A Proof of Main Theoretical Results

In this section, we prove our main theories. The proof of Theorem 4.5 requires the following two
lemmas.

Lemma A.1. Suppose that Assumptions 4.1 and 4.2 hold. Choose the thresholding parameter as
s > s*. Then with probability at least 1 — C” /d, the initial points S(°), Z(%) obtained by initialization
stage in Algorithm 1 satisfy
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where C’ > 0 is an absolute constant.

Lemma A.1 indicates that under certain conditions the initial points obtained by initialization stage
of Algorithm 1 are sufficiently close to S* and Z* respectively.

Lemma A.2. Suppose Assumption 4.1 and Condition 4.4 hold. Suppose the initial solutions satisfy
S© € Br(S*,R) and Z(®) € By(Z*, R), where R = min{1/4\/0max, 1/(2V), \/Tmin/(6.50%)}.
In Algorithm 1, let the step sizes satisfy 7 < Cy/(0maxr?) and ' < Coomin/(Omax?), and the

sparsity parameter satisfies s > (4(1/(2,/p) — 1)* + 1)s*, where Cy > 0 is a sufficiently small
constant. Let p and 7 be
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Then for any ¢ > 1, with probability at least 1 — C /d, the output of Algorithm 1 satisfies
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where C; > 0 is an absolute constant.

Lemma A.2 suggests that the estimation error consists of two terms: the first term is the statistical
error, and the second term is the optimization error of our algorithm.

Proof of Theorem 4.5. The proof of Theorem 4.5 follows from combining Lemma A.1 and Lemma
A.2. We only need to derive the conditions on the sample size n and sparsity of S*. Specifically, for
R defined as in Lemma A.2, we need
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to ensure the initial points obtained by the initialization stage of Algorithm 1 lie in balls of unknown

matrices with radius R. Simple calculation yields the condition on the sample size n and sparsity s*
as follows:

n > 484(|Q* || 1v°rs* logd/(25R%0min), and  s* < 25d° R%0pi/(1217a*?).

This completes the proof. O

B Proof of Technical Lemmas in Appendix A

In this section, we provide the proofs for the technical lemma used in the proof of our main theory.
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B.1 Proof of Lemma A.1

Now we prove that our initial points S© and LO in Algorithm 1 lie in small neighborhoods of S*
and Z*. Note that our analysis of the initialization is inspired by the proof of Theorem 1 in [40], and
extends that to the noisy case. We first lay out the following lemma, which is useful in our proof.

Lemma B.1. For any symmetric matrix A € R4*? with ||A||o.0 = s0, we have

[All2 < v/50l| Al o0

Proof of Lemma A.l. LetE = Q" — 71 = §* 1 L* — &1 where £ = 1/n Y1 | X, X, is
the sample covariance matrix. According to Algorithm 1, we have SO = 7—[7;(2’1). We define
Y =0Q*-SO =E+ 3! — S which immediately implies that Y — L* = S* — S and that
supp(Y —L*) = supp(g(o)) U supp(S*). Specifically,
e For (j, k) € supp(S(), we have [Y — L*] ;5 = [E — L*] 4, since [£~1 — S(0];,, = 0 by
thresholding.

e For (j,k) € supp(S*)/supp(g(O)), we have [[Y — L[| = [S5] < 2[|L*[lec,00 +
IEf[oc,00- Otherwise [[X71] ;x| = [[S* + L* — Eljx| > |S5| = [[L* = E]jx| > [L"]loo,00-
Since ||S*|jo0 < s* and s > s*, this means that |[X7'];;| is greater than at least

d — s* > d — s entries in %1, which immediately yields that (j, k) € supp(S(©).
This contradiction leads to our claim that [[Y — L*] ;x| = |7, < 2[|L*{|cc,00 + [ Ell00,00-

Thus, we’ve proved that
1Y = L7l o0 < 21T o0 + [E]oc.cc- (B.1)

For L* = V*D*V* T, by spikiness condition of L* in Assumption 4.2, we have
a*
L oo,00 < —. B.2
I o0 < % (B2)

Moreover, since E = 3*~! — 3~1, we notice that

log d

(B.3)

