argmin
‖r‖≤δ

‖r − (b(x)/a(x)− c)‖2 (55)

which is solved by

r(c) = (b(x)/a(x)− c) min(1,
δ

‖b(x)/a(x)− c‖
). (56)

Substituting r(c) in Eq. (54), we have

cδ = argmin
c∈C

‖c+ r(c)− b(x)/a(x)‖2 (57)

= argmin
c∈C

‖c− b(x)/a(x)‖2(1−min(1, δ/‖c− b(x)/a(x)‖))2 (58)

which is minimized for cδ = ΠC(b(x)/a(x)) = f̂0(x). Therefore, f̂δ(x) is

f̂δ(x) = cδ + rδ = f̂0(x) + (b(x)/a(x)− f̂0(x)) min(1,
δ

‖b(x)/a(x)− f̂0(x)‖
) (59)

as stated in Example 3.

Solution for Perturbed loss Lµ in Example 3. For simplicity of notation denote δ = 1/µ. We have
that the vector-valued learning algorithm with perturbed loss L1/δ is

f̂1/δ(x) = argmin
c∈C,r∈RM

n∑
i=1

αi(x)(‖c+ r − yi‖2 + δ‖r‖2). (60)

By deriving the functional w.r.t. r and setting it to zero we have the equation,
n∑
i=1

αi(x)((c+ r − yi) + δr) = 0 (61)

18



which implies that the minimizer r(c) ∈ RM of Eq. (60) for any c ∈ C fixed, is

r(c) =
b(x)− a(x)c

(1 + δ)a(x)
∈ RM . (62)

Now, plugging r(c) into
∑n
i=1 αi(x)‖c+ r − yi‖2, we have

n∑
i=1

αi(x)‖c+ r(c)− yi‖2 =

n∑
i=1

αi(x)‖ δc

(1 + δ)
− yi +

b(x)

(1 + δ)a(x)
‖2 (63)

=
δ2a(x)

(1 + δ)2
‖c‖2 − 2

δ

(1 + δ)
c>

(
n∑
i=1

αi(x)yi −
b(x)

(1 + δ)

)
+ const (64)

=
δ2

(1 + δ)2
(
a(x)‖c‖2 − 2c>b(x)

)
+ const (65)

where we have used the fact that b(x) =
∑n
i=1 αi(x)yi and denoted with const every addend not

depending on c.

We now insert r(c) in
∑n
i=1 αi(x)δ‖r‖2 and obtain

n∑
i=1

αi(x)δ‖r‖2 =
a(x)δ

(1 + δ)2a(x)2
‖b(x)− a(x)c‖2 (66)

=
δ

(1 + δ)2a(x)

(
a(x)2‖c‖2 − 2a(x)c>b(x)

)
+ const (67)

=
δ

(1 + δ)2
(a(x)‖c‖2 − 2c>b(x)) + const. (68)

We can therefore plug r(c) into Eq. (60), obtaining

c1/δ = argmin
c∈C

n∑
i=1

αi(x)(‖c+ r(c)− y‖2 + δ‖r(c)‖2) (69)

= argmin
c∈C

δ

(1 + δ)

(
a(x)‖c‖2 − 2c>b(x)

)
(70)

(71)

which is minimized again for c1/δ = ΠC(b(x)/a(x)) =: f̂0(x). By evaluating r1/δ = r(c1/δ) we
have

r1/δ(x) =
b(x)/a(x)− f̂0(x)

1 + δ
(72)

and f̂1/δ(x) = f̂0(x) + r1/δ(x). Finally, by taking µ = 1/δ we recover the solution at Example 3.

