
Efficient Online Linear Optimization
with Approximation Algorithms

Dan Garber
Technion - Israel Institute of Technology

dangar@technion.ac.il

Abstract

We revisit the problem of online linear optimization in case the set of feasible ac-
tions is accessible through an approximated linear optimization oracle with a factor
α multiplicative approximation guarantee. This setting is in particular interesting
since it captures natural online extensions of well-studied offline linear optimiza-
tion problems which are NP-hard, yet admit efficient approximation algorithms.
The goal here is to minimize the α-regret which is the natural extension of the
standard regret in online learning to this setting. We present new algorithms with
significantly improved oracle complexity for both the full information and bandit
variants of the problem. Mainly, for both variants, we present α-regret bounds of
O(T−1/3), were T is the number of prediction rounds, using only O(log(T)) calls
to the approximation oracle per iteration, on average. These are the first results to
obtain both average oracle complexity of O(log(T)) (or even poly-logarithmic in
T) and α-regret bound O(T−c) for a constant c > 0, for both variants.

1 Introduction

In this paper we revisit the problem of Online Linear Optimization (OLO) [14], which is a specialized
case of Online Convex Optimization (OCO) [12] with linear loss functions, in case the feasible set of
actions is accessible through an oracle for approximated linear optimization with a multiplicative
approximation error guarantee. In the standard setting of OLO, a decision maker is repeatedly
required to choose an action, a vector in some fixed feasible set in Rd. After choosing his action,
the decision maker incurs loss (or payoff) given by the inner product between his selected vector
and a vector chosen by an adversary. This game between the decision maker and the adversary then
repeats itself. In the full information variant of the problem, after the decision maker receives his
loss (payoff) on a certain round, he gets to observe the vector chosen by the adversary. In the bandit
version of the problem, the decision maker only observes his loss (payoff) and does not get to observe
the adversary’s vector. The standard goal of the decision maker in OLO is to minimize a quantity
known as regret, which measures the difference between the average loss of the decision maker on
a game of T consecutive rounds (where T is fixed and known in advance), and the average loss
of the best feasible action in hindsight (i.e., chosen with knowledge of all actions of the adversary
throughout the T rounds) (in case of payoffs this difference is reversed). The main concern when
designing algorithms for choosing the actions of the decision maker, is guaranteeing that the regret
goes to zero as the length of the game T increases, as fast as possible (i.e., the rate of the regret in
terms of T). It should be noted that in this paper we focus on the case in which the adversary is
oblivious (a.k.a. non-adaptive), which means the adversary chooses his entire sequence of actions for
the T rounds beforehand.

While there exist well known algorithms for choosing the decision maker’s actions which guarantee
optimal regret bounds in T , such as the celebrated Follow the Perturbed Leader (FPL) and Online
Gradient Descent (OGD) algorithms [14, 17, 12], efficient implementation of these algorithms hinges

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.

on the ability to efficiently solve certain convex optimization problems (e.g., linear minimization
for FPL or Euclidean projection for OGD) over the feasible set (or the convex hull of feasible
points). However, when the feasible set corresponds for instance to the set of all possible solutions
to some NP-Hard optimization problem, no such efficient implementations are known (or even
widely believed to exist), and thus these celebrated regret-minimizing procedures cannot be efficiently
applied. Luckily, many NP-Hard linear optimization problems (i.e., the objective function to either
minimize or maximize is linear) admit efficient approximation algorithms with a multiplicative
approximation guarantee. Some examples include MAX-CUT (factor 0.87856 approximation due to
[9]) , METRIC TSP (factor 1.5 approximation due to [6]), MINIMUM WEIGHTED VERTEX COVER
(factor 2 approximation [4]), and WEIGHTED SET COVER (factor (log n+ 1) approximation due to
[7]). It is thus natural to ask wether an efficient factor α approximation algorithm for an NP-Hard
offline linear optimization problem could be used to construct, in a generic way, an efficient algorithm
for the online version of the problem. Note that in this case, even efficiently computing the best fixed
action in hindsight is not possible, and thus, minimizing regret via an efficient algorithm does not
seem likely (given an approximation algorithm we can however compute in hindsight a decision
that corresponds to at most (at least) α times the average loss (payoff) of the best fixed decision in
hindsight).

In their paper [13], Kakade, Kalai and Ligett were the first to address this question in a fully generic
way. They showed that using only an α-approximation oracle for the set of feasible actions, it
is possible, at a high level, to construct an online algorithm which achieves vanishing (expected)
α-regret, which is the difference between the average loss of the decision maker and α times the
average loss of the best fixed point in hindsight (for loss minimization problems and α ≥ 1; a
corresponding definition exists for payoff maximization problems and α < 1). Concretely, [13]
showed that one can guarantee O(T−1/2) expected α-regret in the full-information setting, which is
optimal, and O(T−1/3) in the bandit setting under the additional assumption of the availability of a
Barycentric Spanner (which we discuss in the sequel).

While the algorithm in [13] achieves an optimal α-regret bound (in terms of T) for the full information
setting, in terms of computational complexity, the algorithm requires, in worst case, to perform on
each round O(T) calls to the approximation oracle, which might be prohibitive and render the
algorithm inefficient, since as discussed, in general, T is assumed to grow to infinity and thus the
dependence of the runtime on T is of primary interest. Similarly, their algorithm for the bandit setting
requires O(T 2/3) calls to the approximation oracle per iteration.