= = B oo = IE7H(E = B7) = o0 < 227 10v

holds with probability at least 1 — C'/d, where the last inequality is due to Lemma E.2. Combining
(B.1), (B.2) and (B.3), it finally yields that

« logd
o S VETOIY = Ll < V(5 200 257
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holds with probability at least 1 — C'/d. It follows from Lemma B.1 that
Y =Lz < V5" +5|Y = L"[loc,00 < 2V/5* + 5L oo ,00 + V5™ + 8[| Eflcc,cc  (B4)
Since Z(OZOT is the rank r approximation of -1 — 80 = Y — E, we have
1ZOZOT — (Y —E)|l2 = 0,1 (Y — E).
Noting that 0,1 (L*) = 0, applying Weyl’s theorem yields
0741(Y —E) = 0,41 (LY)] < (Y — E) — L
which immediately implies

[ZOZOT - Ly < |ZOZOT = (Y - B2 + |[Y - B~ L'
<Y -E-L
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Thus submitting (B.2), (B.4) and Lemma E.3 into the above inequality, we obtain
[ZOZOT —L¥||,. < 2/r (Y = L7 + |E.»)

<2V7r(s* + 8)|IL" loo.00 + 2v/7(5* + 5) [ Ellos,00 + 2v/T[[El|2

20t /r(o" * +5)logd d

with probability at least 1 — C’/d, where C’ > 0 is an absolute constant. And by Lemma E.4 we
further get

170, 77) < 1la*y/r(s* + ) 22||Q*||1 1w [r(s*+s) logd rd B.6)
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with probability at least 1 — C”/d, which completes the proof

B.2 Proof of Lemma A.2

For simplicity of the proof, we introduce the following notations that give the gradient descent
updating based on the population objective function

/\

S(t+0.5) _ §(t) Uvsq(s(t ,Z )

Z(+D) =7 qu( (t) Z )),
where the population objective function ¢(S,Z) = E[g,(S,Z)] and ¢, (S, Z) is defined in (3.4).
Here S(*10-5) and Z(*+1) are the population version of S(*+9-5) and Z(**1 in Algorithm 1. In order
to prove our main theorem, we layout some useful lemmas here first.
Lemma B.2. Let St+05) = §(t) _ nVsq( ), Z®) be the population version of S(+0-%), For the
gradient descent updating of S, if step size satisfies n < 1/(L + p), then we have

2nuL

. * |2 %2 25772720'111&)( 7 *
40 -7 < (1- 22280 — s+ P 2 20, 2),

where L = 402, 1 = 1/(41?) and v, = 812,

B.7)

And the corresponding result for Z:
Lemma B.3. Let Z() = Z(®) — 1/V5¢(S®,Z") be the population version of Z(**+1). The
gradient descent algorithm of Z with step size ' < 1/[16(L + p)omax] satisfies
/ L - 25,'7/2,)/20. -
2 (z<t+1>, z*) < (1 - Lomink2)) g2(Z(0) z+) 4 220 Ti%max gty g2
where L = 412, = 1/(4v?%), and y; = 8v/2. d(-, -) is the distance defined in Definition 4.3.

The following lemma serves similarly as a non-expansive property for hard thresholding operators,
which is proved in Lemma 4.1 by [21].

Lemma B.4 ([21]). 8* € R%is a sparse vector with ||@]|o = s*. For any 8 € R9, let HT,(-) be the
hard thresholding function which preserves the s largest magnitudes. Then we have

[HT(8) - 0°|2 < (1 ; jQ>||0 0" 2.

The following lemma gives the statistical error of our model.

Lemma B.5. For a given sample with size n and dimension d, we use €;(n,d) and ez(n,d) to
denote the statistical errors. More specifically, uniformly for all S over ball Bx(S*, R), Z over ball
B4 (Z*, R) we have that

log d

||VSQ7:,(Sv Z) - VSq(S7 Z)”OO,OO S 61(’”’ d) =2
holds with probability at least 1 — C'/d. And

[rd
IVzan(S,Z) — Vzq(S,Z)||r < e2(n,d) = 4vy/Omax n
holds with probability at least 1 — C'/d.

n
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The above lemma states that the differences between the gradients of the population and sample loss
functions with respect to S and Z are bounded in terms of different matrix norms. It is pivotal to
characterize the statistical error of the estimator from our algorithm.

