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Abstract

We propose a scalable algorithm for model selection in sigmoid belief networks
(SBNs), based on the factorized asymptotic Bayesian (FAB) framework. We derive
the corresponding generalized factorized information criterion (gFIC) for the SBN,
which is proven to be statistically consistent with the marginal log-likelihood. To
capture the dependencies within hidden variables in SBNs, a recognition network
is employed to model the variational distribution. The resulting algorithm, which
we call FABIA, can simultaneously execute both model selection and inference
by maximizing the lower bound of gFIC. On both synthetic and real data, our
experiments suggest that FABIA, when compared to state-of-the-art algorithms for
learning SBNs, (i) produces a more concise model, thus enabling faster testing; (ii)
improves predictive performance; (iii) accelerates convergence; and (iv) prevents
overfitting.

1 Introduction

The past decade has witnessed a dramatic increase in popularity of deep learning [20], stemming from
its state-of-the-art performance across many domains, including computer vision [19], reinforcement
learning [27], and speech recognition [15]. However, one important issue in deep learning is that
its performance is largely determined by the underlying model: a larger and deeper network tends
to possess more representational power, but at the cost of being more prone to overfitting [32],
and increased computation. The latter issue presents a challenge for deployment to devices with
constrained resources [2]. Inevitably, an appropriate model-selection method is required to achieve
good performance. Model selection is here the task of selecting the number of layers and the number
of nodes in each layer.

Despite the rapid advancement in performance of deep models, little work has been done to address
the problem of model selection. As a basic approach, cross-validation selects a model according
to a validation score. However, this is not scalable, as its complexity is exponential with respect to
the number of layers in the network: O(JLMAX

MAX ), where JMAX and LMAX represent the maximum
allowed numbers of nodes in each layer and number of layers, respectively. In Alvarez and Salzmann
[2], a constrained optimization approach was proposed to infer the number of nodes in convolutional
neural networks (CNNs); the key idea is to incorporate a sparse group Lasso penalty term to shrink
all edges flowing into a node. Based on the shrinkage mechanism of the truncated gamma-negative
binomial process, Zhou et al. [36] showed that the number of nodes in Poisson gamma belief networks
(PGBNs) can be learned. Furthermore, we empirically observe that the shrinkage priors employed
in Gan et al. [11], Henao et al. [14], Song et al. [31] can potentially perform model selection in
certain tasks, even though this was not explicitly discussed in those works. One common problem for
these approaches, however, is that the hyperparameters need to be tuned in order to achieve good
performance, which may be time-consuming for some applications involving deep networks.

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.



The factorized asymptotic Bayesian (FAB) approach has recently been shown as a scalable model-
selection framework for latent variable models. Originally proposed for mixture models [9], it was
later extended to the hidden Markov model (HMM) [8], latent feature model (LFM) [12], and
relational model [22]. By maximizing the approximate marginal log-likelihood, FAB introduces an
`0 regularization term on latent variables, which can automatically estimate the model structure by
eliminating irrelevant latent features through an expectation maximization [7] (EM)-like alternating
optimization, with low computational cost.

Figure 1: Requirement for removal of nodes in (Left)
SBN and (Right) FNN (dashed circles denote nodes
that can be removed). Note that a node in the SBN
can be removed only if all of its connected edges
shrink. For FNN, shrinkage of all incoming edges
eliminates a node.

We develop here a scalable model selection
algorithm within the FAB framework to in-
fer the size of SBNs [28], a popular compo-
nent of deep models, e.g., deep belief net-
works (DBN) [16] and deep Poisson factor
analysis (DPFA) [10], and we assume here
the depth of the SBN is fixed. Since the
mean-field assumption used in FAB does not
hold in SBNs, we employ a recognition net-
work [18, 29, 25, 26] to represent the varia-
tional distribution. As our method combines
the advantages of FAB Inference and Auto-
encoding variational Bayesian (VB) frame-
works, we term it as FABIA. To handle large
datasets, we also derive a scalable version
of FABIA with mini-batches. As opposed to
previous works, which predefine the SBN size [28, 30, 25, 5, 11, 6, 31, 26], FABIA determines it
automatically.

