
Towards Accurate Binary Convolutional Neural
Network

Xiaofan Lin Cong Zhao Wei Pan*
DJI Innovations Inc, Shenzhen, China

{xiaofan.lin, cong.zhao, wei.pan}@dji.com

Abstract

We introduce a novel scheme to train binary convolutional neural networks (CNNs)
– CNNs with weights and activations constrained to {-1,+1} at run-time. It has been
known that using binary weights and activations drastically reduce memory size
and accesses, and can replace arithmetic operations with more efficient bitwise op-
erations, leading to much faster test-time inference and lower power consumption.
However, previous works on binarizing CNNs usually result in severe prediction
accuracy degradation. In this paper, we address this issue with two major inno-
vations: (1) approximating full-precision weights with the linear combination of
multiple binary weight bases; (2) employing multiple binary activations to allevi-
ate information loss. The implementation of the resulting binary CNN, denoted
as ABC-Net, is shown to achieve much closer performance to its full-precision
counterpart, and even reach the comparable prediction accuracy on ImageNet and
forest trail datasets, given adequate binary weight bases and activations.

1 Introduction

Convolutional neural networks (CNNs) have achieved state-of-the-art results on real-world applica-
tions such as image classification [He et al., 2016] and object detection [Ren et al., 2015], with the
best results obtained with large models and sufficient computation resources. Concurrent to these
progresses, the deployment of CNNs on mobile devices for consumer applications is gaining more
and more attention, due to the widespread commercial value and the exciting prospect.

On mobile applications, it is typically assumed that training is performed on the server and test
or inference is executed on the mobile devices [Courbariaux et al., 2016, Esser et al., 2016]. In
the training phase, GPUs enabled substantial breakthroughs because of their greater computational
speed. In the test phase, however, GPUs are usually too expensive to deploy. Thus improving the
test-time performance and reducing hardware costs are likely to be crucial for further progress,
as mobile applications usually require real-time, low power consumption and fully embeddable.
As a result, there is much interest in research and development of dedicated hardware for deep
neural networks (DNNs). Binary neural networks (BNNs) [Courbariaux et al., 2016, Rastegari et al.,
2016], i.e., neural networks with weights and perhaps activations constrained to only two possible
values (e.g., -1 or +1), would bring great benefits to specialized DNN hardware for three major
reasons: (1) the binary weights/activations reduce memory usage and model size 32 times compared
to single-precision version; (2) if weights are binary, then most multiply-accumulate operations can
be replaced by simple accumulations, which is beneficial because multipliers are the most space
and power-hungry components of the digital implementation of neural networks; (3) furthermore, if
both activations and weights are binary, the multiply-accumulations can be replaced by the bitwise
operations: xnor and bitcount Courbariaux et al. [2016]. This could have a big impact on dedicated
deep learning hardware. For instance, a 32-bit floating point multiplier costs about 200 Xilinx FPGA
slices [Govindu et al., 2004], whereas a 1-bit xnor gate only costs a single slice. Semiconductor

∗ indicates corresponding author.

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.

manufacturers like IBM [Esser et al., 2016] and Intel [Venkatesh et al., 2016] have been involved in
the research and development of related chips.

However, binarization usually cause severe prediction accuracy degradation, especially on complex
tasks such as classification on ImageNet dataset. To take a closer look, Rastegari et al. [2016] shows
that binarizing weights causes the accuracy of Resnet-18 drops from 69.3% to 60.8% on ImageNet
dataset. If further binarize activations, the accuracy drops to 51.2%. Similar phenomenon can also be
found in literatures such as [Hubara et al., 2016]. Clearly there is a considerable gap between the
accuracy of a full-precision model and a binary model.

This paper proposes a novel scheme for binarizing CNNs, which aims to alleviate, or even eliminate
the accuracy degradation, while still significantly reducing inference time, resource requirement and
power consumption. The paper makes the following major contributions.

• We approximate full-precision weights with the linear combination of multiple binary weight
bases. The weights values of CNNs are constrained to {−1,+1}, which means convolutions
can be implemented by only addition and subtraction (without multiplication), or bitwise
operation when activations are binary as well. We demonstrate that 3∼5 binary weight bases
are adequate to well approximate the full-precision weights.

• We introduce multiple binary activations. Previous works have shown that the quantization
of activations, especially binarization, is more difficult than that of weights [Cai et al., 2017,
Courbariaux et al., 2016]. By employing five binary activations, we have been able to reduce
the Top-1 and Top-5 accuracy degradation caused by binarization to around 5% on ImageNet
compared to the full precision counterpart.

It is worth noting that the multiple binary weight bases/activations scheme is preferable to the fixed-
point quantization in previous works. In those fixed-point quantized networks one still needs to
employ arithmetic operations, such as multiplication and addition, on fixed-point values. Even though
faster than floating point, they still require relatively complex logic and can consume a lot of power.
Detailed discussions can be found in Section 5.2.

Ideally, combining more binary weight bases and activations always leads to better accuracy and will
eventually get very close to that of full-precision networks. We verify this on ImageNet using Resnet
network topology. This is the first time a binary neural network achieves prediction accuracy
comparable to its full-precision counterpart on ImageNet.