Now we are going to prove the main theorem.

Proof of Lemma A.2. We show S®) € By (S*, R), Z(Y) € B4(Z*, R), forall t = 0,1, ... by mathe-
matical induction. We already know the initial points S € By (S*, R) and Z(©) € B4(Z*, R) by the
initialization stage in Algorithm 1. Next, suppose that we have S() ¢ B r(S*, R), yAQNS Ba(Z*, R)
and we want to show this holds for iteration ¢ + 1 too.

Define S* = supp(S*), S® = supp(S®), St = supp(St+D) and § = S* USH U SHHD),
Recall that S¢+0-5) = §() 4 yVgq, (§(‘5)7 2<t>) and S(+1) preserves the s largest magnitudes in
S(+05) jp’s easy to verify that

S+ = 1T, (+09) = HT. (8 4 [V, (8, 2)] ).
Thus by Lemma B.4 we have

2 *
"< (1 LW

2

5 - )8 = 0[¥sa, (8.2~ 5°[;

s — s*

2Vs* \ & ON; Sk
<21+ 2L ) |50 - o[Tea(8, 7)) -7

s —s*
w2 (14 220 (V0. (8. 2) - Va8V, 20) . ®3)

Note that |S| < s* + 2s and by Lemma B.5, we have with probability at least 1 — C'/d that

|[Vsan (8®,Z0) — Vsq(8®, 2] 4| . < MHVsq(@“, zm) — Vs <§<t>’ zm) HWC
< Vs* 4 2s€1(n, 0), (B.9)

where €, (n,§) = C'y/log d/n. By definition we have S = S* U S® U S¢+1), which yields

2

<89 - 17sa(80.20) - 5[

~ 2pL N qe) e
§<1 L+u>HS >

I8 —n[Vsq(8®,2)] 5 —*

2 25772’720'max I~ *
F+ 82 dQ(Z(t)’Z )7

(B.10)

where the second inequality is due to Lemma B.2. Here L = 412y = 1/(41?) and 7o = 812

Submitting (B.9) and (B.10) into (B.8), we obtain with probability at least 1 — C'/d that

2 257]27%0'111&(

a 2 24/s* 2nulL \ 4 5
S+ _g*|| <921 1 - 22 IS g+ 220 12T max 27 (t) gx
H F + /s — g* L + i H F + 8 ( ) )
+ 7% (s* +25)e%(n,5)}. (B.11)

On the other hand, let Z() = Z(®) — /V5q(S®, Z(1)). We have
@D, = i |24 ~ 2 < 28 — 2O+ 2 |20 — 2]
Zeu Zeu

=2[|ZHY) — ZD |2 1 242(Z0HD, Z7). (B.12)

By Lemma B.3 we have

/minL 7 25 l22max"
(2D, 27) < (1 - M)d%Z“),Z*) + RSO st E, (B3
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where L = 4v% i = 1/(41?), and 7; = 8v2. By Lemma B.5, we have with probability at least
1 —C"/d that

HZ(H” —zUH ||, = n"!qun(g(t), Z(t)) - qu(g(t), 2(”) | < n'ea(n, ), (B.14)

where €3(n, §) = C'vVy/Tmax+/7Td/n. Substituting (B.12) with (B.13) and (B.14), we obtain

=~ /minL =] 25 /22max’\
B2 (Z0H), 7)< 2(1 - ’M)d?(z(f), Z*) + %Hs@ — S*|2 + 202 (n, 6)
(B.15)

holds with probability at least 1 — C’/d. Combining (B.11) and (B.15), we then have

o811, 207079

2v/5* 2pl  251%Y30max 0 ominptL 2502V 0 max
<21+ maxd1— 1
Vs — s L+p 8 2(L + p) 8

. max{”g(t) - S*

|2de2 (Z(t)’ Z*)}

2 *
+ max {2 (1 + %)ﬁ(s* +25)€2(n, §), 2n'%€2(n, 6)} (B.16)