It should be noted that model selection in SBNs is more challenging than CNNs and feedforward
neural networks (FNNs). As shown in Figure 1, simply imposing a sparsity prior or a group sparsity
prior as employed in CNNs [2] and SBNs [11, 14, 31] does not necessarily shrink a node in SBN,
since such approaches cannot guarantee to shrink all edges connected to a node.

FABIA possesses the following distinguishing features: (i) a theoretical guarantee that its objective
function, the generalized factorized information criterion (gFIC), is statistically consistent with
the model’s marginal log-likelihood; and (ii) prevention of overfitting in large networks when the
amount of training data is not sufficiently large, thanks to an intrinsic shrinkage mechanism. We
also detail that FABIA has important connections with previous work on model regularization,
such as Dropout [32], Dropconnect [35], shrinkage priors [11, 36, 14, 31], and automatic relevance
determination (ARD) [34].

2 Background

An SBN is a directed graphical model for which the distribution of each layer is determined by the
preceding layer via the sigmoid function, defined as σ(x) , 1/[1 + exp(−x)]. Let h(l) denote the
lth hidden layer with Jl units, and v represent the visible layer with M units. The generative model
of the SBN, with L hidden layers, is represented as

p(h(L)|b) =

JL∏
i=1

[σ(bi)]
h
(L)
i [σ(−bi)]1−h

(L)
i , p(h(l)|h(l+1)) =

Jl∏
i=1

[σ(ψ
(l)
i )]h

(l)
i [σ(−ψ(l)

i )]1−h
(l)
i

where l = 1, . . . , L−1, ψ(l)
i = W

(l)
i· h

(l+1)+c
(l)
i , and b corresponds to prior parameters; the notation

i· means the ith row of a matrix. For the link function of the visible layer, i.e., p(v|h(1)), we use the
sigmoid function for binary data and the multinomial function for count data, as in Mnih and Gregor
[25], Carlson et al. [6].

One difficulty of learning SBNs is the evaluation of the expectation with respect to the posterior
distribution of hidden variables [31]. In Mnih and Gregor [25], a recognition network under the varia-
tional auto-encoding (VAE) framework [18] was proposed to approximate this intractable expectation.
Compared with the Gibbs sampler employed in Gan et al. [11], Carlson et al. [6], Song et al. [31], the
recognition network enables fast sampling of hidden variables in blocks. The variational parameters in
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the recognition network can be learned via stochastic gradient descent (SGD), as shown in the neural
variational inference and learning (NVIL) algorithm [25], for which multiple variance reduction
techniques have been proposed to obtain better gradient estimates. Note that all previous work on
learning SBNs assumes that a model with a fixed number of nodes in each layer has been provided.

To select a model for an SBN, we follow the FAB framework [9], which infers the structure of a
latent variable model by Bayesian inference. Let θ = {W, b, c} denote the model parameters andM
be the model, with the goal in the FAB framework being to obtain the following maximum-likelihood
(ML) estimate:

M̂ML = arg max
M

N∑
n=1

ln p(vn|M) = arg max
M

N∑
n=1

ln
∑
hn

∫
p(vn,hn|θ)p(θ|M) dθ (1)

As a key feature of the FAB framework, the `0 penalty term on hn induced by approximating (1)
can remove irrelevant latent variables from the model (“shrinkage mechanism"). In practice, we
can start from a large model and gradually reduce its size through this “shrinkage mechanism" until
convergence.

Although a larger model has more representational capacity, a smaller model with similar predictive
performance is preferred in practice, given a computational budget. A smaller model also enables
faster testing, a desirable property in many machine learning tasks. Furthermore, a smaller model
implies more robustness to overfitting, a common danger in deeper and larger models with insufficient
training data.

