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Abstract

In this paper, we extend the geometric descent method recently proposed by Bubeck,
Lee and Singh [1] to tackle nonsmooth and strongly convex composite problems.
We prove that our proposed algorithm, dubbed geometric proximal gradient method
(GeoPG), converges with a linear rate (1− 1/

√
κ) and thus achieves the optimal

rate among first-order methods, where κ is the condition number of the problem.
Numerical results on linear regression and logistic regression with elastic net
regularization show that GeoPG compares favorably with Nesterov’s accelerated
proximal gradient method, especially when the problem is ill-conditioned.

1 Introduction

Recently, Bubeck, Lee and Singh proposed a geometric descent method (GeoD) for minimizing a
smooth and strongly convex function [1]. They showed that GeoD achieves the same optimal rate
as Nesterov’s accelerated gradient method (AGM) [2, 3]. In this paper, we provide an extension of
GeoD that minimizes a nonsmooth function in the composite form:

min
x∈Rn

F (x) := f(x) + h(x), (1.1)

where f is α-strongly convex and β-smooth (i.e., ∇f is Lipschitz continuous with Lipschitz constant
β), and h is a closed nonsmooth convex function with simple proximal mapping. Commonly seen
examples of h include `1 norm, `2 norm, nuclear norm, and so on.

If h vanishes, then the objective function of (1.1) becomes smooth and strongly convex. In this case,
it is known that AGM converges with a linear rate (1− 1/

√
κ), which is optimal among all first-order

methods, where κ = β/α is the condition number of the problem. However, AGM lacks a clear
geometric intuition, making it difficult to interpret. Recently, there has been much work on attempting
to explain AGM or designing new algorithms with the same optimal rate (see, [4, 5, 1, 6, 7]). In
particular, the GeoD method proposed in [1] has a clear geometric intuition that is in the flavor
of the ellipsoid method [8]. The follow-up work [9, 10] attempted to improve the performance of
GeoD by exploiting the gradient information from the past with a “limited-memory” idea. Moreover,
Drusvyatskiy, Fazel and Roy [10] showed how to extend the suboptimal version of GeoD (with the
convergence rate (1− 1/κ)) to solve the composite problem (1.1). However, it was not clear how to
extend the optimal version of GeoD to address (1.1), and the authors posed this as an open question.
In this paper, we settle this question by proposing a geometric proximal gradient (GeoPG) algorithm
which can solve the composite problem (1.1). We further show how to incorporate various techniques
to improve the performance of the proposed algorithm.

Notation. We use B(c, r2) =
{
x|‖x− c‖2 ≤ r2

}
to denote the ball with center c and radius r.

We use Line(x, y) to denote the line that connects x and y, i.e., {x + s(y − x), s ∈ R}. For fixed
t ∈ (0, 1/β], we denote x+ := Proxth(x − t∇f(x)), where the proximal mapping Proxh(·) is
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defined as Proxh(x) := argminz h(z) + 1
2‖z − x‖

2. The proximal gradient of F is defined as
Gt(x) := (x−x+)/t. It should be noted that x+ = x−tGt(x). We also denote x++ := x−Gt(x)/α.
Note that both x+ and x++ are related to t, and we omit t whenever there is no ambiguity.

The rest of this paper is organized as follows. In Section 2, we briefly review the GeoD method for
solving smooth and strongly convex problems. In Section 3, we provide our GeoPG algorithm for
solving nonsmooth problem (1.1) and analyze its convergence rate. We address two practical issues of
the proposed method in Section 4, and incorporate two techniques: backtracking and limited memory,
to cope with these issues. In Section 5, we report some numerical results of comparing GeoPG with
Nesterov’s accelerated proximal gradient method in solving linear regression and logistic regression
problems with elastic net regularization. Finally, we conclude the paper in Section 6.