2 Related work

Quantized Neural Networks: High precision parameters are not very necessary to reach high
performance in deep neural networks. Recent research efforts (e.g., [Hubara et al., 2016]) have
considerably reduced a large amounts of memory requirement and computation complexity by using
low bitwidth weights and activations. Zhou et al. [2016] further generalized these schemes and
proposed to train CNNs with low bitwidth gradients. By performing the quantization after network
training or using the “straight-through estimator (STE)" [Bengio et al., 2013], these works avoided the
issues of non-differentiable optimization. While some of these methods have produced good results
on datasets such as CIFAR-10 and SVHN, none has produced low precision networks competitive
with full-precision models on large-scale classification tasks, such as ImageNet. In fact, [Zhou et al.,
2016] and [Hubara et al., 2016] experiment with different combinations of bitwidth for weights and
activations, and show that the performance of their highly quantized networks deteriorates rapidly
when the weights and activations are quantized to less than 4-bit numbers. Cai et al. [2017] enhance
the performance of a low bitwidth model by addressing the gradient mismatch problem, nevertheless
there is still much room for improvement.

Binarized Neural Networks: The binary representation for deep models is not a new topic. At the
emergence of artificial neural networks, inspired biologically, the unit step function has been used as
the activation function [Toms, 1990]. It is known that binary activation can use spiking response for
event-based computation and communication (consuming energy only when necessary) and therefore
is energy-efficient [Esser et al., 2016]. Recently, Courbariaux et al. [2016] introduce Binarized-
Neural-Networks (BNNs), neural networks with binary weights and activations at run-time. Different
from their work, Rastegari et al. [2016] introduce simple, efficient, and accurate approximations
to CNNs by binarizing the weights and even the intermediate representations in CNNs. All these
works drastically reduce memory consumption, and replace most arithmetic operations with bitwise
operations, which potentially lead to a substantial increase in power efficiency.

2

In all above mentioned works, binarization significantly reduces accuracy. Our experimental results
on ImageNet show that we are close to filling the gap between the accuracy of a binary model and its
full-precision counterpart. We relied on the idea of finding the best approximation of full-precision
convolution using multiple binary operations, and employing multiple binary activations to allow
more information passing through.

3 Binarization methods

In this section, we detail our binarization method, which is termed ABC-Net (Accurate-Binary-
Convolutional) for convenience. Bear in mind that during training, the real-valued weights are
reserved and updated at every epoch, while in test-time only binary weights are used in convolution.

3.1 Weight approximation

Consider a L-layer CNN architecture. Without loss of generality, we assume the weights of each
convolutional layer are tensors of dimension (w, h, cin, cout), which represents filter width, filter
height, input-channel and output-channel respectively. We propose two variations of binarization
method for weights at each layer: 1) approximate weights as a whole and 2) approximate weights
channel-wise.

3.1.1 Approximate weights as a whole

At each layer, in order to constrain a CNN to have binary weights, we estimate the real-value weight
filter W ∈ Rw×h×cin×cout using the linear combination of M binary filters B1,B2, · · · ,BM ∈
{−1,+1}w×h×cin×cout such thatW ≈ α1B1+α2B2+· · ·+αMBM . To find an optimal estimation,
a straightforward way is to solve the following optimization problem:

min
α,B

J(α,B) = ||w −Bα||2, s.t.Bij ∈ {−1,+1}, (1)

where B = [vec(B1), vec(B2), · · · , vec(BM)], w = vec(W) and α = [α1, α2, · · · , αM]T. Here
the notation vec(·) refers to vectorization.

Although a local minimum solution to (1) can be obtained by numerical methods, one could not
backpropagate through it to update the real-value weight filterW . To address this issue, assuming the
mean and standard deviation ofW are mean(W) and std(W) respectively, we fixBi’s as follows:

Bi = Fui
(W) := sign(W̄ + uistd(W)), i = 1, 2, · · · ,M, (2)

where W̄ = W − mean(W), and ui is a shift parameter. For example, one can choose ui’s to
be ui = −1 + (i − 1) 2

M−1 , i = 1, 2, · · · ,M, to shift evenly over the range [−std(W), std(W)],
or leave it to be trained by the network. This is based on the observation that the full-precision
weights tend to have a symmetric, non-sparse distribution, which is close to Gaussian. To gain more
intuition and illustrate the approximation effectiveness, an example is visualized in Section S2 of the
supplementary material.

WithBi’s chosen, (1) becomes a linear regression problem

min
α
J(α) = ||w −Bα||2, (3)

in which Bi’s serve as the bases in the design/dictionary matrix. We can then back-propagate
through Bi’s using the “straight-through estimator” (STE) [Bengio et al., 2013]. Assume c as the
cost function,A andO as the input and output tensor of a convolution respectively, the forward and
backward approach of an approximated convolution during training can be computed as follows:

Forward: B1,B2, · · · ,BM = Fu1
(W), Fu2

(W), · · · , FuM
(W), (4)

Solve (3) for α, (5)

O =

M∑
m=1

αmConv(Bm,A). (6)

Backward:
∂c

∂W
=

∂c

∂O

(
M∑
m=1

αm
∂O

∂Bm

∂Bm

∂W

)
STE
=

∂c

∂O

(
M∑
m=1

αm
∂O

∂Bm

)
=

M∑
m=1

αm
∂c

∂Bm
.