The main contribution of our work is in providing new low α-regret algorithms for the full information
and bandit settings with significantly improved oracle complexities. A detailed comparison with [13]
is given in Table 1. Concretely, for the full-information setting, we show it is possible to achieve
O(T−1/3) expected α-regret using only O(log(T)) calls to the approximation oracle per iteration,
on average, which significantly improves over the O(T) bound of [13]1. We also show a bound
of O(T−1/2) on the expected α-regret (which is optimal) using only O(

√
T log(T)) calls to the

oracle per iteration, on average, which gives nearly quadratic improvement over [13]. In the bandit
setting we show it is possible to obtain a O(T−1/3) bound on the expected α-regret (same as in [13])
using only O(log(T)) calls to the oracle per iteration, on average, under the same assumption on the
availability of a Barycentric Spanner (BS). It is important to note that while there exist algorithms
for OLO with bandit feedback which guarantee Õ(T−1/2) expected regret [1, 11] (where the Õ(·)
hides poly-logarithmic factors in T), these require on each iteration to either solve to arbitrarily small
accuracy a convex optimization problem over the feasible set [1], or sample a point from the feasible
set according to a specified distribution [11], both of which cannot be implemented efficiently in our
setting. On the other-hand, as we formally show in the sequel, at a high level, using a BS (originally
introduced in [2]) simply requires to find a single set of d points from the feasible set which span the
entire space Rd (assuming this is possible, otherwise the set could be mapped to a lower dimensional
space). The process of finding these vectors can be viewed as a preprocessing step and thus can be
carried out offline. Moreover, as discussed in [13], for many NP-Hard problems it is possible to
compute a BS in polynomial time and thus even this preprocessing step is efficient. Importantly, [13]
shows that the approximation oracle by itself is not strong enough to guarantee non-trivial α-regret in
the bandit setting, and hence this assumption on the availability of a BS seems reasonable. Since the

1as we show in the appendix, even if we relax the algorithm of [13] to only guarantee O(T−1/3) α-regret, it
will still require O(T 2/3) calls to the oracle per iteration, on average.

2

full information bandit information
Reference α− regret oracle complexity α− regret oracle complexity
KKL [13] T−1/2 T T−1/3 T 2/3

This paper (Thm. 4.1, 4.2) T−1/3 log(T) T−1/3 log(T)

This paper (Thm. 4.1) T−1/2
√
T log(T) - -

Table 1: comparison of expected α− regret bounds and average number of calls to the approximation
oracle per iteration. In all bounds we give only the dependence on the length of the game T and
omit all other dependencies which we treat as constants. In the bandit setting we report the expected
number of calls to the oracle per iteration.

best general regret bound known using a BS is O(T−1/3), the α-regret bound of our bandit algorithm
is the best achievable to date via an efficient algorithm.

Technically, the main challenge in the considered setting is that as discussed, we cannot readily apply
standard tools such as FPL and OGD. At a high level, in [13] it was shown that it is possible to
apply the OGD method by replacing the exact projection step of OGD with an iterative algorithm
which finds an infeasible point, but one that both satisfies the projection property required by OGD
and is dominated by a convex combination of feasible points for every relevant linear loss (payoff)
function. Unfortunately, in worst case, the number of queries to the approximation oracle required by
this so-called projection algorithm per iteration is linear in T . While our online algorithms are also
based on an application of OGD, our approach to computing the so-called projections is drastically
different than [13], and is based on a coupling of two cutting plane methods, one that is based on
the Ellipsoid method, and the other that resembles Gradient Descent. This approach might be of
independent interest and might prove useful to similar problems.

1.1 Additional related work

Kalai and Vempala [14] showed that approximation algorithms which have point-wise approximation
guarantee, such as the celebrated MAX-CUT algorithm of [9], could be used to instantiate their
Follow the Perturbed Leader framework to achieve low α-regret. However this construction is far
from generic and requires the oracle to satisfy additional non-trivial conditions. This approach was
also used in [3]. In [14] it was also shown that FPL could be instantiated with a FPTAS to achieve low
α-regret, however the approximation factor in the FPTAS needs to be set to roughly (1 +O(T−1/2)),
which may result in prohibitive running times even if a FPTAS for the underlying problem is available.
Similarly, in [8] it was shown that if the approximation algorithm is based on solving a convex
relaxation of the original, possibly NP-Hard, problem, this additional structure can be used with
the FPL framework to achieve low α-regret efficiently. To conclude all of the latter works consider
specialized cases in which the approximation oracle satisfies additional non-trivial assumptions
beyond its approximation guarantee, whereas here, similarly to [13], we will be interested in a generic
as possible conversion from the offline problem to the online one, without imposing additional
structure on the offline oracle.

2 Preliminaries

2.1 Online linear optimization with approximation oracles

Let K,F be compact sets of points in Rd+ (non-negative orthant in Rd) such that maxx∈K ‖x‖ ≤
R,maxf∈F ‖f‖ ≤ F , for some R > 0, F > 0 (throughout this work we let ‖ · ‖ denote the standard
Euclidean norm), and for all x ∈ K, f ∈ F it holds that C ≥ x · f ≥ 0, for some C > 0.