2 Geometric Descent Method for Smooth Problems

The GeoD method [1] solves (1.1) when h ≡ 0, in which the problem reduces to a smooth and
strongly convex problem min f(x). We denote its optimal solution and optimal value as x∗ and
f∗, respectively. Throughout this section, we fix t = 1/β, which together with h ≡ 0 implies that
x+ = x − ∇f(x)/β and x++ = x − ∇f(x)/α. We first briefly describe the basic idea of the
suboptimal GeoD. Since f is α-strongly convex, the following inequality holds

f(x) + 〈∇f(x), y − x〉+
α

2
‖y − x‖2 ≤ f(y), ∀x, y ∈ Rn. (2.1)

By letting y = x∗ in (2.1), it is easy to obtain
x∗ ∈ B

(
x++, ‖∇f(x)‖2/α2 − 2(f(x)− f∗)/α

)
,∀x ∈ Rn. (2.2)

Note that the β-smoothness of f implies
f(x+) ≤ f(x)− ‖∇f(x)‖2/(2β),∀x ∈ Rn. (2.3)

Combining (2.2) and (2.3) yields x∗ ∈ B
(
x++, (1− 1/κ)‖∇f(x)‖2/α2 − 2(f(x+)− f∗)/α

)
. As

a result, suppose that initially we have a ball B(x0, R
2
0) that contains x∗, then it follows that

x∗ ∈ B
(
x0, R

2
0

)
∩B

(
x++

0 , (1− 1/κ)‖∇f(x0)‖2/α2 − 2(f(x+
0 )− f∗)/α

)
. (2.4)

Some simple algebraic calculations show that the squared radius of the minimum enclosing ball
of the right hand side of (2.4) is no larger than R2

0(1 − 1/κ), i.e., there exists some x1 ∈ Rn such
that x∗ ∈ B

(
x1, R

2
0(1− 1/κ)

)
. Therefore, the squared radius of the initial ball shrinks by a factor

(1− 1/κ). Repeating this process yields a linear convergent sequence {xk} with the convergence
rate (1− 1/κ): ‖xk − x∗‖2 ≤ (1− 1/κ)kR2

0.

The optimal GeoD (with the linear convergence rate (1 − 1/
√
κ)) maintains two balls containing

x∗ in each iteration, whose centers are ck and x++
k+1, respectively. More specifically, suppose that in

the k-th iteration we have ck and xk, then ck+1 and xk+1 are obtained as follows. First, xk+1 is the
minimizer of f on Line(ck, x

+
k ). Second, ck+1 (resp. R2

k+1) is the center (resp. squared radius) of
the ball (given by Lemma 2.1) that contains

B
(
ck, R

2
k − ‖∇f(xk+1)‖2/(α2κ)

)
∩B

(
x++
k+1, (1− 1/κ)‖∇f(xk+1)‖2/α2

)
.

Calculating ck+1 and Rk+1 is easy and we refer to Algorithm 1 of [1] for details. By applying
Lemma 2.1 with xA = ck, rA = Rk, rB = ‖∇f(xk+1)‖/α, ε = 1/κ and δ = 2

α (f(x+
k )− f(x∗)),

we obtain R2
k+1 = (1− 1/

√
κ)R2

k, which further implies ‖x∗ − ck‖2 ≤ (1− 1/
√
κ)kR2

0, i.e., the
optimal GeoD converges with the linear rate (1− 1/

√
κ).

Lemma 2.1 (see [1, 10]). Fix centers xA, xB ∈ Rn and squared radii r2
A, r

2
B > 0. Also fix ε ∈ (0, 1)

and suppose ‖xA − xB‖2 ≥ r2
B . There exists a new center c ∈ Rn such that for any δ > 0, we have

B(xA, r
2
A − εr2

B − δ) ∩B
(
xB , r

2
B(1− ε)− δ

)
⊂ B

(
c, (1−

√
ε)r2

A − δ
)
.