(7)

3

In test-time, only (6) is required. The block structure of this approximated convolution layer is shown
on the left side in Figure 1. With suitable hardwares and appropriate implementations, the convolution
can be efficiently computed. For example, since the weight values are binary, we can implement the
convolution with additions and subtractions (thus without multiplications). Furthermore, if the input
A is binary as well, we can implement the convolution with bitwise operations: xnor and bitcount
[Rastegari et al., 2016]. Note that the convolution with each binary filter can be computed in parallel.

Figure 1: An example of the block structure of the convolution in ABC-Net. M = N = 3. On the
left is the structure of the approximated convolution (ApproxConv). ApproxConv is expected to ap-
proximate the conventional full-precision convolution with linear combination of binary convolutions
(BinConv), i.e., convolution with binary and weights. On the right is the overall block structure of the
convolution in ABC-Net. The input is binarized using different functions Hv1 , Hv2 , Hv3 , passed into
the corresponding ApproxConv’s and then summed up after multiplying their corresponding βn’s.
With the input binarized, the BinConv’s can be implemented with highly efficient bitwise operations.
There are 9 BinConv’s in this example and they can work in parallel.

3.1.2 Approximate weights channel-wise

Alternatively, we can estimate the real-value weight filter Wi ∈ Rw×h×cin of each output chan-
nel i ∈ {1, 2, · · · , cout} using the linear combination of M binary filters Bi1,Bi2, · · · ,BiM ∈
{−1,+1}w×h×cin such that Wi ≈ αi1Bi1 + αi2Bi2 + · · ·+ αiMBiM . Again, to find an optimal
estimation, we solve a linear regression problem analogy to (3) for each output channel. After
convolution, the results are concatenated together along the output-channel dimension. If M = 1,
this approach reduces to the Binary-Weights-Networks (BWN) proposed in [Rastegari et al., 2016].

Compared to weights approximation as a whole, the channel-wise approach approximates weights
more elaborately, however no extra cost is needed during inference. Since this approach requires
more computational resources during training, we leave it as a future work and focus on the former
approximation approach in this paper.

3.2 Multiple binary activations and bitwise convolution

As mentioned above, a convolution can be implemented without multiplications when weights are
binarized. However, to utilize the bitwise operation, the activations must be binarized as well, as they
are the inputs of convolutions.

Similar to the activation binarization procedure in [Zhou et al., 2016], we binarize activations after
passing it through a bounded activation function h, which ensures h(x) ∈ [0, 1]. We choose the
bounded rectifier as h. Formally, it can be defined as:

hv(x) = clip(x+ v, 0, 1), (8)

where v is a shift parameter. If v = 0, then hv is the clip activation function in [Zhou et al., 2016].

We constrain the binary activations to either 1 or -1. In order to transform the real-valued activation
R into binary activation, we use the following binarization function:

Hv(R) := 2Ihv(R)≥0.5 − 1, (9)

4

where I is the indicator function. The conventional forward and backward approach of the activation
can be given as follows:

Forward: A = Hv(R).

Backward:
∂c

∂R
=

∂c

∂A
◦ I0≤R−v≤1. (using STE)

(10)

Here ◦ denotes the Hadamard product. As can be expected, binaizing activations as above is kind of
crude and leads to non-trivial losses in accuracy, as shown in Rastegari et al. [2016], Hubara et al.
[2016]. While it is also possible to approximate activations with linear regression, as that of weights,
another critical challenge arises – unlike weights, the activations always vary in test-time inference.
Luckily, this difficulty can be avoided by exploiting the statistical structure of the activations of deep
networks.

Our scheme can be described as follows. First of all, to keep the distribution of activations relatively
stable, we resort to batch normalization [Ioffe and Szegedy, 2015]. This is a widely used normalization
technique, which forces the responses of each network layer to have zero mean and unit variance. We
apply this normalization before activation. Secondly, we estimate the real-value activationR using
the linear combination of N binary activations A1,A2, · · · ,AN such that R ≈ β1A1 + β2A2 +
· · ·+ βNAN , where

A1,A2, · · · ,AN = Hv1(R), Hv2(R), · · · , HvN (R). (11)

Different from that of weights, the parameters βn’s and vn’s (n = 1, · · · , N) here are both trainable,
just like the scale and shift parameters in batch normalization. Without the explicit linear regression
approach, βn’s and vn’s are tuned by the network itself during training and fixed in test-time. They
are expected to learn and utilize the statistical features of full-precision activations.

The resulting network architecture outputs multiple binary activations A1,A2, · · · ,AN and their
corresponding coefficients β1, β2, · · · , βN , which allows more information passing through compared
to the former one. Combining with the weight approximation, the whole convolution scheme is given
by:

Conv(W ,R) ≈ Conv

(
M∑
m=1

αmBm,

N∑
n=1

βnAn

)
=

M∑
m=1

N∑
n=1

αmβnConv (Bm,An) , (12)

which suggests that it can be implemented by computing M ×N bitwise convolutions in parallel.
An example of the whole convolution scheme is shown in Figure 1.

