Appendix

Proof of Theorem[I] Let us proceed with some algebraic manipulations. As the regularized loss

function is assumed to be of class C in a neighborhood of the solution, invoking Taylor’s theorem
notice that
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where ¢571(27) = 9105 (2") + (1 — ai71)Bx(2"\) for some 0 < a3 < 1. Hence, we can
sum both 51des up over j € [n] \ ¢ to get
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where sgf)él is defined in (7). Notice that by definition of 5)\(2”) and a)‘(z"\i), the left hand side
term in (I8d) is equal to —Vg/l(z;; Ox(z™)) and the right hand side term is zero. Then,

“Vol(zi;0x(z") = > Viwn_1(z;0a(z"\), A) (O (z") — B2 (z"\)) + €01 (19)
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Applying Taylor’s theorem on V3w, 1 (z;; Ox(2"\)), A) we get:
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By substituting (20) in (T9), using some algebraic manipulations, and noting the definition of Eij,f

in (8), we can get

~Vol(z:0x(:") = Y Vauwn-1(z30x(z") N (BAG") = Or (")) +eL,, @D

j€[n]\¢
where s( ) is defined in (6). Consequently,
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Note that Assumptlon E] implies that as n grows, the above inverse with high probability exists and
converges to H(6*)~! in probability. Further, the inverse is bounded in probability.

12



Finally, it is deduced from Assumptionthat [0x(2") = Ox(2"\)) [loe = 0p(1). On the other hand,

()

by noticing the definition of €}’ , we can see that

||€)\ln||oo _ Op (n||0>\(2”) . b\)\(zn\Z))Hio) =0p (nn/él\(zn) _ a)\(zn\l))noo) . (25)
Hence, considering (24),

1€ 1oe = 0p (192(=") = Ox ("))l ) - 26)
Now, considering (23), we deduce that
~ ~ ) 1
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Hence, ||s(>z)n|\Oo = O,(1/n) in (6). Thus, the error term is
) n\ (@) n 4
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and )
a n\i ~(4)
Br") = 83l = 0, (7). 9)
completing the proof. ]

Proof of Lemma 3] Notice that
Uzi58y (=) =E(z: 07 ("))
+V5 (et B(="))(85 (") — B ("))
+ OQIBA (") — Oa(z")|1%) (30)
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where (30) follows from Assumption and (31) follows from the definition of AO'E\I)(z”), and the
fact that

185 (") = Ox(2") oo < [B(=") — 8 (=")loo + [O2(=") — DA™ wo  (32)
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which 1mp11es ||0 >\( n) — 0>\ (z")||% = O,(1/n?). The proof is completed by noticing the defini-
tion of ACV »(2") in (TT). [ ]

Proof of Lemma [ By definition,
PR 1 ~ —
VoL n(0x(z")) + EVGI'(OA(Zn))A = VeW.n(0x(2")) = 0. (34)

Using the implicit function theorem, we can further differentiate the left-hand-side with respect to
A to get:

~ o~ ~ 1 ~ 1 ~ ~
V2L (Ox(2"))VaOA(2") + ~Vor(Bx(=")) + D AnVerm(Ox(z"))Vaba(z") = 0.

n
me[M]
(35)
Thus, )
Har (OA("),A) VABA(Z") = = Var(8x(=")), (36)
which completes the proof. ]
Proof of Corollary 5] This directly follows from Lemma 4] |
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