3 Geometric Descent Method for Nonsmooth Convex Composite Problems

Drusvyatskiy, Fazel and Roy [10] extended the suboptimal GeoD to solve the composite problem
(1.1). However, it was not clear how to extend the optimal GeoD to solve problem (1.1). We resolve
this problem in this section.

The following lemma is useful to our analysis. Its proof is in the supplementary material.
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Lemma 3.1. Given point x ∈ Rn and step size t ∈ (0, 1/β], denote x+ = x− tGt(x). The following
inequality holds for any y ∈ Rn:

F (y) ≥ F (x+) + 〈Gt(x), y − x〉+
t

2
‖Gt(x)‖2 +

α

2
‖y − x‖2. (3.1)

3.1 GeoPG Algorithm

In this subsection, we describe our proposed geometric proximal gradient method (GeoPG) for
solving (1.1). Throughout Sections 3.1 and 3.2, t ∈ (0, 1/β] is a fixed scalar. The key observation for
designing GeoPG is that in the k-th iteration one has to find xk that lies on Line(x+

k−1, ck−1) such
that the following two inequalities hold:

F (x+
k ) ≤ F (x+

k−1)− t

2
‖Gt(xk)‖2, and ‖x++

k − ck−1‖2 ≥
1

α2
‖Gt(xk)‖2. (3.2)

Intuitively, the first inequality in (3.2) requires that there is a function value reduction on x+
k from

x+
k−1, and the second inequality requires that the centers of the two balls are far away from each other

so that Lemma 2.1 can be applied.

The following lemma gives a sufficient condition for (3.2). Its proof is in the supplementary material.
Lemma 3.2. (3.2) holds if xk satisfies

〈x+
k − xk, x

+
k−1 − xk〉 ≤ 0, and 〈x+

k − xk, xk − ck−1〉 ≥ 0. (3.3)

Therefore, we only need to find xk such that (3.3) holds. To do so, we define the following functions
for given x, c (x 6= c) and t ∈ (0, β]:

φt,x,c(z) = 〈z+ − z, x− c〉,∀z ∈ Rn, and φ̄t,x,c(s) = φt,x,c
(
x+ s(c− x)

)
,∀s ∈ R.

The functions φt,x,c(z) and φ̄t,x,c(s) have the following properties. Its proof can be found in the
supplementary material.
Lemma 3.3. (i) φt,x,c(z) is Lipschitz continuous. (ii) φ̄t,x,c(s) strictly monotonically increases.

We are now ready to describe how to find xk such that (3.3) holds. This is summarized in Lemma 3.4.
Lemma 3.4. The following two ways find xk satisfying (3.3).

(i) If φ̄t,x+
k−1,ck−1

(1) ≤ 0, then (3.3) holds by setting xk := ck−1; if φ̄t,x+
k−1,ck−1

(0) ≥ 0, then

(3.3) holds by setting xk := x+
k−1; if φ̄t,x+

k−1,ck−1
(1) > 0 and φ̄t,x+

k−1,ck−1
(0) < 0, then

there exists s ∈ [0, 1] such that φ̄t,x+
k−1,ck−1

(s) = 0. As a result, (3.3) holds by setting

xk := x+
k−1 + s(ck−1 − x+

k−1).

(ii) If φ̄t,x+
k−1,ck−1

(0) ≥ 0, then (3.3) holds by setting xk := x+
k−1; if φ̄t,x+

k−1,ck−1
(0) < 0,

then there exists s ≥ 0 such that φ̄t,x+
k−1,ck−1

(s) = 0. As a result, (3.3) holds by setting

xk := x+
k−1 + s(ck−1 − x+

k−1).

Proof. Case (i) directly follows from the Mean-Value Theorem. Case (ii) follows from the mono-
tonicity and continuity of φ̄t,x+

k−1,ck−1
from Lemma 3.3.