We assume K is accessible through an approximated linear optimization oracle OK : Rd+ → K with
parameter α > 0 such that:

∀c ∈ Rd+ : OK(c) ∈ K and
{
OK(c) · c ≤ αminx∈K x · c if α ≥ 1;
OK(c) · c ≥ αmaxx∈K x · c if α < 1.

Here K is the feasible set of actions for the player, and F is the set of all possible loss/payoff vectors2.
2we note that both of our assumptions that K ⊂ Rd

+,F ⊂ Rd
+ and that the oracle takes inputs from Rd

+ are
made for ease of presentation and clarity, and since these naturally hold for many NP-Hard optimization problem
that are relevant to our setting. Nevertheless, these assumptions could be easily generalized as done in [13].

3

Since naturally a factor α > 1 for the approximation oracle is reasonable only for loss minimization
problems, and a value α < 1 is reasonable for payoff maximization problems, throughout this
work it will be convenient to use the value of α to differentiate between minimization problems and
maximization problems.

Given a sequence of linear loss/payoff functions {f1, ..., fT } ∈ FT and a sequence of feasible points
{x1,,xT } ∈ KT , we define the α− regret of the sequence {xt}t∈[T] with respect to the sequence
{ft}t∈[T] as

α− regret({(xt, ft)}t∈[T]) :=

1
T

∑T
t=1 xt · ft − α ·minx∈K

1
T

∑T
t=1 x · ft if α ≥ 1;

α ·maxx∈K
1
T

∑T
t=1 x · ft −

1
T

∑T
t=1 xt · ft if α < 1.

(1)

When the sequences {xt}t∈[T], {ft}t∈[T] are obvious from context we will simply write α− regret
without stating these sequences. Also, when the sequence {xt}t∈[T] is randomized we will use
E[α− regret] to denote the expected α-regret.

2.1.1 Online linear optimization with full information

In OLO with full information, we consider a repeated game of T prediction rounds, for a fixed
T , where on each round t, the decision maker is required to choose a feasible action xt ∈ K.
After committing to his choice, a linear loss function ft ∈ F is revealed, and the decision maker
incurs loss of xt · ft. In the payoff version, the decision maker incurs payoff of xt · ft. The
game then continues to the next round. The overall goal of the decision maker is to guarantee
that α − regret({(xt, ft)}t∈[T]) = O(T−c) for some c > 0, at least in expectation (in fact using
randomization is mandatory since K need not be convex). Here we assume that the adversary is
oblivious (aka non-adaptive), i.e., the sequence of losses/payoffs f1, ..., fT is chosen in advance
(before the first round), and does not depend on the actions of the decision maker.

2.1.2 Bandit feedback

The bandit version of the problem is identical to the full information setting with one crucial difference:
on each round t, after making his choice, the decision maker does not observe the vector ft, but only
the value of his loss/payoff, given by xt · ft.

2.2 Additional notation

For any two sets S,K ⊂ Rd and a scalar β ∈ R we define the sets S+K := {x+y | x ∈ S, y ∈ K},
βS := {βx | x ∈ S}. We also denote by CH(K) the convex-hull of all points in a set K. For a
convex and compact set S ⊂ Rd and a point x ∈ Rd we define dist(x,S) := minz∈S ‖z− x‖. We
let B(c, r) denote the Euclidean ball or radius r centered in c.

2.3 Basic algorithmic tools

We now briefly describe two very basic ideas that are essential for constructing our algorithms,
namely the extended approximation oracle and the online gradient descent without feasibility method.
These were already suggested in [13] to obtain their low α-regret algorithms. We note that in the
appendix we describe in more detail the approach of [13] and discuss its shortcomings in obtaining
oracle-efficient algorithms.

2.3.1 The extended approximation oracle

As discussed, a key difficulty of our setting that prevents us from directly applying well studied
algorithms for OLO, is that essentially all standard algorithms require to exactly solve (or up to
arbitrarily small error) some linear/convex optimization problem over the convexification of the
feasible set CH(K). However, not only that our approximation oracle OK(·) cannot perform exact
minimization, even for α = 1 it is applicable only with inputs in Rd+, and hence cannot optimize in
all directions. A natural approach, suggested in [13], to overcome the approximation error of the
oracle OK(·), is to consider optimization with respect to the convex set CH(αK) (i.e. convex hull
of all points in K scaled by a factor of α) instead of CH(K). Indeed, if we consider for instance
the case α ≥ 1, it is straightforward to see that for any c ∈ Rd+, OK(c) · c ≤ αminx∈K x · c =

4

αminx∈CH(K) x · c = minx∈CH(αK) x · c. Thus, in a certain sense, OK(·) can optimize with respect
to CH(αK) for all directions in Rd+, although the oracle returns points in the original set K.

The following lemma shows that one can easily extend the oracle OK(·) to optimize with respect to
all directions in Rd.
Lemma 2.1 (Extended approximation oracle). Given c ∈ Rd write c = c+ + c− where c+ equals
to c on all non-negative coordinates of c and zero everywhere else, and c− equals c on all negative
coordinates and zero everywhere else. The extended approximation oracle is a mapping ÔK : Rd →
(K + B(0, (1 + α)R), K) defined as:

ÔK(c) = (v, s) :=

{
(OK(c+)− αRc̄−, OK(c+)) if α ≥ 1;
(OK(−c−)−Rc̄+, OK(−c−)) if α < 1,

(2)

where for any vector v ∈ Rd we denote v̄ = v/‖v‖ if ‖v‖ > 0 and v̄ = 0 otherwise, and it satisfies
the following three properties:

1. v · c ≤ minx∈αK x · c

2. ∀f ∈ F: s · f ≤ v · f if α ≥ 1 and s · f ≥ v · f if α < 1

3. ‖v‖ ≤ (α+ 2)R

The proof is given in the appendix for completeness.