Since the integration in (1) is in general intractable, Laplace’s method [23] is employed in FAB
inference for approximation. Consequently, gFIC can be derived as a surrogate function of the
marginal log-likelihood. By maximizing the variational lower bound of gFIC, one obtains estimates
of both parameters and the underlying model size. Note that while FAB inference uses the mean-field
approximation for the variational distribution [9, 8, 22, 21], the same does not hold for SBNs, due to
the correlation within hidden variables given the data. In contrast, the recognition network has been
designed to approximate the posterior distribution of hidden variables with more fidelity [18, 29, 25].
Therefore, it can be a better candidate for the variational distribution in our task.

3 The FABIA Algorithm

3.1 gFIC for SBN

Following the FAB inference approach, we first lower bound the marginal log-likelihood in (1) via a
variational distribution q(h|φ) as 1

ln
∑
hn

∫
p(vn,hn|θ)p(θ|M) dθ ≥

∑
hn

q(hn|φ) ln

[∫
p(vn,hn|θ) p(θ|M) dθ

q(hn|φ)

]
.

By applying Laplace’s method [23], we obtain

ln p(v,h|M) =
Dθ

2
ln(

2π

N
) +

N∑
n=1

ln p(vn,hn|θ̂) + ln p(θ̂|M)− 1

2

M∑
m=1

ln |Ψm|+O(1) (2)

where Dθ refers to the dimension of θ, θ̂ represents the ML estimate of θ, and Ψm represents the
negative Hessian of the log-likelihood with respect to Wm·.

Since ln |Ψm| in (2) cannot be represented with an analytical form, we must approximate it first,
for the purpose of efficient optimization of the marginal log-likelihood. Following the gFIC [13]
approach, we propose performing model selection in SBNs by introducing the shrinkage mechanism
from this approximation. We start by providing the following assumptions, which are useful in the
proof of our main theoretical results in Theorem 1.

Assumption 1. The matrix
∑N

n=1 ηn h
T
n hn has full rank with probability 1 as N → ∞, where

ηn ∈ (0, 1).
1For derivation clarity, we assume only one hidden layer and drop the bias term in the SBN
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Note that this full-rank assumption implies that the SBN can preserve information in the large-sample
limit, based on the degeneration analysis of gFIC [13].
Assumption 2. hn,j ,∀j is generated from a Bernoulli distribution as hn,j ∼ Ber(τj), where τj > 0.

Theorem 1. As N →∞, ln |Ψm| can be represented with the following equality:

ln |Ψm| =
∑
j

(
ln
∑
n

hn,j − lnN
)

+O(1) (3)

Proof. We first compute the negative Hessian as

Ψm = − 1

N

∂

∂WT
m· ∂Wm·

∑
n

ln p(vn,hn|θ) =
1

N

∑
n

σ(Wm·hn)σ(−Wm·hn)hT
n hn.

From Assumption 1, Ψm has full rank, since σ(x) ∈ (0, 1),∀x ∈ R. Furthermore, the determinant
of Ψm is bounded, since Ψm

ij ∈ (0, 1),∀i, j. Next, we define the following diagonal matrix

Λ , diag
[(

(
∑

n hn,1)

N

)
, . . . ,

(
(
∑

n hn,J)

N

)]
.

From Assumption 2, limN→∞ Pr[
∑

n hn,j = 0] = 0,∀j. Therefore, Λ is full-rank and its determi-
nant is bounded, when N →∞. Subsequently, we can decompose it as

Ψm = ΛF (4)
where F also has full rank and bounded determinant. Finally, applying the log determinant operator
to the right side of (4) leads to our conclusion.

To obtain the gFIC for SBN, we first follow the previous FAB approaches [9, 12, 22] to assume
the log-prior of θ to be constant with respect to N , i.e., limN→∞

ln p(θ|M)
N = 0. We then apply

Theorem 1 to (2) and have

gFICSBN = max
q

Eq

[
− M

2

∑
j

(
ln
∑
n

hn,j

)
+

N∑
n=1

ln p(vn,hn|θ̂) +
MJ −Dθ

2
lnN

]
+H(q)

(5)
where H(q) is the entropy for the variational distribution q(h).