It is indeed very easy to find xk satisfying the two cases in Lemma 3.4, since we are tackling a
univariate Lipschitz continuous function φ̄t,x,c(s) . Specifically, for case (i) of Lemma 3.4, we can
use the bisection method to find the zero of φ̄t,x+

k−1,ck−1
in the closed interval [0, 1]. In practice, we

found that the Brent-Dekker method [11, 12] performs much better than the bisection method, so
we use the Brent-Dekker method in our numerical experiments. For case (ii) of Lemma 3.4, we
can use the semi-smooth Newton method to find the zero of φ̄t,x+

k−1,ck−1
in the interval [0,+∞).

In our numerical experiments, we implemented the global semi-smooth Newton method [13, 14]
and obtained very encouraging results. These two procedures are described in Algorithms 1 and 2,
respectively. Based on the discussions above, we know that xk generated by these two algorithms
satisfies (3.3) and hence (3.2).

We are now ready to present our GeoPG algorithm for solving (1.1) as in Algorithm 3.
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Algorithm 1 : The first procedure for finding xk from given x+
k−1 and ck−1.

1: if 〈(x+
k−1)+ − x+

k−1, x
+
k−1 − ck−1〉 ≥ 0 then

2: set xk := x+
k−1;

3: else if 〈c+k−1 − ck−1, x
+
k−1 − ck−1〉 ≤ 0 then

4: set xk := ck−1;
5: else
6: use the Brent-Dekker method to find s ∈ [0, 1] such that φ̄t,x+

k−1,ck−1
(s) = 0, and set

xk := x+
k−1 + s(ck−1 − x+

k−1);
7: end if

Algorithm 2 : The second procedure for finding xk from given x+
k−1 and ck−1.

1: if 〈(x+
k−1)+ − x+

k−1, x
+
k−1 − ck−1〉 ≥ 0 then

2: set xk := x+
k−1;

3: else
4: use the global semi-smooth Newton method [13, 14] to find the root s ∈ [0,+∞) of

φ̄t,x+
k−1,ck−1

(s), and set xk := x+
k−1 + s(ck−1 − x+

k−1);
5: end if

3.2 Convergence Analysis of GeoPG

We are now ready to present our main convergence result for GeoPG.

Theorem 3.5. Given initial point x0 and step size t ∈ (0, 1/β], we set R2
0 = ‖Gt(x0)‖2

α2 (1 − αt).
Suppose that sequence {(xk, ck, Rk)} is generated by Algorithm 3, and that x∗ is the optimal
solution of (1.1) and F ∗ is the optimal objective value. For any k ≥ 0, one has x∗ ∈ B(ck, R

2
k) and

R2
k+1 ≤ (1−

√
αt)R2

k, and thus

‖x∗ − ck‖2 ≤ (1−
√
αt)kR2

0, and F (x+
k+1)− F ∗ ≤ α

2
(1−

√
αt)kR2

0. (3.4)

Note that when t = 1/β, (3.4) implies the linear convergence rate (1− 1/
√
κ).

Proof. We prove a stronger result by induction that for every k ≥ 0, one has

x∗ ∈ B
(
ck, R

2
k − 2(F (x+

k )− F ∗)/α
)
. (3.5)

Let y = x∗ in (3.1). We have ‖x∗−x++‖2 ≤ (1−αt)‖Gt(x)2‖/α2−2(F (x+)−F ∗)/α, implying

x∗ ∈ B
(
x++, ‖Gt(x)‖2(1− αt)/α2 − 2(F (x+)− F ∗)/α

)
. (3.6)

Setting x = x0 in (3.6) shows that (3.5) holds for k = 0. We now assume that (3.5) holds for some
k ≥ 0, and in the following we will prove that (3.5) holds for k + 1. Combining (3.5) and the first
inequality of (3.2) yields

x∗ ∈ B
(
ck, R

2
k − t‖Gt(xk+1)‖2/α− 2(F (x+

k+1)− F ∗)/α
)
. (3.7)