3.3 Training algorithm

A typical block in CNN contains several different layers, which are usually in the following order:
(1) Convolution, (2) Batch Normalization, (3) Activation and (4) Pooling. The batch normalization
layer [Ioffe and Szegedy, 2015] normalizes the input batch by its mean and variance. The activation
is an element-wise non-linear function (e.g., Sigmoid, ReLU). The pooling layer applies any type of
pooling (e.g., max,min or average) on the input batch. In our experiment, we observe that applying
max-pooling on binary input returns a tensor that most of its elements are equal to +1, resulting in a
noticeable drop in accuracy. Similar phenomenon has been reported in Rastegari et al. [2016] as well.
Therefore, we put the max-pooling layer before the batch normalization and activation.

Since our binarization scheme approximates full-precision weights, using the full-precision pre-train
model serves as a perfect initialization. However, fine-tuning is always required for the weights
to adapt to the new network structure. The training procedure, i.e., ABC-Net, is summarized in
Section S1 of the supplementary material.

It is worth noting that as M increases, the shift parameters get closer and the bases of the linear
combination are more correlated, which sometimes lead to rank deficiency when solving (3). This
can be tackled with the `2 regularization.

4 Experiment results

In this section, the proposed ABC-Net was evaluated on the ILSVRC12 ImageNet classification
dataset [Deng et al., 2009], and visual perception of forest trails datasets for mobile robots [Giusti
et al., 2016] in Section S6 of supplementary material.

5

4.1 Experiment results on ImageNet dataset

The ImageNet dataset contains about 1.2 million high-resolution natural images for training that
spans 1000 categories of objects. The validation set contains 50k images. We use Resnet ([He et al.,
2016]) as network topology. The images are resized to 224x224 before fed into the network. We
report our classification performance using Top-1 and Top-5 accuracies.

4.1.1 Effect of weight approximation

We first evaluate the weight approximation technique by examining the accuracy improvement for a
binary model. To eliminate variables, we leave the activations being full-precision in this experiment.
Table 1 shows the prediction accuracy of ABC-Net on ImageNet with different choices of M . For
comparison, we add the results of Binary-Weights-Network (denoted ‘BWN’) reported in Rastegari
et al. [2016] and the full-precision network (denoted ‘FP’). The BWN binarizes weights and leaves
the activations being full-precision as we do. All results in this experiment use Resnet-18 as network
topology. It can be observed that as M increases, the accuracy of ABC-Net converges to its full-
precision counterpart. The Top-1 gap between them reduces to only 0.9 percentage point when
M = 5, which suggests that this approach nearly eliminates the accuracy degradation caused by
binarizing weights.

Table 1: Top-1 (left) and Top-5 (right) accuracy of ABC-Net on ImageNet, using full-precision
activation and different choices of the number of binary weight bases M .

BWN M = 1 M = 2 M = 3 M = 5 FP

Top-1 60.8% 62.8% 63.7% 66.2% 68.3% 69.3%
Top-5 83.0% 84.4% 85.2% 86.7% 87.9% 89.2%

For interested readers, Figure S4 in section S5 of the supplementary material shows that the relation-
ship between accuracy and M appears to be linear. Also, in Section S2 of the supplementary material,
a visualization of the approximated weights is provided.

4.1.2 Configuration space exploration

We explore the configuration space of combinations of number of weight bases and activations. Table
2 presents the results of ABC-Net with different configurations. The parameter settings for these
experiments are provided in Section S4 of the supplementary material.

Table 2: Prediction accuracy (Top-1/Top-5) for ImageNet with different choices of M and N in a
ABC-Net (approximate weights as a whole). “res18”, “res34” and “res50” are short for Resnet-18,
Resnet-34 and Resnet-50 network topology respectively. M and N refer to the number of weight
bases and activations respectively.

Network M -weight base N -activation base Top-1 Top-5 Top-1 gap Top-5 gap
res18 1 1 42.7% 67.6% 26.6% 21.6%
res18 3 1 49.1% 73.8% 20.2% 15.4%
res18 3 3 61.0% 83.2% 8.3% 6.0%
res18 3 5 63.1% 84.8% 6.2% 4.4%
res18 5 1 54.1% 78.1% 15.2% 11.1%
res18 5 3 62.5% 84.2% 6.8% 5.0%
res18 5 5 65.0% 85.9% 4.3% 3.3%
res18 Full Precision 69.3% 89.2% - -
res34 1 1 52.4% 76.5% 20.9% 14.8%
res34 3 3 66.7% 87.4% 6.6% 3.9%
res34 5 5 68.4% 88.2% 4.9% 3.1%
res34 Full Precision 73.3% 91.3% - -
res50 5 5 70.1% 89.7% 6.0% 3.1%
res50 Full Precision 76.1% 92.8% - -

As balancing between multiple factors like training time and inference time, model size and accuracy
is more a problem of practical trade-off, there will be no definite conclusion as which combination of

6

(M,N) one should choose. In general, Table 2 shows that (1) the prediction accuracy of ABC-Net
improves greatly as the number of binary activations increases, which is analogous to the weight
approximation approach; (2) larger M or N gives better accuracy; (3) when M = N = 5, the Top-1
gap between the accuracy of a full-precision model and a binary one reduces to around 5%. To gain a
visual understanding and show the possibility of extensions to other tasks such object detection, we
print the a sample of feature maps in Section S3 of supplementary material.