T

holds with probability at least 1 — max{C,C"}/d. Recall that by Lemma B.2 and Lemma B.3
we have L = 402, y = 1/(4v?), 1 = 8% and 92 = 8v%. And by Lemma B.5, we have
€1(n,d) = 24/logd/n, €2(n, ) = 4v\/0max+/rd/n. Note that in Lemma B.2 and Lemma B.3, we
require the step sizes satisfy < 1/[16(L + p)] and " < 1/[16(L + )0 max]. In order to ensure
the convergence of our algorithm, we require that p < 1. Thus we choose 77 = Cp/(0max??) and
7' = Coomin/ (Tmax’?), where Cy > 0 is a sufficient small constant. Then we have

/min 4 2 *logd 32 252 d
7 Fmin } TInaX{ 280045 ogd 3 Coammr}. (B.17)
1% n

max n Omax VG

pmaux{lT7 1-—

v2’ V2

When we choose the thresholding parameter as s > (4(1/(2,/p) — 1)? + 1)s*, it’s easy to derive

2(1+24/s*/(s — 5*)) < 1//p. Then we have
max{”g(t"'l) - S*

(200,20 L < Jpmax {89 — 7|7 d2(20,2%) } + 7

< VPR + (1 - pR® = R,
where in the second inequality we use the fact that when the sample size n is sufficient large, we are
able to ensure 7 < (1 — \/p) R2. Therefore, we have S+ € Bx(S*, R) and Z(+Y) € By(Z*, R).
By mathematical induction, we have S() € By (S*, R) and Z() € B4(Z*, R), forany t = 0,1, ...
Since (B.16) holds uniformly for all ¢, we further obtain with probability at least 1 — C; /d that

max {[| S0 — 8|7, d2(Z+1,7") }

IN

Vomax {[|8© - 873, d2(29,27) } + 7

.
N

where p and 7 are defined in (B.17) and C; = max{C, C'} is a positive constant, which completes

the proof. O

C Proof of Supporting Lemmas in Appendix B

In this section, we prove the lemmas used in the proof of main theorem. We first lay out some useful
lemmas. The first lemma is about the strong convexity and smoothness.
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Lemma C.1. The population loss function p(S, L*) is p-strongly convex and L-smooth with respect
to S, namely,

plS = S7|% < (Vsp(S,L") — Vsp(S*, L"), S — 8%) < L||S — S*||%,

forall S € Br(S*, R), where pp = 1/(41?) and L = 4v2. Similarly, p(S*, L) is u-strongly convex
and L-smooth with respect to L:

plL = L% < (Vip(S*,L) — Vip(S*,L*),L — L*) < L||L — L*[[3,

forL=2ZZ" ,L*=Z*Z"" and Z € B4(Z*, R). Here we use Vyp(S, L) to denote the gradient of
the loss function with respect to L.

In the following lemma, we show that the first-order stability, i.e., Condition 4.4 on the population
loss function holds for S and L.

Lemma C.2. For all S € Br(S*, R) and Z € By(Z*, R), by definition we have L = ZZ" and
L* = Z*Z*". We have the following properties for gradient with respect to S and L

IVLp(S,L) — VLp(S*,L)|| . < S — S*||r,
[Vsp(S,L) — Vsp(S, L") ||, < 12lL — L*||p,
where 71 = 7o = 812
C.1 Proof of Lemma B.2
Proof. Since S(t+0-5) = §(1) _ nVsq(g(t), 2(’5)), we have
IS0 — 8*||% = IS — yVsq(SW,Z2") — 87|
< [8® — 87|} — 2n(Vsq (S, 2“)) SO —8) +7Vsa(SV, Z) 13
=8 — 8*|I3 — 20 (Vsq(S, ZV) — Vsq(s*, 27), 81 — 87)
Iy
—21(Vsq(8",2"), 81 — 87) 49? |Vsq(SY, ZV) .. (A

Iy I3

Since by Lemma C.1 p(S,Z*Z*") is p-strongly convex and L-smooth regarding with S around
S*, and note that p(S,Z*Z*") = ¢(S, Z*), we also have that ¢(S, Z*) is p-strongly convex and
L-smooth regarding with S around S*. For term I, applying Lemma E.1 yields

I =<vsq(<t> 7)) — Vsq(s*,21),80) — 5%

1 ~ ~ ~
> 2 IS0 _g*2, p —— S® ZM®y S*. ZMY|2.. Cc2
> L+ — % + LﬂLIIVsq( ,Z') —Vsq(S*,Z7)|% (C2)