By setting x = xk+1 in (3.6), we obtain

x∗ ∈ B
(
x++
k+1, ‖Gt(xk+1)‖2(1− αt)/α2 − 2(F (x+

k+1)− F ∗)/α
)
. (3.8)

We now apply Lemma 2.1 to (3.7) and (3.8). Specifically, we set xB = x++
k+1, xA = ck, ε = αt,

rA = Rk, rB = ‖Gt(xk+1)‖/α, δ = 2
α (F (x+

k )− F ∗), and note that ‖xA − xB‖2 ≥ r2
B because of

the second inequality of (3.2). Then Lemma 2.1 indicates that there exists ck+1 such that

x∗ ∈ B
(
ck+1, (1− 1/

√
κ)R2

k − 2(F (x+
k+1)− F ∗)/α

)
, (3.9)

i.e., (3.5) holds for k + 1 with R2
k+1 ≤ (1−

√
αt)R2

k. Note that ck+1 is the center of the minimum
enclosing ball of the intersection of the two balls in (3.7) and (3.8), and can be computed in the
same way as Algorithm 1 of [1]. From (3.9) we obtain that ‖x∗ − ck+1‖2 ≤ (1 −

√
αt)R2

k ≤
(1−

√
αt)k+1R2

0. Moreover, (3.7) indicates that F (x+
k+1)− F ∗ ≤ α

2R
2
k ≤ α

2 (1−
√
αt)kR2

0.
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Algorithm 3 : GeoPG: geometric proximal gradient descent for convex composite minimization.
Require: Parameters α, β, initial point x0 and step size t ∈ (0, 1/β].

1: Set c0 = x++
0 , R2

0 = ‖Gt(x0)‖2(1− αt)/α2;
2: for k = 1, 2, . . . do
3: Use Algorithm 1 or 2 to find xk;
4: Set xA := x++

k = xk −Gt(xk)/α, and R2
A = ‖Gt(xk)‖2(1− αt)/α2;

5: Set xB := ck−1, and R2
B = R2

k−1 − 2(F (x+
k−1)− F (x+

k ))/α;
6: Compute B(ck, R

2
k): the minimum enclosing ball of B(xA, R

2
A) ∩B(xB , R

2
B), which can be

done using Algorithm 1 in [1];
7: end for

4 Practical Issues

4.1 GeoPG with Backtracking

In practice, the Lipschitz constant β may be unknown to us. In this subsection, we describe a
backtracking strategy for GeoPG in which β is not needed. From the β-smoothness of f , we have

f(x+) ≤ f(x)− t〈∇f(x), Gt(x)〉+ t‖Gt(x)‖2/2. (4.1)

Note that inequality (3.1) holds because of (4.1), which holds when t ∈ (0, 1/β]. If β is unknown,
we can perform backtracking on t such that (4.1) holds, which is a common practice for proximal
gradient method, e.g., [15–17]. Note that the key step in our analysis of GeoPG is to guarantee that
the two inequalities in (3.2) hold. According to Lemma 3.2, the second inequality in (3.2) holds as
long as we use Algorithm 1 or Algorithm 2 to find xk, and it does not need the knowledge of β.
However, the first inequality in (3.2) requires t ≤ 1/β, because its proof in Lemma 3.2 needs (3.1).
Thus, we need to perform backtracking on t until (4.1) is satisfied, and use the same t to find xk by
Algorithm 1 or Algorithm 2. Our GeoPG algorithm with backtracking (GeoPG-B) is described in
Algorithm 4.

Algorithm 4 : GeoPG with Backtracking (GeoPG-B)
Require: Parameters α, γ ∈ (0, 1), η ∈ (0, 1), initial step size t0 > 0 and initial point x0.