4.1.3 Comparison with the state-of-the-art

Table 3: Classification test accuracy of CNNs trained on ImageNet with Resnet-18 network topology.
‘W’ and ‘A’ refer to the weight and activation bitwidth respectively.

Model W A Top-1 Top-5
Full-Precision Resnet-18 [full-precision weights and activation] 32 32 69.3% 89.2%

BWN [full-precision activation] Rastegari et al. [2016] 1 32 60.8% 83.0%
DoReFa-Net [1-bit weight and 4-bit activation] Zhou et al. [2016] 1 4 59.2% 81.5%
XNOR-Net [binary weight and activation] Rastegari et al. [2016] 1 1 51.2% 73.2%

BNN [binary weight and activation] Courbariaux et al. [2016] 1 1 42.2% 67.1%
ABC-Net [5 binary weight bases, 5 binary activations] 1 1 65.0% 85.9%

ABC-Net [5 binary weight bases, full-precision activations] 1 32 68.3% 87.9%

Table 3 presents a comparison between ABC-Net and several other state-of-the-art models, i.e.,
full-precision Resnet-18, BWN and XNOR-Net in [Rastegari et al., 2016], DoReFa-Net in [Zhou
et al., 2016] and BNN in [Courbariaux et al., 2016] respectively. All comparative models use Resnet-
18 as network topology. The full-precision Resnet-18 achieves 69.3% Top-1 accuracy. Although
Rastegari et al. [2016]’s BWN model and DeReFa-Net perform well, it should be noted that they use
full-precision and 4-bit activation respectively. Models (XNOR-Net and BNN) that used both binary
weights and activations achieve much less satisfactory accuracy, and is significantly outperformed
by ABC-Net with multiple binary weight bases and activations. It can be seen that ABC-Net has
achieved state-of-the-art performance as a binary model.

One might argue that 5-bit width quantization scheme could reach similar accuracy as that of ABC-
Net with 5 weight bases and 5 binary activations. However, the former one is less efficient and
requires distinctly more hardware resource. More detailed discussions can be found in Section 5.2.

5 Discussion

5.1 Why adding a shift parameter works?

Intuitively, the multiple binarized weight bases/activations scheme works because it allows more
information passing through. Consider the case that a real value, say 1.5, is passed to a binarized
function f(x) = sign(x), where sign maps a positive x to 1 and otherwise -1. In that case, the
outputs of f(1.5) is 1, which suggests that the input value is positive. Now imagine that we have two
binarization function f1(x) = sign(x) and f2(x) = sign(x − 2). In that case f1 outputs 1 and f2
outputs -1, which suggests that the input value is not only positive, but also must be smaller than 2.
Clearly we see that each function contributes differently to represent the input and more information
is gained from f2 compared to the former case.

From another point of view, both coefficients (β’s) and shift parameters are expected to learn and
utilize the statistical features of full-precision tensors, just like the scale and shift parameters in batch
normalization. If we have more binarized weight bases/activations, the network has the capacity to
approximate the full-precision one more precisely. Therefore, it can be deduced that when M or N
is large enough, the network learns to tune itself so that the combination of M weight bases or N
binarized activations can act like the full-precision one.

5.2 Advantage over the fixed-point quantization scheme

It should be noted that there are key differences between the multiple binarization scheme (M
binarized weight bases or N binarized activations) proposed in this paper and the fixed-point quanti-
zation scheme in the previous works such as [Zhou et al., 2016, Hubara et al., 2016], though at first

Courbariaux et al. [2016] did not report their result on ImageNet. We implemented and presented the result.

7

thought K-bit width quantization seems to share the same memory requirement with K binarizations.
Specifically, our K binarized weight bases/activations is preferable to the fixed K-bit width scheme
for the following reasons:

(1) The K binarization scheme preserves binarization for bitwise operations. One or several bitwise
operations is known to be more efficient than a fixed-point multiplication, which is a major reason
that BNN/XNOR-Net was proposed.

(2) A K-bit width multiplier consumes more resources than K 1-bit multipliers in a digital chip: it
requires more than K bits to store and compute, otherwise it could easily overflow/underflow. For
example, if a real number is quantized to a 2-bit number, a possible choice is in range {0,1,2,4}.
In this 2-bit multiplication, when both numbers are 4, it outputs 4 × 4 = 16, which is not within
the range. In [Zhou et al., 2016], the range of activations is constrained within [0,1], which seems
to avoid this situation. However, fractional numbers do not solve this problem, severe precision
deterioration will appear during the multiplication if there are no extra resources. The fact that the
complexity of a multiplier is proportional to THE SQUARE of bit-widths can be found in literatures
(e.g., sec 3.1.1. in [Grabbe et al., 2003]). In contrast, our K binarization scheme does not have this
issue – it always outputs within the range {-1,1}. The saved hardware resources can be further used
for parallel computing.

(3) A binary activation can use spiking response for event-based computation and communication
(consuming energy only when necessary) and therefore is energy-efficient [Esser et al., 2016]. This
can be employed in our scheme, but not in the fixedK-bit width scheme. Also, we have mentioned the
fact that K-bit width multiplier consumes more resources than K 1-bit multipliers. It is noteworthy
that these resources include power.