It is important to note that while the extended oracle provides solutions with values at least as low as
any point in CH(αK), still in general the output point v need not be in either K or CH(αK), which
means that it is not a feasible point to play in our OLO setting, nor does it allow us to optimize
over CH(αK). This is why we also need the oracle to output the feasible point s ∈ K which
dominates v for any possible loss/payoff vector in F . While we will use the outputs v to solve a
certain optimization problem involving CH(αK), this dominance relation will be used to convert the
solutions to these optimization problems into feasible plays for our OLO algorithms.

2.3.2 Online gradient descent with and without feasibility

As in [13], our online algorithms will be based on the well known Online Gradient Descent method
(OGD) for online convex optimization, originally due to [17]. For a sequence of loss vectors
{f1, ..., fT } ⊂ Rd OGD produces a sequence of plays {x1, ...,xT } ⊂ S, for a convex and compact
set S ⊂ Rd via the following updates: ∀t ≥ 1 : yt+1 ← xt−ηft, xt+1 ← arg minx∈S ‖x− yt+1‖2,
where x1 is initialized to some arbitrary point in S and η is some pre-determined step-size. The
obvious difficulty in applying OGD to online linear optimization over S = CH(αK) is the step of
computing xt+1 by projecting yt+1 onto the feasible set S , since as discussed, even with the extended
approximation oracle, one cannot exactly optimize over CH(αK). Instead we will consider a variant
of OGD which may produce infeasible points, i.e., outside of S, but which guarantees low regret
with respect to any point in S. This algorithm, which we refer to as online gradient descent without
feasibility, is given below (Algorithm 1).

Algorithm 1 Online Gradient Descent Without Feasibility

1: input: learning rate η > 0
2: x1 ← some point in S
3: for t = 1 . . . T do
4: play xt and receive loss/payoff vector ft ∈ Rd

5: yt+1 ←
{

xt − ηft for losses
xt + ηft for payoffs

6: find xt+1 ∈ Rd such that

∀z ∈ S : ‖z− xt+1‖2 ≤ ‖z− yt+1‖2 (3)

7: end for

Lemma 2.2. [Online gradient descent without feasibility] Fix η > 0. Suppose Algorithm 1 is applied
for T rounds and let {ft}Tt=1 ⊂ Rd be the sequence of observed loss/payoff vectors, and let {xt}Tt=1

5

be the sequence of points played by the algorithm. Then for any x ∈ S it holds that

1
T

∑T
t=1 xt · ft −

1
T

∑T
t=1 x · ft ≤

1
2Tη‖x1 − x‖2 + η

2T

∑T
t=1 ‖ft‖2 for losses;

1
T

∑T
t=1 x · ft −

1
T

∑T
t=1 xt · ft ≤

1
2Tη‖x1 − x‖2 + η

2T

∑T
t=1 ‖ft‖2 for payoffs.

The proof is given in the appendix for completeness.

3 Oracle-efficient Computation of (infeasible) Projections onto CH(αK)

In this section we detail our main technical tool for obtaining oracle-efficient online algorithms,
i.e., our algorithm for computing projections, in the sense of Eq. (3), onto the convex set CH(αK).
Before presenting our projection algorithm, Algorithm 2 and detailing its theoretical guarantees,
we first present the main algorithmic building block in the algorithm, which is described in the
following lemma. Lemma 3.1 shows that for any point x ∈ Rd, we can either find a near-by point
p which is a convex combination of points outputted by the extended approximation oracle (and
hence, p is dominated by a convex combination of feasible points in K for any vector in F , as
discussed in Section 2.3.1), or we can find a separating hyperplane that separates x from CH(αK)
with sufficiently large margin. We achieve this by running the well known Ellipsoid method [10, 5]
in a very specialized way. This application of the Ellipsoid method is similar in spirit to those in
[15, 16], which applied this idea to computing correlated equilibrium in games and algorithmic
mechanism design, though the implementation details and the way in which we apply this technique
are quite different.

The proof of the following lemma is given in the appendix.

Lemma 3.1 (Separation-or-Decomposition via the Ellipsoid method). Fix x ∈ Rd, ε ∈
(0, (α+ 2)R], and a positive integer N ≥ cd2 ln

(
(α+1)R+‖x‖

ε

)
, where c is a positive univer-

sal constant. Consider an attempt to apply the Ellipsoid method for N iterations to the following
feasibility problem:

find w ∈ Rd such that: ∀z ∈ αK : (x− z) ·w ≥ ε and ‖w‖ ≤ 1, (4)

such that each iteration of the Ellipsoid method applies the following consecutive steps:

1. (v, s) ← ÔK(−w), where w is the current iterate. If (x − v) · w < ε, use v − x as a
separating hyperplane for the Ellipsoid method and continue to to the next iteration

2. if ‖w‖ > 1, use w as a separating hyperplane for the Ellipsoid method and continue to the
next iteration

3. otherwise (‖w‖ ≤ 1 and (x − v) · w ≥ ε), declare Problem (4) feasible and return the
vector w.