Repeat t0 := ηt0 until (4.1) holds for t = t0;

Set c0 = x++
0 , R2

0 =
‖Gt0(x0)‖2

α2
(1− αt0);

for k = 1, 2, . . . do
if no backtracking was performed in the (k − 1)-th iteration then

Set tk := tk−1/γ;
else

Set tk := tk−1;
end if
Compute xk by Algorithm 1 or Algorithm 2 with t = tk;
while f(x+

k ) > f(xk)− tk〈∇f(xk), Gtk(xk)〉+ tk
2 ‖Gtk(xk)‖2 do

Set tk := ηtk (backtracking);
Compute xk by Algorithm 1 or Algorithm 2 with t = tk;

end while
Set xA := x++

k = xk −Gtk(xk)/α, R2
A =

‖Gtk
(xk)‖2

α2 (1− αtk);
Set xB := ck−1, R2

B = R2
k−1 − 2

α (F (x+
k−1)− F (x+

k ));
Compute B(ck, R

2
k): the minimum enclosing ball of B(xA, R

2
A) ∩B(xB , R

2
B);

end for

Note that the sequence {tk} generated in Algorithm 4 is uniformly bounded away from 0. This is
because (4.1) always holds when tk ≤ 1/β. As a result, we know tk ≥ tmin := mini=0,...,k ti ≥ η/β.
It is easy to see that in the k-th iteration of Algorithm 4, x∗ is contained in two balls:

x∗ ∈ B
(
ck−1, R

2
k−1 − tk‖Gtk(xk)‖2/α− 2(F (x+

k )− F ∗)/α
)
,

x∗ ∈ B
(
x++
k , ‖Gtk(xk)‖2(1− αtk)/α2 − 2(F (x+

k )− F ∗)/α
)
.
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Therefore, we have the following convergence result for Algorithm 4, whose proof is similar to that
for Algorithm 3. We thus omit the proof for succinctness.

Theorem 4.1. Suppose that {(xk, ck, Rk, tk)} is generated by Algorithm 4. For any k ≥ 0, one
has x∗ ∈ B(ck, R

2
k) and R2

k+1 ≤ (1−
√
αtk)R2

k, and thus ‖x∗ − ck‖2 ≤
∏k
i=0(1−

√
αti)

iR2
0 ≤

(1−
√
αtmin)kR2

0.

4.2 GeoPG with Limited Memory

The basic idea of GeoD is that in each iteration we maintain two balls B(y1, r
2
1) and B(y2, r

2
2) that

both contain x∗, and then compute the minimum enclosing ball of their intersection, which is expected
to be smaller than both B(y1, r

2
1) and B(y2, r

2
2). One very intuitive idea that can possibly improve

the performance of GeoD is to maintain more balls from the past, because their intersection should be
smaller than the intersection of two balls. This idea has been proposed by [9] and [10]. Specifically,
Bubeck and Lee [9] suggested to keep all the balls from past iterations and then compute the minimum
enclosing ball of their intersection. For a given bounded set Q, the center of its minimum enclosing
ball is known as the Chebyshev center, and is defined as the solution to the following problem:

min
y

max
x∈Q
‖y − x‖2 = min

y
max
x∈Q
‖y‖2 − 2y>x+ Tr(xx>). (4.2)

(4.2) is not easy to solve for a general set Q. However, when Q := ∩mi=1B(yi, r
2
i ), Beck [18] proved

that the relaxed Chebyshev center (RCC) [19], which is a convex quadratic program, is equivalent to
(4.2) if m < n. Therefore, we can solve (4.2) by solving a convex quadratic program (RCC):

min
y

max
(x,4)∈Γ

‖y‖2−2y>x+Tr(4) = max
(x,4)∈Γ

min
y
‖y‖2−2y>x+Tr(4) = max

(x,4)∈Γ
−‖x‖2+Tr(4),

(4.3)
where Γ = {(x,4) : x ∈ Q,4 � xx>}. If Q = ∩mi=1B(ci, r

2
i ), then the dual of (4.3) is

min ‖Cλ‖2 −
m∑
i=1

λi‖ci‖2 +

m∑
i=1

λir
2
i , s.t.

m∑
i=1

λi = 1, λi ≥ 0, i = 1, . . . ,m, (4.4)

where C = [c1, . . . , cm] and λi, i = 1, 2, . . . ,m are the dual variables. Beck [18] proved that the
optimal solutions of (4.2) and (4.4) are linked by x∗ = Cλ∗ if m < n.