To sum up, K-bit multipliers are the most space and power-hungry components of the digital
implementation of DNNs. Our scheme could bring great benefits to specialized DNN hardware.

5.3 Further computation reduction in run-time

On specialized hardware, the following operations in our scheme can be integrated with other
operations in run-time and further reduce the computation requirement.

(1) Shift operations. The existence of shift parameters seem to require extra additions/subtractions
(see (2) and (8)). However, the binarization operation with a shift parameter can be imple-
mented as a comparator where the shift parameter is the number for comparison, e.g., Hv(R) ={

1, R ≥ 0.5− v;
−1, R < 0.5− v. (0.5− v is a constant), so no extra additions/subtractions are involved.

(2) Batch normalization. In run-time, a batch normalization is simply an affine function, say,
BN(R) = aR + b, whose scale and shift parameters a, b are fixed and can be integrated with
vn’s. More specifically, a batch normalization can be integrated into a binarization operation as

follow: Hv(BN(R)) =

{
1, aR+ b ≥ 0.5− v;
−1, aR+ b < 0.5− v. =

{
1, R ≥ (0.5− v − b)/a;
−1, R < (0.5− v − b)/a. Therefore,

there will be no extra cost for the batch normalization.

6 Conclusion and future work

We have introduced a novel binarization scheme for weights and activations during forward and
backward propagations called ABC-Net. We have shown that it is possible to train a binary CNN with
ABC-Net on ImageNet and achieve accuracy close to its full-precision counterpart. The binarization
scheme proposed in this work is parallelizable and hardware friendly, and the impact of such a method
on specialized hardware implementations of CNNs could be major, by replacing most multiplications
in convolution with bitwise operations. The potential to speed-up the test-time inference might be
very useful for real-time embedding systems. Future work includes the extension of those results
to other tasks such as object detection and other models such as RNN. Also, it would be interesting
to investigate using FPGA/ASIC or other customized deep learning processor [Liu et al., 2016] to
implement ABC-Net at run-time.

7 Acknowledgement

We acknowledge Mr Jingyang Xu for helpful discussions.

8

References
Y. Bengio, N. Léonard, and A. Courville. Estimating or propagating gradients through stochastic neurons for

conditional computation. arXiv preprint arXiv:1308.3432, 2013.

Z. Cai, X. He, J. Sun, and N. Vasconcelos. Deep learning with low precision by half-wave gaussian quantization.
arXiv preprint arXiv:1702.00953, 2017.

M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, and Y. Bengio. Binarized neural networks: Training deep
neural networks with weights and activations constrained to+ 1 or-1. arXiv preprint arXiv:1602.02830, 2016.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet: A large-scale hierarchical image database.
In Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on, pages 248–255. IEEE,
2009.

S. K. Esser, P. A. Merolla, J. V. Arthur, A. S. Cassidy, R. Appuswamy, A. Andreopoulos, D. J. Berg, J. L.
McKinstry, T. Melano, D. R. Barch, et al. Convolutional networks for fast, energy-efficient neuromorphic
computing. Proceedings of the National Academy of Sciences, page 201604850, 2016.

A. Giusti, J. Guzzi, D. Ciresan, F.-L. He, J. P. Rodriguez, F. Fontana, M. Faessler, C. Forster, J. Schmidhuber,
G. Di Caro, D. Scaramuzza, and L. Gambardella. A machine learning approach to visual perception of forest
trails for mobile robots. IEEE Robotics and Automation Letters, 2016.

G. Govindu, L. Zhuo, S. Choi, and V. Prasanna. Analysis of high-performance floating-point arithmetic on fpgas.
In Parallel and Distributed Processing Symposium, 2004. Proceedings. 18th International, page 149. IEEE,
2004.

C. Grabbe, M. Bednara, J. Teich, J. von zur Gathen, and J. Shokrollahi. Fpga designs of parallel high performance
gf (2233) multipliers. In ISCAS (2), pages 268–271. Citeseer, 2003.

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 770–778, 2016.

I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio. Quantized neural networks: Training neural
networks with low precision weights and activations. arXiv preprint arXiv:1609.07061, 2016.

S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training by reducing internal covariate
shift. arXiv preprint arXiv:1502.03167, 2015.

D. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980, 2014.

S. Liu, Z. Du, J. Tao, D. Han, T. Luo, Y. Xie, Y. Chen, and T. Chen. Cambricon: An instruction set architecture
for neural networks. In Proceedings of the 43rd International Symposium on Computer Architecture, pages
393–405. IEEE Press, 2016.

N. Qian. On the momentum term in gradient descent learning algorithms. Neural networks, 12(1):145–151,
1999.

M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi. Xnor-net: Imagenet classification using binary convolu-
tional neural networks. In European Conference on Computer Vision, pages 525–542. Springer, 2016.

S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: Towards real-time object detection with region proposal
networks. In Advances in neural information processing systems, pages 91–99, 2015.

D. Toms. Training binary node feedforward neural networks by back propagation of error. Electronics letters,
26(21):1745–1746, 1990.

G. Venkatesh, E. Nurvitadhi, and D. Marr. Accelerating deep convolutional networks using low-precision and
sparsity. arXiv preprint arXiv:1610.00324, 2016.