As a key quantity in (5), M
2

∑
j(ln

∑
n hn,j) can be viewed as a regularizer over the model to

execute model selection. This term directly operates on hidden nodes to perform shrinkage, which
distinguishes our approach from previous work [11, 14, 31], where sparsity priors are assigned over
edges. As illustrated in Figure 1, these earlier approaches do not necessarily shrink hidden nodes, as
setting up a prior or a penalty term to shrink all edges connected to a node is very challenging in SBNs.
Furthermore, the introduction of this quantity does not bring any cost of tuning parameters with cross-
validation. In contrast, the Lagrange parameter in Alvarez and Salzmann [2] and hyperparameters for
priors in Gan et al. [11], Henao et al. [14], Zhou et al. [36], Song et al. [31] all need to be properly
set, which may be time-consuming in certain applications involving deep and large networks.

Under the same regularity conditions as Hayashi and Fujimaki [12], gFICSBN is statistically consistent
with the marginal log-likelihood, an important property of the FAB framework.
Corollary 1. As N →∞, ln p(v|M) = gFICSBN +O(1).

Proof. The conclusion holds as a direct extension of the consistency results in Hayashi and Fujimaki
[12].

3.2 Optimization of gFIC

The gFICSBN in (5) cannot be directly optimized, because (i) the ML estimator θ̂ is in general not
available, and (ii) evaluation of the expectation over hidden variables is computationally expensive.
Instead, the proposed FABIA algorithm optimizes the lower bound as

gFICSBN ≥ −
M

2

∑
j

[
ln
∑
n

Eq(hn,j)
]

+

N∑
n=1

Eq

[
ln p(vn,hn|θ)

]
+H(q) (6)
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where we use the following facts to get the lower bound: (i) p(vn,hn|θ̂) ≥ p(vn,hn|θ),∀θ; (ii)
the concavity of the logarithm function; (iii) Dθ ≤ MJ ; and (iv) the maximum of all possible
variational distributions q in (5).

This leaves the choice of the form of the variational distribution. We could use the mean-field
approximation as in previous FAB approaches [9, 8, 12, 13, 22, 21]. However, this approximation
fails to capture the dependencies between hidden variables in SBN, as discussed in Song et al. [31].

Instead, we follow the recent auto-encoding VB approach [18, 29, 25, 26] to model the variational
distribution with a recognition network, which maps vn to q(hn|vn,φ). Specifically, q(hn|vn,φ) =∏J

j=1 q(hn,j |vn,φ) =
∏J

j=1 Ber[σ(φj·vn)], where φ ∈ RJ×M parameterizes the recognition
network. Not only does using a recognition network allow us to more accurately model the variational
distribution, it also enables faster sampling of hidden variables.

The optimization of the lower bound in (6) can be executed via SGD; we use the Adam algorithm [17]
as our optimizer. To reduce gradient variance, we employ the NVIL algorithm to estimate gradients
in both generative and recognition networks. We also note that other methods, such as the importance-
sampled objectives method [5, 26, 24], can be used and such an extension is left for future work.

Since M
2

∑
j

[
ln
∑

n Eq(hn,j)
]

in (6) is only dependent on q, gradients of the generative model in
our FABIA algorithm and NVIL should be the same. However, gradients of the recognition network
in FABIA are regularized to shrink the model, which is lacking in the standard VAE framework.

We note that FABIA is a flexible framework, as its shrinkage term can be combined with any gradient-
based variational auto-encoding methods to perform model selection, where only minimal changes to
the gradients of the recognition network of the original methods are necessary.

A node j at level l will be removed from the model if it satisfies 1
N

∑N
n=1 Eq(h

(l)
n,j) ≤ ε(l), where

ε(l) is a threshold parameter to control the model size. This criterion has an intuitive interpretation
that a node should be removed if the proportion of its samples equaling 1 is small. When the
expectation is not exact, such as in the top layers, we use samples drawn from the recognition network
to approximate it.

3.3 Minibatch gFIC

To handle large datasets, we adapt the gFICSBN developed in (5) to use minibatches (which is also
appropriate for online learning). Suppose that each mini-batch contains Nmini data points, and
currently we have seen T mini-batches, an unbiased estimator for (5) (up to constant terms) is then

˜gFICSBN = max
q

Eq

[
− M

2

∑
j

ln
(Nmini∑

i=1

hi+NT ,j

)
+ T

Nmini∑
i=1

ln
p(vi+NT

,hi+NT
|θ̂)

q(hi+NT
|φ)

+
MJ −Dθ

2
lnNT+1

]
(7)

where NT = (T − 1)Nmini. Derivation details are provided in Supplemental Materials.