Now we can give our limited-memory GeoPG algorithm (L-GeoPG) as in Algorithm 5.

Algorithm 5 : L-GeoPG: Limited-memory GeoPG
Require: Parameters α, β, memory size m > 0 and initial point x0.

1: Set c0 = x++
0 , r2

0 = R2
0 = ‖Gt(x0)‖2(1− 1/κ)/α2, and t = 1/β;

2: for k = 1, 2, . . . do
3: Use Algorithm 1 or 2 to find xk;
4: Compute r2

k = ‖Gt(xk)‖2(1− 1/κ)/α2;
5: Compute B(ck, R

2
k): an enclosing ball of the intersection of B(ck−1, R

2
k−1) and Qk :=

∩ki=k−m+1B(x++
i , r2

i ) (if k ≤ m, then set Qk := ∩ki=1B(x++
i , r2

i )). This is done by setting
ck = Cλ∗, where λ∗ is the optimal solution of (4.4);

6: end for

Remark 4.2. Backtracking can also be incorporated into L-GeoPG. We denote the resulting algo-
rithm as L-GeoPG-B.

L-GeoPG has the same linear convergence rate as GeoPG, as we show in Theorem 4.3.

Theorem 4.3. Consider the L-GeoPG algorithm. For any k ≥ 0, one has x∗ ∈ B(ck, R
2
k) and

R2
k ≤ (1− 1/

√
κ)R2

k−1, and thus ‖x∗ − ck‖2 ≤ (1− 1/
√
κ)kR2

0.

Proof. Note that Qk := ∩ki=k−m+1B(x++
i , r2

i ) ⊂ B(x++
k , r2

k). Thus, the minimum enclosing ball
ofB(ck−1, R

2
k−1)∩B(x++

k , r2
k) is an enclosing ball ofB(ck−1, R

2
k−1)∩Qk. The proof then follows

from the proof of Theorem 3.5, and we omit it for brevity.
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5 Numerical Experiments

In this section, we compare our GeoPG algorithm with Nesterov’s accelerated proximal gradient
(APG) method for solving two nonsmooth problems: linear regression and logistic regression, both
with elastic net regularization. Because of the elastic net term, the strong convexity parameter α is
known. However, we assume that β is unknown, and implement backtracking for both GeoPG and
APG, i.e., we test GeoPG-B and APG-B (APG with backtracking). We do not target at comparing
with other efficient algorithms for solving these two problems. Our main purpose here is to illustrate
the performance of this new first-order method GeoPG. Further improvement of this algorithm and
comparison with other state-of-the-art methods will be a future research topic.

The initial points were set to zero. To obtain the optimal objective function value F ∗, we ran
APG-B and GeoPG-B for a sufficiently long time and the smaller function value returned by the two
algorithms is selected as F ∗. APG-B was terminated if (F (xk)− F ∗)/F ∗ ≤ tol, and GeoPG-B was
terminated if (F (x+

k )− F ∗)/F ∗ ≤ tol, where tol = 10−8 is the accuracy tolerance. The parameters
used in backtracking were set to η = 0.5 and γ = 0.9. In GeoPG-B, we used Algorithm 2 to find xk,
because we found that the performance of Algorithm 2 is slightly better than Algorithm 1 in practice.
In the experiments, we ran Algorithm 2 until the absolute value of φ̄ is smaller than 10−8. The code
was written in Matlab and run on a standard PC with 3.20 GHz I5 Intel microprocessor and 16GB of
memory. In all figures we reported, the x-axis denotes the CPU time (in seconds) and y-axis denotes
(F (x+

k )− F ∗)/F ∗.