Then, if the Ellipsoid method terminates declaring Problem 4 feasible, the returned vector w is a
feasible solution to Problem (4). Otherwise (the Ellipsoid method completes N iterations without
declaring Problem (4) feasible), let (v1, s1), ..., (vN , sN) be the outputs of the extended approxima-
tion oracle gathered throughout the run of the algorithm, and let (a1, ..., aN) be an optimal solution
to the following convex optimization problem:

min
(a1,...,aN)

1

2

∥∥∥∥∥
N∑
i=1

aivi − x

∥∥∥∥∥
2

such that ∀i ∈ {1, ..., N} : ai ≥ 0,

N∑
i=1

ai = 1. (5)

Then the point p =
∑N
i=1 aivi satisfies ‖x− p‖ ≤ 3ε.

We are now ready to present our algorithm for computing projections onto CH(αK) (in the sense of
Eq. (3)). Consider now an attempt to project a point y ∈ Rd, and note that in particular, y itself is a
valid projection (again, in the sense of Eq. (3)), however, in general, it is not a feasible point nor is
it dominated by a convex combination of feasible points. When attempting to project y ∈ Rd, our
algorithm continuously applies the separation-or-decomposition procedure described in Lemma 3.1.

6

In case the procedure returns a decomposition, then by Lemma 3.1, we have a point that is sufficiently
close to y and is dominated for any vector in F by a convex combination (given explicitly) of feasible
points in K. Otherwise, the procedure returns a separating hyperplane which can be used to to “pull
y closer" to CH(αK) in a way that the resulting point still satisfies the projection inequality given in
Eq. (3), and the process then repeats itself. Since each time we obtain a hyperplane separating our
current iterate from CH(αK), we pull the current iterate sufficiently towards CH(αK), this process
must terminate. Lemma 3.2 gives exact bounds on the performance of the algorithm.

Algorithm 2 (infeasible) Projection onto CH(αK)

1: input: point y ∈ Rd, tolerance ε > 0
2: ỹ← y/max{1, ‖y‖/(αR)}
3: for t = 1 . . . do
4: call the SEPARATION-OR-DECOMPOSTION procedure (Lemma 3.1) with parameters (ỹ, ε)
5: if the procedure outputs a separating hyperplane w then
6: ỹ← ỹ − εw
7: else
8: let (a1, ..., aN), {(v1, s1), ..., (vN , sN)} be the decomposition returned
9: return ỹ, (a1, ..., aN), {(v1, s1), ..., (vN , sN)}

10: end if
11: end for

Lemma 3.2. Fix y ∈ Rd and ε ∈ (0, (α+ 2)R]. Algorithm 2 terminates after at most dα2R2/ε2e
iterations, returning a point ỹ ∈ Rd, a distribution (a1, ..., aN) and a set {(v1, s1), ..., (vN , sN)}
outputted by the extended approximation oracle, where N is as defined in Lemma 3.1, such that

1. ∀z ∈ CH(αK) : ‖ỹ − z‖2 ≤ ‖y − z‖2 , 2. ‖p− ỹ‖ ≤ 3ε for p :=
∑
i∈[N]

aivi.

Moreover, if the for loop was entered a total number of k times, then the final value of ỹ satisfies

dist2(ỹ,CH(αK)) ≤ min{2α2R2, dist2(y,CH(αK))− (k − 1)ε2},

and the overall number of queries to the approximation oracle is O
(
kd2 ln ((α+ 1)R/ε)

)
.

It is important to note that the worst case iteration bound in Lemma 3.2 does not seem so appealing
for our purposes, since it depends polynomially on 1/ε, and in our online algorithms naturally we
will need to take ε = O(T−c) for some c > 0, which seems to contradict our goal of achieving
poly-logarithmic in T oracle complexity, at least on average. However, as Lemma 3.2 shows, the
more iterations Algorithm 2 performs, the closer it brings its final iterate to the set CH(αK). Thus, as
we will show when analyzing the oracle complexity of our online algorithms, while a single call to
Algorithm 2 can be expensive, when calling it sequentially, where each input is a small perturbation
of the output of the previous call, the average number of iterations performed per such call cannot be
too high.

4 Efficient Algorithms for the Full Information and Bandit Settings

We now turn to present our online algorithms for the full-information and bandit settings together
with their regret bounds and oracle-complexity guarantees.

4.1 Algorithm for the full information setting

Our algorithm for the full-information setting, Algorithm 3, is given below.
Theorem 4.1. [Main Theorem] Fix η > 0, ε ∈ (0, (α+ 2)R]. Suppose Algorithm 3 is applied for T
rounds and let {ft}Tt=1 ⊆ F be the sequence of observed loss/payoff vectors, and let {st}Tt=1 be the
sequence of points played by the algorithm. Then it holds that

E
[
α− regret

(
{(st, ft)}t∈[T]

)]
≤ α2R2T−1η−1 + ηF 2/2 + 3Fε,

and the average number of calls to the approximation oracle of K per iteration is upper bounded by

K(η, ε) := O
((

1 +
(
ηαRF + η2F 2

)
ε−2
)
d2 ln ((α+ 1)R/ε)

)
.