An interesting observation in (7) is that ˜gFICSBN can automatically adjust shrinkage over time: At the
beginning of the optimization, i.e., when T is small, the shrinkage term M

2

∑
j ln(

∑Nmini

i=1 hi+NT ,j)
is more dominant in (7). As T becomes larger, the model is more stable and shrinkage gradually
disappears. This phenomenon is also observed in our experiments in Section 5.

3.4 Computational complexity

The NVIL algorithm has complexity O(MJNtrain) for computing gradients in both the generative
model and recognition network. FABIA needs an extra model selection step, also with complexity
O(MJNtrain) per step. As the number of training iteration increases, the additional cost to perform
model selection is offset by the reduction of time when computing gradients, as observed in Figure 3.
In test, the complexity is O(MJNtestK) per step, with K being the number of samples taken to
compute the variational lower bound. Therefore, shrinkage of nodes can linearly reduce the testing
time.
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4 Related Work

Dropout As a standard approach to regularize deep models, Dropout [32] randomly removes a
certain number of hidden units during training. Note that FABIA shares this important characteristic
by directly operating on nodes, instead of edges, to regularize the model, which has a more direct
connection with model selection. One important difference is that in each training iteration, Dropout
updates only a subset of the model; in contrast, FABIA updates every parameter in the model, which
enables faster convergence.

Shrinkage prior The shrinkage sparsity-inducing approach aims to shrink edges in a model, by
employing either shrinkage priors [11, 14, 36, 31] or a random mask [35] on the weight matrix. In
FABIA, the penalty term derived in gFIC of (5) also has the shrinkage property, but the shrinkage
effect is instead imposed on the nodes. Furthermore, shrinkage priors are usually approached from the
Bayesian framework, where Markov chain Monte Carlo (MCMC) is often needed for inference. In
contrast, FABIA integrates the shrinkage mechanism from gFIC into the auto-encoding VB approach
and thus is scalable to large deep models.

Group Sparsity Application of group sparsity can be viewed as an extension of the shrinkage prior,
with the key idea being to enforce sparsity on entire rows (columns) of the weight matrix [2]. This
corresponds to the ARD prior [34] where each row (column) has an individual hyperparameter. In
FNNs and CNNs, this is equivalent to node shrinkage in FABIA for SBNs. The structure of SBNs
precludes a direct application of the group sparsity approach for model selection, but there exists an
interesting opportunity for future work to extend FABIA to FNNs and CNNs.

Nonparametric Prior In Adams et al. [1], a cascading Indian buffet process (IBP) based approach
was proposed to infer the structure of the Gaussian belief network with continuous hidden units,
for which the inference was performed via MCMC. By employing the nonparametric properties
of the IBP prior, this approach can adjust the model size with observations. Due to the high
computational cost of MCMC, however, it may not be scalable to large problems.

5 Experiments

We test the proposed FABIA algorithm on synthetic data, as well as real image and count data. For
comparison, we use the NVIL algorithm [25] as a baseline method, which does not have the model
selection procedure. Both FABIA and NVIL are implemented in Theano [4] and tested on a machine
with 3.0GHz CPU and 64GB RAM. The learning rate in Adam is set to be 0.001 and we follow the
default settings of other parameters in all of our experiments. We set the threshold parameter ε(l) to be
0.001, ∀l unless otherwise stated. We also tested Dropout but did not notice any clear improvement.
The purpose of these experiments is to show that FABIA can automatically learn the model size, and
achieve better or competitive performance with a more compact model.