We conclude by reporting a closed form solution for the MTL estimator with perturbed loss functions
`tµ for each task. The derivation is analogous to that for the vector-valued case.
Example 4 (Nonlinear MLT and Violations). With the same notation as in Example 2 let us define
ā(x) =

∑T
t=1

∑nt
i=1 αit(x). Denote f̂0 : X → C the map such that for all x ∈ X

f̂0(x) = argmin
c∈C

T∑
t=1

at(x)

at(x) + ā(x)/µ

(
ct −

bt(x)

at(x)

)2

(73)

which corresponds to the projection of the vector (b1(x)/a1(x), . . . , bT (x)/aT (x)) onto C according
to the diagonl matrix Σx with diagonal elements at(x)/(at(x) + ā(x)/µ) for t = 1, . . . , T .

The solution with perturbed loss functions `tµ is fµ : X → RT such that for all x ∈ X , the t − th
coordinate of f̂µ(x) is

f̂µ(x)t =
bt(x)/at(x) + ā(x)/µ f̂0(x)

at(x) + ā(x)/µ
. (74)
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D Experiments

Synthetic Dataset. We considered a model of the form y = f∗(x) + ε with f∗ : X → C and
ε ∼ N(0, σI) noise sampled according to a normal isotropic distribution. We considered the
case of two tasks constrained on C ⊂ R2, either a circumference or a lemniscate (see Fig. 1),
identified by the equations γcirc(y) = y21 + y22 − 1 = 0 and γlemn(y) = y41 − (y21 − y22) = 0 with
y = (y1, y2) ∈ R2. We set X = [−π, π] and chose f∗ : [−π, π] → R2 to be parametric functions
associated to the circumference and Lemniscate respectively, namely f∗circ(x) = (cos(x), sin(x))
and f∗lemn(x) = (sin(x), sin(2x)). We sampled from 10 to 1000 points for training and 1000 for
testing, with noise σ = 0.05.

We trained and tested different models over 10 trials. We used a Gaussian kernel on the input and
chose the corresponding bandwidth and the regularization parameter λ by hold-out cross-validation
on 30% of the training set for 30 values of the two hyperparameters sampled respectively from the
ranges [0.01, 100] and [1e− 9, 1] with logarithmic spacing. Fig. 1 (Bottom) reports the mean square
error (MSE) of the nonlinear MTL approach (NL-MTL) compared with the standard least squares
single task learning (STL) baseline and the multitask relations learning (MTRL) from [4], which
encourages tasks to be linearly dependent. For both the circumference and Lemniscate, the tasks
are strongly nonlinearly related. As a consequence our approach consistently outperforms its two
competitors which assume only linear relations (or none at all). Fig. 1 (Top) provides a qualitative
comparison on the three methods (when trained with 100 examples) during a single trial.

Sarcos Dataset. We next report experiments on the Sarcos dataset [5]. The goal is to predict the
torque measured at each joint of a 7 degrees-of-freedom robotic arm, given the current state, velocities
and accelerations measured at each joint (7 tasks/torques for 21-dimensional input). We used the 10
dataset splits available online for the dataset in [6], each containing 2000 examples per task with 15
examples used for training/validation while the rest is used to measure errors in terms of the explained
variance, namely 1 - nMSE (as a percentage). In order to be fair with results in [6] we used the
canonical linear kernel on the input. We chose the hyperparamters each from 30 values sampled in
the ranges [1e−5, 1e5] for δ and µ and [1e−9, 1] for λ with logarithmic spacing.

Tab. 1 reports results from [6, 7] for a wide range of previous linear MTL methods [8, 9, 10, 4, 6, 7],
together with our nonlinear MTL approach (both the robust and perturbed versions). Since, we were
not able to find the model parameters of the Sarcos robot online, we approximated the constraint set
C as a point cloud by collecting 1000 random output vectors that neither belonged to the training nor
to the test sets by sampling them from the original sarcos dataset [5]. As can be noticed, the approach
proposed in this paper clearly outperforms the “linear” competitors. Note that indeed, the relations
among the torques measured at different joints of a robot are highly nonlinear (see for instance [11])
and therefore taking such structure into account can be beneficial to the learning process.