S. Zhou, Y. Wu, Z. Ni, X. Zhou, H. Wen, and Y. Zou. Dorefa-net: Training low bitwidth convolutional neural
networks with low bitwidth gradients. arXiv preprint arXiv:1606.06160, 2016.

9

Supplementary Material

S1 Summary of training algorithm in Section 3.3

Algorithm 1 Training a L-layer ABC-Net. c is the cost function for minibatch, and λ is the learning
rate decay factor. ◦ indicates element-wise multiplication. BatchNorm() specifies how to batch-
normalize the output of convolution and BackBatchNorm specifies how to backpropagate through the
normalization [Ioffe and Szegedy, 2015]. Analogously, Conv() and BackConv() respectively specify
how to do convolution and how to backpropagate through the convolution. Update() specifies how to
update the parameters when their gradients are known, such as ADAM [Kingma and Ba, 2014] and
Momentum [Qian, 1999])
Require: a minibatch of inputs and targets, number of binary weight bases M , number of binary

activations N , previous weightsW , and learning rate η.
Ensure: updated weightsW and updated learning rate η.

{1. Computing the parameters gradients:}
{1.1. Forward propagation:}
for l = 1 to L do

Compute αlm,B
l
m,m = 1, · · · ,M with (2) and (3))

sl ← Conv(W l,Rl−1) using (12)
Optionally apply max-pooling
al ← BatchNorm(sl)
if l < L then
Al
n ← Hvn(a

l), n = 1, 2, · · · , N (using (11))
end if

end for
{1.2. Backward propagation:}
{Note that the gradients are full-precision.}
Compute gaL = ∂c

∂aL
for l = L to 1 do

if l < L then
gal ←

∑N
n=1 βngAl

n
◦ I0≤al−vn≤1

end if
gsl ← BackBatchNorm(gal , sl)
gβm , gBl

m
← BackConv(gsl ,B

l−1
m ,Al−1

m)
end for
{2. Accumulating the parameters gradients:}
for l = 1 to L do

With gBl
m

known, compute gW l using (7)
W l ← Update(W l, η, gW l)
βm ← Update(βm, η, gβm),m = 1, 2, · · · ,M
vm ← Update(vm, η, gvm),m = 1, 2, · · · ,M
η ← λη

end for

S2 Weight approximation

In this section we explore how well the weight approximation can achieved given adequate binary
weight bases (Section 3.1). To gain a visual intuition, we randomly sample a slice of weight tensor
from a full-precision Resnet-18 model pretrained on ImageNet. The sliced tensor is then vectorized,
and we approximate it with M bases using linear regression (see (3)). The results are presented in
Figure S2, where the left subfigure shows the root mean square (RMSE) for the estimated weights
with increasing number of bases, and the right one shows 5 fitting results, whose choice of M are
respectively 1 to 5 from top to bottom. The blue line in the right subfigure draws the groundtruth
weights from the full-precision pretrained model, and the red line is the estimated one. It can be
observed that M = 3 is adequate to have a rough fitting, and it gets almost perfect when M = 5.

10

Figure S2: Fitting a section of weights of full-precision Resnet-18 trained on ImageNet. On the left
side the RMSE for the estimated weights with increasing number of bases is shown, and on the right
side 5 fitting results are shown, whose choice of M are respectively 1 to 5 from top to bottom (Blue
line: full-precision weights; Red line: estimated weights).

S3 Feature map

It is also possible to perform more complex tasks beyond classification using ABC-Net, as long as
the model is built upon a CNN, such as faster RCNN for object detection, in which the classification
model serves as a pre-train model. Thus, one might be interested in whether ABC-Net learns similar
feature maps as its full-precision counterpart. Figure S3 shows several example image and the
corresponding feature maps of these two models, from which we see that they are indeed similar.
This shows the potential for ABC-Net to further generalize on more complex tasks mentioned above.

S4 Parameter settings for the experiment in Section 4.1.2

The parameters ui’s, the initial values for βn’s and vn’s can be treated as hyperparameters. At the
beginning of our exploration we randomly choose these initial values. Bit by bit we began to find
certain patterns to achieve good performance: for ui’s, usually symmetric; for vn’s, maybe slightly
shift towards the negative direction. These are based on tunings and also the observation of the
full-precision distribution of weights/activations. Table S4 provides the parameter settings for the
experiment in Section 4.1.2. All ABC-Net models in the experiments are trained using SGD with
momentum, and the initial learning rate is set to 0.01.

S5 Relationship between accuracy and number of binary weight bases M

Figure S4 shows that the relationship between accuracy and the number of binary weight bases M
appears to be linear. Note that we keep the activations being full-precision in this experiment.

S6 Application on visual perception of forest trails

S6.1 VGG-like Network Topology

A VGG-like network topology is used for visual perception of forest trails as illustrated in Figure S5.

S6.2 Experiment results on visual perception of forest trails dataset

Giusti et al. [2016] cast the forest or mountain trails perception problem for mobile robots as a
image classification task based on Deep Neural Networks. The dataset is composed by 8 hours of
1920 × 1080 30fps video acquired by a hiker equipped with three head-mounted cameras . Each

11

Figure S3: Examples of feature maps. The feature maps from the first convolution layer of ABC-Net
(above) looks similar to that of its full-precision counterpart (below). Settings for the ABC-Net:
M = 5, N = 3, using Resnet-18.