5.1 Synthetic Dataset

The synthetic data are generated from a one-layer SBN and a two-layer SBN, with M = 30 visible
units in both cases. We simulate 1250 data points, and then follow an 80/20% split to obtain the
training and test sets. For the one-layer case, we employ a true model with 5 nodes and initialize
FABIA and NVIL with 25 nodes. For the two-layer case, the true network has the structure of 10-5 2,
and we initialize FABIA and NVIL with a network of 25-15. We compare the inferred SBN structure
and test log-likelihood for FABIA, the NVIL algorithm initialized with the same model size as FABIA
(denoted as “NVIL"), and the NVIL algorithm initialized with the true model size (denoted as “NVIL
(True)”). One hundred independent random trials are conducted to report statistics.

Figure 2(a) shows the mean and standard deviation of the number of nodes inferred by FABIA, as a
function of iteration number. In both one- and two-layer cases, the mean of the inferred model size
is very close to the ground truth. In Figure 2(b), we compare the convergence in terms of the test
log-likelihood for different algorithms: FABIA has almost the same convergence speed as NVIL with

2We list the number of nodes in the deeper layer first in all of our experiments.
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Figure 2: (a) Inferred number of nodes from FABIA in (Left) one- and (Right) two-layer cases; (b)
Test log-likelihood for different methods in (Left) one- and (Right) two-layer cases.

the true model, both of which have remarkable gaps over the NVIL variant initialized with the same
model size as FABIA.

5.2 Image Modeling

We use the publicly available MNIST dataset, which contains 60, 000 training and 10, 000 test images
of size 28× 28. Our performance metric is the variational lower bound of the test log-likelihood. The
mini-batches for FABIA and NVIL are set to 100. For this dataset we compared FABIA with the VB
approach in Gan et al. [11] and Rec-MCEM in Song et al. [31]. The VB approach in Gan et al. [11] can
potentially shrink nodes, due to the three parameter beta-normal (TPBN) prior [3]. We claim a node
h
(l)
j can be removed from the model, if its adjacent weight matrices satisfy

∑
k[W

(l)
k,j ]

2/J (l−1) <

10−8 and
∑

k[W
(l+1)
j,k ]2/J (l+1) < 10−8. We run the code provided in https://github.com/

zhegan27/dsbn_aistats2015 and use default parameter settings to report the VB results. We
also implemented the Rec-MCEM approach but only observed shrinkage of edges, not nodes.

Table 1: Model size, test variational lower bound
(VLB) (in nats), and test time (in seconds) on the
MNIST dataset. Note that FABIA and VB start from
the same model size as NVIL and Rec-MCEM.

Method Size VLB Time

VB 81 -117.04 8.94
Rec-MCEM 200 -116.70 8.52
NVIL 200 -115.63 8.47
FABIA 107 −114.96 6.88

VB 200-11 -113.69 22.37
Rec-MCEM 200-200 -106.54 12.25
NVIL 200-200 -105.62 12.34
FABIA 135-93 −104.92 9.18

NVIL 200-200-200 -101.99 15.66
FABIA 136-77-72 −101.14 10.97

Table 1 shows the variational lower bound of
the test log-likelihood, model size, and test
time for different algorithms. FABIA achieves
the highest test log-likelihood in all cases and
converges to smaller models, compared to
NVIL. FABIA also benefits from its more
compact model to have the smallest test time.
Furthermore, we observe that VB always over-
shrinks nodes in the top layer, which might
be related to the settings of hyperparameters.
Unlike VB, FABIA avoids the difficult task of
tuning hyperparameters to balance predictive
performance and model size. We also notice
that the deeper layer in the two-layer model
did not shrink in VB, as our experiments sug-
gest that all nodes in the deeper layer still have
connections with nodes in adjacent layers.

Figure 3 shows the variational lower bound of
the test log-likelihood and number of nodes in FABIA, as a function of CPU time, for different initial
model sizes. Additional plots as a function of the number of iterations are provided in Supplemental
Materials, which are similar to Figure 3. We note that FABIA initially has a similar log-likelihood
that gradually outperforms NVIL, which can be explained by the fact that FABIA initially needs
additional time to perform the shrinkage step but later converges to a smaller and better model. This
gap becomes more obvious when we increase the number of hidden units from 200 to 500. The
deteriorating performance of NVIL is most likely due to overfitting. In contrast, FABIA is robust to
the change of the initial model size.
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Figure 3: Test log-likelihood and the number of nodes in FABIA, as a function of CPU time on the
MNIST dataset, for an SBN with initial size as (a) 200-200-200 (b) 500-500-500.