For term I, in (C.1), noting that Vgq(S*, 2*) = 0 and the fact that Vsq(S, Z) = Vqq(£2) where
Q=S+LandL =2ZZ", we have

I = (Vsq(S*,Z29)) — Vsq(S*,27),S® — S*) = (Vqaq(S* + LY) — Vqq(S* +L*),S® —8*).
Applying mean value theorem we further obtain
I, = Vec(i(t) - L*)TV%q(S* +(1-t)L* + ti(t))vec(g(t) - 5%)
> A (Vg (€ + (B0~ L) [EO L], 89 -8 .. (©3)
for some ¢ € (0, 1). Easy calculation and the properties of Kronecker product yield
Amin (VA(2 + (LG — L*))) = A ((2* + (L ~ L)) @ (@ ++(LO —L7)) )
= (Amax (2 +£(LO —L7)) 7

(v + t|TO —17||y) 7
1
402"

Y

Y

(C.4)
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Finally, we are going to bound term I3 in (C.1). Specifically, we have

IVsa(8Y,Z0) 1% < 2 Vsq(S©,2V) — Vsa(S",Z7) % + 2| Vsq(S™, 2) — Vsa(S™, Z7) |13
=2||Vsq(S®, Z1) — Vsq(S™ Z2) 7 + 2 Vsp(S", L) — Vsp(S™,L7) I3
<2|Vsq(8",2%) = Vsq (8", Z) I + 2L — 177, (€53)

where the first inequality is due to (a +b)? < 2a? 4 2b2, the equality is due ¢(S,Z) = p(S,ZZ ") =
p(S,L), and the last inequality is by the first-order stability property, i.e., Lemma C.2, where
2 = 812, Submitting (C.2), (C.3), (C.4) and (C.5) into (C.1) yields

. . 2npL .
|S“”®—sn%s(1—L)ﬁ -5°; I

ﬁHL(” —L*||. - |S® — 8%, + 2n*43 LD — L*||%. (C.6)

Noting that Hf(t) —L*|r < (R+ \/amax)d(i(t), 7*) < 5/4,/amaxd(2(t), Z*), by setting <
1/(L + 1) we have

277,U,L 2 25"72'720max 7
S0 _g*|12. < e 1 SR eme gz, 7). c7
u IF<(t-7)l e+ =5 (z9.z%). €
O
C.2 Proof of Lemma B.3
Proof. Based on the definition in (4.3) we denote
Z® = argmin |Z®) — Z||p,
Zeu
which implies d(Z("), Z*) = ming_,, |Z®) — Z||p = |Z® — ZV||p. Thus by defining Z(+1) =
Z®) — 1/Vzq(S®,Z®) as the population version of Z(+1), we have
d(z"*,Z*) = min |20 - Z|p < 207 - 20|,
Zeu
it follows that
d* (20D, 27) < || — ' Vzq(SW, Z1) — 2|},
= dz( 7 ) - 27] < ZQ(/S\ t)7 Z(t))7 Z(t) - Z(t)> +77/2 ||VZQ(/S\(t)7 2(t))HQF .
I Iz
(C.8)

For term I; in (C.8), note that we have Vz¢(S®), Z(")) = [Vp(S®, L"))Z", L® = ZHO[Z"O]T
and L* = ZMO[ZM] T It follows that

<qu(§(t),2(t))72(t> Z(t)) <va<S(t)7E(t))7z(t)[z(t)_Z(t)f>
= (Vep(8",L7), 20 20 — 2] ") 4 (VLp(8"), L) — mm(@Lﬂiﬁﬁ@—%ﬂU

= %(VLp(g(”,L*),fJ(” —L*+ [i(t) _ Z(t)] [Z®) — ZMOTy 4+ <VLp(S(t) L®) — vp(S®, L), L® —

1 ~
+2n<n—>nvgx ®Z1) —Vsq(S*,Z0) %

L)

111 Il2

(Vep(SW,LW) — vp(8®,L*), [Z® — ZO][Z® — 20Ty, (C.9)

l\:)\)—l

I3

We first bound term I1; in (C.9). Noting that Vip(S,L) = Vqp(Q2), where & = S + L and
L =ZZ", we obtain