Table S4: Parameter settings for the experiment in Section 4.1.2. “res18", “res34" and “res50" are
short for Resnet-18, Resnet-34 and Resnet-50 network topology respectively. M and N refer to the
number of weight bases and activations respectively.

Network M N shift parameters (ui’s) shift parameters (vi’s) β’s
res18 1 1 0 0.0 1.0
res18 3 1 -1,0,1 0.0 1.0
res18 3 3 -1,0,1 -1.5, 0.0, 1.5 1.0, 1.0, 1.0
res18 3 5 -1,0,1 -3.5, -2.5, -1.5, 0.0, 2.5 1.0, 1.0, 1.0, 1.0, 1.0
res18 5 1 -2,-1,0,1,2 0.0 1.0
res18 5 3 -2,-1,0,1,2 -0.9, 0.0 0.9 1.0,1.0,1.0
res18 5 5 -1,-0.5,0,0.5,1 -3.5, -2.5, -1.5, 0.0, 2.5 1.0, 1.0, 1.0, 1.0, 1.0
res34 3 3 -1,0,1 -3.0, 0.0, 3.0 1.0, 1.0, 1.0
res34 5 5 -1,-0.5,0,0.5,1 -3.5, -2.5, -1.5, 0.0, 2.5 1.0, 1.0, 1.0, 1.0, 1.0
res50 5 5 -1,-0.5,0,0.5,1 -3.5, -2.5, -1.5, 0.0, 2.5 1.0, 1.0, 1.0, 1.0, 1.0

image is labelled in one of three classes: turn right, go straight, turn left. We evaluate ABC-Net
against its full precision counterpart using this dataset. The classification result is shown in Table S5
by fixing both number of weight bases M and activation bases N to be 5.

12

BWN 1 2 3 5 FP

M

60

61

62

63

64

65

66

67

68

69

70

T
o
p
-1

BWN, Top-1: 60.8%

M: 1, Top-1: 62.8%

M: 2, Top-1: 63.7%

M: 3, Top-1: 66.2%

M: 5, Top-1: 68.3%

FP, Top-1: 69.3%

BWN 1 2 3 5 FP

M

83

84

85

86

87

88

89

90

T
o
p
-5

BWN, Top-5: 83.0%

M: 1, Top-5: 84.4%

M: 2, Top-5: 85.2%

M: 3, Top-5: 86.7%

M: 5, Top-5: 87.9%

FP, Top-5: 89.2%

Figure S4: Top-1 (left) and Top-5 (right) accuracy of ABC-Net on ImageNet, using full-precision
activation and different choices of the number of binary weight bases M .

Table S5: Classification accuracy on Forest Trails dataset. ‘FP’ stands for ‘Full Precision’.

Network shift parameters (ui’s) shift parameters (vi’s) β’s ABC-Net FP
VGG-like -1,0.5,0.0,0.5,1 0,0,0,0,0 1,1,1,1,1 78.0% 77.7%

13

S7 VGG-like network topology for visual perception of forest trails380

BatchNorm
#

Convolution, filter:4⇥ 4, output channel: 64
#

MaxPooling, filter:2⇥ 2, strike: 2⇥ 2
#

BatchNorm
#

ReLu
#

Convolution, filter:4⇥ 4, output channel: 64
#

MaxPooling, filter:2⇥ 2, strike: 2⇥ 2
#

BatchNorm
#

ReLu
#

Convolution, filter:4⇥ 4, output channel: 128
#

MaxPooling, filter:2⇥ 2, strike: 2⇥ 2
#

BatchNorm
#

ReLu
#

Convolution, filter:4⇥ 4, output channel: 128
#

MaxPooling, filter:2⇥ 2, strike: 2⇥ 2
#

BatchNorm
#

ReLu
#

Convolution, filter:4⇥ 4, output channel: 128
#

MaxPooling, filter:2⇥ 2, strike: 2⇥ 2 BatchNorm
#

ReLu
#

Convolution, filter:4⇥ 4, output channel: 128
#

MaxPooling, filter:2⇥ 2, strike: 2⇥ 2
#

BatchNorm
#

ReLu
#

FullyConnected, output channel: 200
#

Dropout, ratio: 0.5
#

BatchNorm
#

ReLu
#

FullyConnected, output channel: 3

381

14
Figure S5: The network topology for visual perception of forest trails.

14

	Introduction
	Related work
	Binarization methods
	Weight approximation
	Approximate weights as a whole
	Approximate weights channel-wise

	Multiple binary activations and bitwise convolution
	Training algorithm

	Experiment results
	Experiment results on ImageNet dataset
	Effect of weight approximation
	Configuration space exploration
	Comparison with the state-of-the-art

	Discussion
	Why adding a shift parameter works?
	Advantage over the fixed-point quantization scheme
	Further computation reduction in run-time

	Conclusion and future work
	Acknowledgement
	Summary of training algorithm in Section 3.3
	Weight approximation
	Feature map
	Parameter settings for the experiment in Section 4.1.2
	Relationship between accuracy and number of binary weight bases M
	Application on visual perception of forest trails
	VGG-like Network Topology
	Experiment results on visual perception of forest trails dataset