Ranking by Pair-wise Comparison. We considered a ranking prediction problem, formulated
within a non-linear multi-task learning setting. In particular, given a database of D documents, the
goal is to learn T = D(D − 1)/2 functions fp,q : X → {−1, 0, 1}, one for each pair of documents
p and q from 1 to D, predicting if one document is more relevant than the other for a given input
query x. Recommender systems are a natural application in this setting, and here we discuss an
experiment on the Movielens100k [12] dataset for movie recommendation, where movies correspond
to documents and queries to users.

The problem can be tackled as multi-label MTL with 0-1 loss: for a given training query x only
some pairwise comparisons yp,q ∈ {−1, 0, 1} are available (with 1 corresponding to movie p being
more relevant than q, −1 the opposite and 0 that the two movies are equivalent). Errors are measured
according to the loss function

4pairwise(c, y) =

D−1∑
p=1

D∑
q=p+1

1{cp,q 6= yp,q} (75)

with 1{cp,q 6=yp,q} = 1 if cp,q 6= yp,q and zero otherwise. We have therefore T separate training
sets, one for each task (i.e. pair of movies). Clearly, not all possible combinations of outputs
f : X → {−1, 0, 1}T are allowed: the comparisons need to be logically consistent (e.g. if p � q
(read “p more relevant than q”) and q � r, then we cannot have r � p). As shown in [13] these
constraints are naturally encoded in a set C = DAG(D) in RT of all vectors G ∈ RT that correspond
to (the vectorized, upper triangular part of the adjacency matrix of) a Directed Acyclic Graph with D
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vertices. This leads to the NL-MTL estimator,

f̂(x) = argmin
c∈DAG(D)

n∑
i=1

D−1∑
p=1

D∑
q=p+1

αi,(p,q)(x) 1{cp,q 6= yp,q} (76)

where each score function αi,(p,q)(x) is learned according to Eq. (13) using only the training inputs for
which the pairwise comparison yp,q is available. As already observed in [2], the above optimization
over DAG(D) can be formulated as a minimal feedback Arc Set problem on graphs [14] that can be
addressed using approximation methods [15].

As a final remark, note that in the ranking prediction settings of [13, 2], the authors considered a
weighted version of the binary loss at Eq. (75) of the form

4rank(c, y) =

D−1∑
p=1

D∑
q=p+1

|yp,q| 1{cp,q 6= sign(yp,q)}

where yp,q ∈ R is a scalar value measuring the discrepancy between documents q and q and is used
to weight misclassification errors according to the relative importance between documents p and q.
Indeed, in the Movielens100k dataset, each movie p was assigned a rating by the user (a discrete
value rp from 1 to 5) and in [13] the weights in4rank were chosen as yp,q = rp − rq . It is clear that
this variant of4pairwise leads to an NL-MTL estimator analogous to the one in Eq. (76), for which
the optimization over C = DAG(D) can still be tackled with minimal feedback arc set solvers. In
particular for our experiments we used the publicly avaialable igraph library2 which implements a
number of standard algorithms to solve problems on graphs.

We performed experiments on Movielens100k to compare our MTL estimator with both standard
multi-task learning baseline as well as with methods specifically designed to address ranking problem.
In particular, we used the linear kernel and the train, validation and test splits adopted in [2] to
perform 10 independent trials with 5-fold cross-validation for model selection. In Tab. 2 we report the
average ranking error and standard deviation of the weighed 0-1 loss function considered in [13, 2]
for the ranking methods proposed in [16, 17, 13], the SVMStruct estimator [18], the SELF estimator
considered in [2] for ranking, the MTRL predictor and the STL baseline, corresponding to individual
SVMs trained for each pairwise comparison. Results for previous methods are reported from [2].

As can be observed, NL-MTL outperforms all competitors, achieving better performance than the
the original SELF estimator. Indeed it can be shown that [2] tackles pairwise-based ranking in a
vector-valued fashion, by filling missing observations with 0. This has a negative effect, artificially
biasing predictions towards 0. Conversely, NL-MLT exploits the true MTL nature of the problem
leading to superior performance. As expected, STL and MTRL are clearly not suited for this setting,
since they miss the critical information contained in the constraint set.
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