7

Algorithm 3 Online Gradient Descent with Infeasible Projections onto CH(αK)

1: input: learning rate η > 0, projection error parameter ε > 0
2: s1 ← some point in K, ỹ1 ← αs1
3: for t = 1 . . . T do
4: play st and receive loss/payoff vector ft ∈ F

5: yt+1 ←
{

ỹt − ηft if α ≥ 1
ỹt + ηft if α < 1

6: call Algorithm 2 with inputs (yt+1, ε) to obtain an approximated projection ỹt+1, a distribution
(a1, ..., aN) and {(v1, s1), ..., (vN , sN)} ⊆ Rd ×K, for some N ∈ N.

7: sample st+1 ∈ {s1, ..., sN} according to distribution (a1, ..., aN)
8: end for

In particular, setting η = αRT−2/3/F , ε = αRT−1/3 gives E [α− regret] = O
(
αRFT−1/3

)
,

K = O
(
d2 ln

(
α+1
α T

))
. Alternatively, setting η = αRT−1/2/F , ε = αRT−1/2 gives

E [α− regret] = O
(
αRFT−1/2

)
, K = O

(√
Td2 ln

(
α+1
α T

))
.

The proof is given in the appendix.

4.2 Algorithm for the bandit information setting

Our algorithm for the bandit setting follows from a very well known reduction from the bandit setting
to the full information setting, also applied in the bandit algorithm of [13]. The algorithm simply
simulates the full information algorithm, Algorithm 3, by providing it with estimated loss/payoff
vectors f̂1, ..., f̂T instead of the true vectors f1, ..., fT which are not available in the bandit setting.
This reduction is based on the use of a Barycentric Spanner (defined next) for the feasible set K.
As standard, we assume the points in K span the entire space Rd, otherwise we can reformulate the
problem in a lower-dimensional space, in which this assumption holds.

Definition 4.1 (Barycentric Spanner3). We say that a set of d vectors {q1, ...,qd} ⊂ Rd is a
Barycentric Spanner with parameter β > 0 for a set S ⊂ Rd, denoted by β-BS(S), if it holds that
{q1, ...,qd} ⊂ S, and the matrix Q :=

∑d
i=1 qiq

>
i is not singular and maxi∈[d] ‖Q−1qi‖ ≤ β.

Importantly, as discussed in [13], the assumption on the availability of such a set β-BS(K) seems
reasonable, since i) for many sets that correspond to the set of all possible solutions to some well-
studied NP-Hard optimization problem, one can still construct in poly(d) time a barycentric spanner
with β = poly(d), ii) β-BS(K) needs to be constructed only once and then stored in memory (overall
d vectors in Rd), and hence its construction can be viewed as a pre-processing step, and iii) as
illustrated in [13], without further assumptions, the approximation oracle by itself is not sufficient to
guarantee nontrivial regret bounds in the bandit setting.

The algorithm and the proof of the following theorem are given in the appendix.

Theorem 4.2. Fix η > 0, ε ∈ (0, (α + 2)R], γ ∈ (0, 1). Suppose Algorithm 5 is applied for T
rounds and let {ft}Tt=1 ⊆ F be the sequence of observed loss/payoff vectors, and let {ŝt}Tt=1 be the
sequence of points played by the algorithm. Then it holds that

E
[
α− regret

(
{(ŝt, ft)}t∈[T]

)]
≤ α2R2η−1T−1 + ηd2C2β2γ−1/2 + 3εF + γC,

and the expected number of calls to the approximation oracle of K per iteration is upper bounded by

E [K(η, ε, γ)] := O
((

1 +
(
ηαβdCR+ (ηdCβ)2/γ

)
ε−2
)
d2 ln ((α+ 1)R/ε)

)
.

In particular, setting η = αR
βdCT

−2/3, ε = αRT−1/3, γ = T−1/3 gives E [α− regret] =

O
(
(αβdCR+ αRF + C)T−1/3

)
, E[K] = O

(
d2 ln

(
α+1
α T

))
.

3this definition is somewhat different than the classical one given in [2], however it is equivalent to a
C-approximate barycentric spanner [2], with an appropriately chosen constant C(β).

8

References
[1] Jacob Abernethy, Elad Hazan, and Alexander Rakhlin. Competing in the dark: An efficient algorithm for

bandit linear optimization. In COLT, pages 263–274, 2008.

[2] Baruch Awerbuch and Robert D Kleinberg. Adaptive routing with end-to-end feedback: Distributed
learning and geometric approaches. In Proceedings of the thirty-sixth annual ACM symposium on Theory
of computing, pages 45–53. ACM, 2004.

[3] Maria-Florina Balcan and Avrim Blum. Approximation algorithms and online mechanisms for item pricing.
In Proceedings of the 7th ACM Conference on Electronic Commerce, pages 29–35. ACM, 2006.

[4] Reuven Bar-Yehuda and Shimon Even. A linear-time approximation algorithm for the weighted vertex
cover problem. Journal of Algorithms, 2(2):198–203, 1981.

[5] Sébastien Bubeck. Convex optimization: Algorithms and complexity. Foundations and Trends R© in
Machine Learning, 8(3-4):231–357, 2015.

[6] Nicos Christofides. Worst-case analysis of a new heuristic for the travelling salesman problem. Technical
report, DTIC Document, 1976.

[7] V. Chvatal. A greedy heuristic for the set-covering problem. Mathematics of Operations Research,
4(3):233–235, 1979.

[8] Takahiro Fujita, Kohei Hatano, and Eiji Takimoto. Combinatorial online prediction via metarounding. In
ALT, pages 68–82. Springer, 2013.