5.1 Linear regression with elastic net regularization

In this subsection, we compare GeoPG-B and APG-B in terms of solving linear regression with
elastic net regularization, a popular problem in machine learning and statistics [20]:

min
x∈Rn

1

2p
‖Ax− b‖2 +

α

2
‖x‖2 + µ‖x‖1, (5.1)

where A ∈ Rp×n, b ∈ Rp, and α, µ > 0 are the weighting parameters.

We conducted tests on two real datasets downloaded from the LIBSVM repository: a9a, RCV1. The
results are reported in Figure 1. In particular, we tested α = 10−8 and µ = 10−3, 10−4, 10−5. Note
that since α is very small, the problems are very likely to be ill-conditioned. We see from Figure 1
that GeoPG-B is faster than APG-B on these real datasets, which indicates that GeoPG-B is preferable
than APG-B. In the supplementary material, we show more numerical results on varying α, which
further confirm that GeoPG-B is faster than APG-B when the problems are more ill-conditioned.
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Figure 1: GeoPG-B and APG-B for solving (5.1) with α = 10−8.

5.2 Logistic regression with elastic net regularization

In this subsection, we compare the performance of GeoPG-B and APG-B in terms of solving the
following logistic regression problem with elastic net regularization:

min
x∈Rn

1

p

p∑
i=1

log
(
1 + exp(−bi · a>i x)

)
+
α

2
‖x‖2 + µ‖x‖1, (5.2)

where ai ∈ Rn and bi ∈ {±1} are the feature vector and class label of the i-th sample, respectively,
and α, µ > 0 are the weighting parameters.
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We tested GeoPG-B and APG-B for solving (5.2) on the three real datasets a9a, RCV1 and Gisette
from LIBSVM, and the results are reported in Figure 2. In particular, we tested α = 10−8 and
µ = 10−3, 10−4, 10−5. Figure 2 shows that with the same µ, GeoPG-B is much faster than APG-B.
More numerical results are provided in the supplementary material, which also indicate that GeoPG-B
is much faster than APG-B, especially when the problems are more ill-conditioned.
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Figure 2: GeoPG-B and APG-B for solving (5.2) with α = 10−8. Left: dataset a9a; Middle: dataset
RCV1; Right: dataset Gisette.

5.3 Numerical results of L-GeoPG-B

In this subsection, we test GeoPG with limited memory described in Algorithm 5 in solving (5.2)
on the Gisette dataset. Since we still need to use the backtracking technique, we actually tested
L-GeoPG-B. The results with different memory sizes m are reported in Figure 3. Note that m = 0
corresponds to the original GeoPG-B without memory. The subproblem (4.4) is solved using the
function “quadprog” in Matlab. From Figure 3 we see that roughly speaking, L-GeoPG-B performs
better for larger memory sizes, and in most cases, the performance of L-GeoPG-B with m = 100
is the best among the reported results. This indicates that the limited-memory idea indeed helps
improve the performance of GeoPG.
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Figure 3: L-GeoPG-B for solving (5.2) on the dataset Gisette with α = 10−8. Left: µ = 10−3;
Middle: µ = 10−4; Right: µ = 10−5.

6 Conclusions

In this paper, we proposed a GeoPG algorithm for solving nonsmooth convex composite problems,
which is an extension of the recent method GeoD that can only handle smooth problems. We proved
that GeoPG enjoys the same optimal rate as Nesterov’s accelerated gradient method for solving
strongly convex problems. The backtracking technique was adopted to deal with the case when the
Lipschitz constant is unknown. Limited-memory GeoPG was also developed to improve the practical
performance of GeoPG. Numerical results on linear regression and logistic regression with elastic net
regularization demonstrated the efficiency of GeoPG. It would be interesting to see how to extend
GeoD and GeoPG to tackle non-strongly convex problems, and how to further accelerate the running
time of GeoPG. We leave these questions in future work.
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