Iy = 5(VepB© L), B0 - L+ 4 [Z0 - 20] 20 - 2]

= S (Vap(BY + L)~ Vap(@"), B ~ L* + [210 - Z0][20 - 2]7),
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where we used the fact that Vop(2*) = 0. Applying mean value theorem yields
Iy = 1/2vec(§(t) - S*)TV%p(L* (1 —t)S* + tg(t))vec(f;(t) —-L"+ [2“) - Z(t)} AR Z(t)]T)

> 1/22min (VEP(Q + 1O — )8 — 87|, - [E© - L* + 2 — 20][Z® — 20|
(C.10)

for some ¢ € (0,1). Simple calculation yields
Amin (VAR + (S —8))) = Apin (2 +(S® —8%)) "L @ (2" +¢(S® —8*)71)
= [l + (8" — 875

1
ek (C.1D
Thus, combining (C.10) and (C.11) we obtain
I > 7||s<t> S|, - |L® —L* + [20 - Z20][Z® —Z0)T||,.. (€12

Next, since by Lemma C.1 p(S(t)7 L) is p-strongly convex and L-smooth with respect to L with
p=1/(4v?) and L = 412, by Lemma E.1 we further obtain

112_2(7\@(“ 2(7”VL]) ) LO) — Vp(SO, LM% (C.13)
For term [;3 in (C.9), we have
I > ——||va S®,L0) - Vip(SY, L) . - |29 — 2}
>_fy|va (8, L") = vep(8, L[}, - 712 = 2|, (C.14)

where in the second inequality we used the inequality 2ab < a?/c + cb? for any ¢ > 0.

Now we turn to term I in (C.8). Recall that Vz¢(S,Z) = [VLp(S, L)]Z. We have

IV2a(8D, Z0) 3 < 2[VLp(S8®, L) - Vip(8®, L)ZV|% + 2 [Vep(S8®, L) — Vip(S*, L) Z"||3
< 2|VLp(8Y, L) — VipSO, L)% - 1203 + 29218 — 8|13 - 1273
< 250m1x

S * 25 20'111 X
Vo8, L) = Vip(S, L)} + =1

S® — 8%,
(C.15)
where the second inequality is due to Lemma C.2 with 7; = 82, and the last ineuqlity is due to

I1ZO s < [1Z7[|2 + d(ZD, Z*) < R+ /Ginax < 5/44/Fmax-
Thus submitting (C.12), (C.13), (C.14) and (C.15) into (C.8) yields

2/ 2—-1 minL - . -~ 2 /22max’\
d2(z(t+1),z*) < (1 _4n (\f )T min >d2(z(t)7z*) + %Hz(t) _ Z(t)Hi“ + on ;10 ”S(t) _ S*HzF

L+u

2517/20 77/ /

290 Fmax T S(t) LG S® L

+ ( 3 + 90 L+ | VLp( )) — VLP( )|
* * 7 7 7 7 T

IO = 8 [ - L+ [ - 2O) 20 - 20T,
< (1= 27] (\/ﬁ_ 1)O—miH/~LL + n R2(L + :u) dQ(z(t) Z*) + 2577/27%01113" ||§(t) _ S*||2
=~ L—I—,u 9 ) ) F>

(C.16)

where in the first inequality we used the conclusion in Lemma E.4 and that oy,in (Z*) = \/Omin; in the
second inequality we chose ¢ = L + p and used the condition that " < 4/[25(L + )0 max)- By our

condition that R < /o /(6.502), we get R? < 30min/(1250%) < (4V/2 — 5)ominpL /(L + )2,
which immediately implies

* /Umin L ~ * 25 2 2O—max a *
(2,27 < (1 - M)dz(z(thz )+ RS0 st 7, (€T
which completes the proof. O
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C.3 Proof of Lemma B.5

Now we are going to prove the lemma of statistical errors.