[9] Michel X Goemans and David P Williamson. Improved approximation algorithms for maximum cut and
satisfiability problems using semidefinite programming. Journal of the ACM (JACM), 42(6):1115–1145,
1995.

[10] M. Grötschel, L. Lovász, and A. Schrijver. The ellipsoid method and its consequences in combinatorial
optimization. Combinatorica, 1(2):169–197, 1981.

[11] Elad Hazan, Zohar Shay Karnin, and Raghu Meka. Volumetric spanners: an efficient exploration basis for
learning. In COLT, volume 35, pages 408–422, 2014.

[12] Elad Hazan and Haipeng Luo. Variance-reduced and projection-free stochastic optimization. In Proceedings
of the 33nd International Conference on Machine Learning, ICML 2016, New York City, NY, USA, June
19-24, 2016, pages 1263–1271, 2016.

[13] Sham M. Kakade, Adam Tauman Kalai, and Katrina Ligett. Playing games with approximation algorithms.
SIAM J. Comput., 39(3):1088–1106, 2009.

[14] Adam Kalai and Santosh Vempala. Efficient algorithms for online decision problems. Journal of Computer
and System Sciences, 71(3):291–307, 2005.

[15] Christos H Papadimitriou and Tim Roughgarden. Computing correlated equilibria in multi-player games.
Journal of the ACM (JACM), 55(3):14, 2008.

[16] S Matthew Weinberg. Algorithms for strategic agents. PhD thesis, Massachusetts Institute of Technology,
2014.

[17] Martin Zinkevich. Online convex programming and generalized infinitesimal gradient ascent. In Machine
Learning, Proceedings of the Twentieth International Conference (ICML 2003), August 21-24, 2003,
Washington, DC, USA, pages 928–936, 2003.

9

A The KKL approach

We now briefly describe how [13] use the extended approximation oracle and the online gradient
descent without feasibility approach to construct their low α-regret algorithm for the full information
setting, and point out the limitation of this approach to obtaining low oracle complexity.

Consider some iteration t of Algorithm 1 and let yt+1 be the newly computed point. Let (x, s) ∈
Rd ×K be such that ∀f ∈ F : x · f ≥ s · f (e.g., take x = s), and let (v′, s′)← ÔK(x− yt+1). We
have the following simple lemma.
Lemma A.1. Fix ε ∈ (0, 3(α+2)2R2] and suppose that x ∈ B(0, (α+2)R). If (x−yt+1)·(x−v′) ≤
ε, then setting xt+1 ← x gives

∀z ∈ CH(αK) : ‖z− xt+1‖2 ≤ ‖z− yt+1‖2 + 2ε.

Otherwise, setting x′ ← (1− λ)x + λv′, for appropriately chosen λ ∈ (0, 1), guarantees that

‖x′ − yt+1‖2 ≤ ‖x− yt+1‖2 − Ω(ε2),

and

∀f ∈ F : ((1− λ)s + λs′) · f ≤ x′ · f .

Proof. To prove the first part of the lemma, suppose that x satisfies that (x− yt+1) · (x− v′) ≤ ε,
where (v′, s′)← ÔK(x− yt+1). Fix z ∈ CH(αK). It holds that

‖yt+1 − z‖2 = ‖(yt+1 − x) + (x− z)‖2 = ‖yt+1 − x‖2 + ‖x− z‖2 − 2(x− yt+1) · (x− z)

≥ ‖x− z‖2 − 2(x− yt+1) · (x− z)

≥ ‖x− z‖2 − 2(x− yt+1) · (x− v′) ≥ ‖x− z‖2 − 2ε,

where the second inequality holds since v′ is the output of the extended approximation oracle with
respect to the input (x− yt+1).

For the second part of the lemma, we observe that if (x− yt+1) · (x− v′) > ε, then

‖x′ − yt+1‖2 = ‖x− yt+1 + λ(v′ − x)‖2

= ‖x− yt+1‖2 − 2λ(x− yt+1) · (x− v′) + λ2‖v′ − x‖2

≤ ‖x− yt+1‖2 − 2λε+ 2λ2(‖v′‖2 + ‖x‖2)

≤ ‖x− yt+1‖2 − 2λε+ 4λ2(α+ 2)2R2,

where the first inequality follows since (x−yt+1) ·(x−v′) > ε and using the triangle inequality with
(a+ b)2 ≤ 2(a2 + b2), and the second inequality follows by the assumption on x and since v′ is the
output of the extended approximation oracle. Thus, we can see that setting λ = ε

3(α+2)2R2 ∈ (0, 1],
gives the requested result.

Finally, since x and v′ are dominated by s and s′ for any f ∈ F , respectively, we have that
x′ = (1− λ)x + λv′ is dominated by (1− λ)s + λs′ for any f ∈ F .