5.3 Topic Modeling

The two benchmarks we used for topic modeling are Reuters Corpus Volume I (RCV1) and Wikipedia,
as in Gan et al. [10], Henao et al. [14]. RCV1 contains 794,414 training and 10,000 testing documents,
with a vocabulary size of 10,000. Wikipedia is composed of 9,986,051 training documents, 1,000 test
documents, and 7,702 words. The performance metric we use is the predictive perplexity on the test
set, which cannot be directly evaluated. Instead, we follow the approach of 80/20% split on the test
set, with details provided in Gan et al. [10].

We compare FABIA against DPFA [10], deep Poisson factor modeling (DPFM) [14], MCEM [31],
Over-RSM [33], and NVIL. For both FABIA and NVIL, we use a mini-batch of 200 documents. The
results for other methods are cited from corresponding references. We test DPFA and DPFM with
the publicly available code provided by the authors; however, no shrinkage of nodes are observed in
our experiments.

Table 2 shows the perplexities of different algorithms on the RCV1 and Wikipedia datasets, respec-
tively. Both FABIA and NVIL outperform other methods with marked margins.
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Figure 4: Test perplexities as a function of number
of nodes in the first layer, in the two-layer case.

Interestingly, we note that FABIA does not
shrink any nodes in the first layer, which is likely
due to the fact that these two datasets have a
large number of visible units and thus a suffi-
ciently large first hidden layer is necessary. This
requirement of a large first hidden layer to prop-
erly model the data may also explain why NVIL
does not overfit on these datasets as much as it
does on MNIST; the training set of these datasets
being sufficiently large is another possible ex-
planation. We also computed test time but did
not observe any clear improvement of FABIA
over NVIL, which may be explained by the fact
that most of the computation is spent on the first
layer in these two benchmarks.

In Figure 4, we vary the number of hidden units
in the first layer and fix the number of nodes

in other layers to be 400. We use early stopping for NVIL to prevent it from overfitting with
larger networks. For the networks with 100 and 400 nodes in the first layer, FABIA and NVIL
have roughly the same perplexities. Once the number of nodes is increased to 1000, FABIA starts
to outperform NVIL with remarkable gaps, which implies that FABIA can handle the overfitting
problem, as a consequence of its shrinkage mechanism for model selection. We also observed that
setting a larger ε(1) for the first layer in the 2000 units case for FABIA can stabilize its performance;
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Table 2: Test perplexities and model size on the benchmarks. FABIA starts from a model initialized
with 400 hidden units in each layer.

RCV1 Wikipedia
Size Perplexity Size Perplexity

Over-RSM 128 1060 - -
MCEM 128 1023 - -
DPFA-SBN 1024-512-256 964 1024-512-256 770
DPFA-RBM 128-64-32 920 128-64-32 942
DPFM 128-64 908 128-64 783
NVIL 400-400 857 400-400 735
FABIA 400-156 856 400-151 730

we choose this value by cross-validation. The results for three layers are similar and are included in
Supplemental Materials.

6 Conclusion and Future Work

We develop an automatic method to select the number of hidden units in SBNs. The proposed
gFIC criterion is proven to be statistically consistent with the model’s marginal log-likelihood. By
maximizing gFIC, the FABIA algorithm can simultaneously execute model selection and inference
tasks. Furthermore, we show that FABIA is a flexible framework that can be combined with auto-
encoding VB approaches. Our experiments on various datasets suggest that FABIA can effectively
select a more-compact model and achieve better held-out performance. Our future work will be to
extend FABIA to importance-sampling-based VAEs [5, 26, 24]. We also aim to explicitly select
the number of layers in SBNs, and to tackle other popular deep models, such as CNNs and FNNs.
Finally, investigating the effect of FABIA’s shrinkage mechanism on the gradient noise is another
interesting direction.
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