Proof. This lemma has two parts: one is the statistical error for the derivatives of loss functions with
respect to S, and the other one with respect to Z. We first deal with S.
Part 1: Taking derivative of ¢(S, Z) with respect to S while fixing Z, we have
Vsq(S,Z)=%* — (S+ZZ")™ L.
Take derivative of ¢, (S, Z) with respect to S while fixing Z, we have

~ 1 <&
Vsqn(S,Z) =2 — (S+ZZ")™' = - Y XX —(S+2zz")"
i=1

Thus by Lemma E.2, we obtain
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holds with probability at least 1 — C'/d.
Part 2: Taking derivative of ¢(S, Z) with respect to Z while fixing S, we have

V2q(S,Z) =2X*Z - 2(S+ZZ")"'Z.
Taking derivative of g, (S, Z) with respect to Z while fixing S, we have
V2an(S,Z) =287 — 2(S + 22 )" 'Z.

Then by transformation of norm, we have

Z[| -

~ 1 &
IV24n(S,Z) — Vzq(S, Z)||r = 2||(Z — =9)Z|| . < 2”” doXX[ -3
i=1 2

Since || Z||r < ||Z — Z||p + |Z]|r and ||Z — Z||p = d(Z,Z*) < R, || Z|}> = | Z*||2 < \/Tmax. We
have ||Z||F < R+ \/T0max- Lemma E.3 shows that we have

1 — d
= E XX -z < 2u\/>
n = 9 n

with probability at least 1 — C’/d. It immediately follows that

[rd
||VZQ7L(Sa Z) - VZQ<Sv Z)HF S 41/ V Omax ;
holds with probability at least 1 — C'/d. O

C.4 Proof of Lemma B.1
Proof. By definition we have [|A |2 = supj|,=1 x " Ax. Note that
xTAx = (x,Ax) = (xx ", A) < [lxx" || - [Allr < V/5ol|Allo,,

where in the last inequality we use the fact that ||xx " || = 1. O

D Proof of Additional Lemmas in Appendix C
D.1 Proof of Lemma C.1

Proof. We first show the strong convexity and smoothness with respect to S. Taking derivative of
p(S, L*) with respect to S while fixing L* and denoting the gradient as Vgp(S, L*), we have

Vsp(S,L*) = = — (S+ L")\,
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Further, taking the second order derivative with respect to S, we get

Vip(S,L*) = (S+L*) '@ (S+L*)". (D.1)
For any S € Br(S*, R), we define
£(8) = (Vsp(S,L7) — Vgp(S™, L"), S — 7). (D.2)

Applying mean value theorem to (D.2), we obtain
E(8) = Amin(VEP(S™ +0(S — S*),L))|IS = S*[[7 = Amax(S" +0(S — ") + L") ?||S — 8| %,
(D.3)

for some 6 € [0, 1], where in the last equality we use the property of Kronecker product. By triangle
inequality we have

Amax (S*+60(S—S*) +L*) <||S*+L*||2+0|S—S*|» <v+ R <2, (D.4)

where the last inequality is because we have R < 1/v < v by definition. Combining (D.3) and (D.4)
yields

£(S) > 14l S
which immediately implies that ¢(S, L*) is p-strongly convex with respect to S, where = 1/ (4V2).
Note that for £(S) defined in (D.2), we also have
£(S) < Amax(VEp(S™ +60(S — 87),L7))|IS — S| = Amin(S" + 0(S — 87) + L") *||S _(Ssll%

For any x € R? such that || x|z = 1, we have
X (S*+0(S—S)+L)x=(1-60)x"(S—S)x+x(S*+L")x > —(1 —0)|x" (S — S*)x| + x(S* + L*)x,

where the last inequality is due to 0 < 6 < 1. Taking minimization over x on both side of the
inequality above, we have

Amin(S* +6(S —S*) + L) = min x'(S*+0(S —S*) + L*)x

lIxll2=1

(1-6) min { —|Ix"(S— S*)x\} + | min x(S* + L*)x

[Ix[l2=1 |x[|2=1
S
v - 2u

where in the last inequality we use the fact S € Br(S*, R) and R < 1/(2v). Then it follows that
£(S) < 4?||s" - S|%,
which immediately implies that p(S, L*) is L-smooth with respect to S, and L = 412

Since p(S, L) is symmetric in S and L, by similar proof for L, we can show that p(S*,L) is u
strongly-convex and L-smooth with respect to L too. O

D.2 Proof of Lemma C.2

In this subsection, we prove the first-order stability lemmas.

Proof. Take derivative of p(S, L) with respect to S while fixing L, we have
Vip(S,L)=%* — (S+ L)L
Therefore, we have
IV1p(S,L) = Vap(S, LY)[|lr < [[(S + L) 7" = (S + L) 7| . (D.6)
We define ®@* =S+ L*,®@ =S+ Land A = ®* — ® = L* — L. Then we have
[(S+L) ' —(S+L)7 Y, =@ -Aa)"-6"",.
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Since ||® ~'A||r < 1, we have the convergent matrix expansion

@ -A)'=[e1-0"'a)] " = i(@*‘lA)kG*‘l.
k=0

Define J = Y2 (@*’IA)k, we have

H(@* _ A)_l . @*—IHF _ Z(@*—lA)ke*—l
k=1

=@ Ao < e 3 [Alr- 172
F

(D.7)

where we use the properties of matrix norm that || AB||r < ||All2-||Bl/F and [|AB||2 < ||All2-||B|2-
By sub-multiplicativity of matrix norm, we have

1Tl <) @Al < — < — <9 (D.8)
kZ:O PT1-|e 1Al T 1- [0 Lf|A]
Note that we have [[@* 7|3 = Apax (©*71) = (/\min(Q*))_l. For any x € R?, we have

Amin (@) = min XT(S +L")x

lIx|l2=1
i S )
2 _”S - S*HQ + )‘min(ﬂ*>
Zl/V—R>%, D.9)

where we use the fact that [|S — S* |2 < [|S — S*||r < R, Amin (€2]) > 1/ by Assumption 4.1 and
R < 1/(2v). Combining (D.7), (D.8) and (D.9), we have

(@ +A) ! —0tr<(2v)? A-2<82L—LYF, (D.10)
which ends the proof. The proof for first-order stability of Vi,p(S, L) is similar and omitted here. [J

E Auxiliary Lemmas

Lemma E.1. [28] Let f be u-strongly convex and L-smooth. Then for any x,y € domf, we have

(V1) = VH().x =¥) = = yIE+ 7 V60— VI

Lemma E.2. [29] Suppose that X1,..., X, € R? are i.i.d. sub-Gaussian random vectors. Let
¥ =E[1/nY;, X;X, ], and we have that

1 log d
—ZXiXiT—E* < 2max X7; 08
n =1 0,00 ) n
holds with probability at least 1 — C'/d, where C' > 0 is a constant.
Lemma E.3. [32] Suppose that X,..., X, € R are i.i.d. sub-Gaussian random vectors. Let
¥ =E[1/nY ", X;X, ], and we have that
1< d
3 XX T < 2man(E)/ -
n P 2 n
holds with probability at least 1 — C’/d, where C’ > 0 is a constant.
Lemma E.4. [31] For any Z, Z* € R4¥", we have
1
d(Z,2*) < |zz™ -z 27|,

2(\/5 - l)arxlirl(Z*)

where oin(Z*) is the minimal nonzero singular value of Z*.
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F Additional Experiments on Cancer Genomic Data

To further show the performances of different methods on recovering the edges in the benchmark
network that are most related to luminal breast cancer, we chose the top 50 gene pairs with highest
regulatory potential scores based on the Cistrome Cancer Database, and plotted the edges identified by
each method in Figure 3. Note that the estimated networks of methods based on LVGGM (ADMM,
PPA and AltGD) have much more overlaps with the benchmark network on the top 50 edges than
GLasso, which ignores the latent structure of precision matrix.
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Figure 3: A comparison between the inferred regulatory network as compared to the regulatory
potential score from the Cistrome Cancer Database on luminal breast cancer. We chose the top 50
gene pairs in the Database with highest regulatory potential scores.

We also plotted the regulatory potential scores for basal subtype breast cancer based on Cistrome
Cancer Database in Figure 4. We can see that the estimated networks of ADMM, PPA and AlItGD
again have much more overlaps with the benchmark network on the top 50 edges than GLasso, which
is consistent with the results for luminal breast cancer.
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Figure 4: A comparison between the inferred regulatory network as compared to the regulatory
potential score from Cistrome Cancer Database on basal breast cancer. We chose the top 50 gene
pairs in Cistrome Cancer Database with highest regulatory potential scores.

23