Note that Lemma A.1 suggests an iterative algorithm to compute an ε-approximated projection of
yt+1 in Algorithm 1, that on each iteration reduces the potential ‖x− yt+1‖2 by Ω(ε2), until finding
an ε-approximated projection of yt+1, xt+1, which must be found since the potential in non-negative.
Moreover, this algorithm finds a point s̄t+1 ∈ CH(K), given explicitly as a convex combination of
points in K (since λ ∈ (0, 1)), such that s̄t+1 dominates xt+1 for all vectors in F . In particular,
sampling st+1 from this decomposition guarantees that we play a feasible point in K, which in
expectation, dominates xt+1 for all vectors in F . The full algorithm, which is closely related to the
classical Frank-Wolfe algorithm for convex optimization (a.k.a. the conditional gradient method) [5],
is given below, see Algorithm 44.
Lemma A.2. Fix ε ∈ (0, 3(α + 2)2R2], η > 0 and a sequence of loss functions {f1, ..., fT } ⊆ F .
Consider the application of Algorithm 1 with learning rate η when applied with respect to the feasible
set CH(αK) and the sequence of losses {f1, ..., fT } ⊆ F , and when we use the algorithm described

4we note that it differs somewhat in presentation than the original algorithm in [13].

10

above to produce the (randomized) sequence of points {(xt, st}t∈[T] ⊂ Rd ×K. Then, focusing on
the case α ≥ 1, it holds that,

E

[
1

T

T∑
t=1

st · ft

]
− min

x∈CH(αK)

1

T

T∑
t=1

x · ft = E

[
1

T

T∑
t=1

st · ft

]
− αmin

x∈K

1

T

T∑
t=1

x · ft

≤ α2R2

Tη
+
ηF 2

2
+
ε

η
.

Moreover, the number of calls to the extended approximation oracle per iteration t is
O(‖yt+1 − xt‖2/ε2) = O(η2F 2/ε2),where the O(·) notation hides polynomial dependencies on
(1 + α), R.

Proof. We begin by proving the regret bound. Since each xt+1 is an approximated projection of
yt+1 in the sense that

∀z ∈ CH(αK) : ‖z− xt+1‖2 ≤ ‖z− yt+1‖2 + 2ε,

it is immediate to see from the proof of Lemma 2.2, that incorporating this approximation error into
the regret bound, and bounding ‖ft‖ ≤ F for all t, results in the regret bound:

1

T

T∑
t=1

xt · ft − min
x∈CH(αK)

1

T

T∑
t=1

x · ft =
1

T

T∑
t=1

xt · ft − αmin
x∈K

1

T

T∑
t=1

x · ft

≤ α2R2

Tη
+
ηF 2

2
+
ε

η
.

The regret bound now follows by recalling that for all t and all f ∈ F : E[st · ft] = s̄t · ft ≤ xt · ft,
and taking expectation with respect to the randomness in st.

To bound the number of calls to the approximation oracle per some iteration t, note that
‖xt − yt+1‖2 ≤ η2F 2. Thus, if we initialize the projection algorithm, described in Lemma A.1, with
the point xt, and we recall that each iteration of the algorithm reduces the potential ‖x− yt+1‖2 by
Ω(ε2), where x is the current iterate, then we have that at most O(η2F 2/ε2) iterations are required
for the algorithm to terminate.

The extra term of ε/η in the regret bound is due to fact we compute ε-approximated projections.

It is clear that setting η = O(1/
√
T) and ε = O(1/T) in Lemma A.2 guarantees O(T−1/2) expected

α-regret, which is optimal in T , however requiresO(T) calls to the approximation oracle per iteration.
We can also observe that for any constants a ∈ (0, 1), b ≥ 1, and sufficiently large T , Lemma A.2
cannot guarantee O(T−a) expected α-regret using only O(logb T) calls to the approximation oracle
per iteration, even on average. For this reason, in this paper we consider a drastically different
algorithmic approach to applying the online gradient descent without feasibility methodology.

Algorithm 4 Frank-Wolfe for Approximated (infeasible) Projection onto CH(αK)

1: input: point to project y ∈ Rd, error tolerance ε ∈ (0, 3(α+ 2)2R2)
2: output: (x, s̄) ∈ Rd × CH(K) such that x is an ε-approximated infeasible projection of y

dominated by s̄ for any f ∈ F
3: let (x1, s̄1) ∈ Rn × CH(K) such that x1 is dominated by s̄1 for any f ∈ F .
4: λ← ε/(3(α+ 2)2R2)
5: for i = 1... do
6: (vi, si)← ÔK(xi − y)
7: if (xi − y) · (xi − vi) ≤ ε then
8: return (xi, s̄i)
9: end if

10: xi+1 ← xi + λ(vi − xi)
11: s̄i+1 ← s̄i + λ(si − s̄i)
12: end for

11

B Proofs Omitted from Section 2

B.1 Proof of Lamma 2.1

Proof. For the first item in the lemma note that for α ≥ 1 it holds that

v · c = OK(c+) · (c+ + c−)− αRc̄− · (c+ + c−)

≤ αmin
x∈K

x · c+ +OK(c+) · c− − αR‖c−‖

≤ αmin
x∈K

x · c+ − αR‖c−‖

≤ αmin
x∈K

x · c+ + αmin
x∈K

x · c−

≤ αmin
x∈K

x · c = min
x∈αK

x · c,

Similarly, for α > 1 we have that

v · c = OK(−c−) · (c+ + c−)−Rc̄+ · (c+ + c−)

≤ −αmax
x∈K

x · (−c−) +OK(−c−) · c+ −R‖c+‖

≤ αmin
x∈K

x · c− +R‖c+‖ −R‖c+‖

≤ αmin
x∈K

x · c− + αmin
x∈K

x · c+

≤ αmin
x∈K

x · c = min
x∈αK

x · c.

For the second item, it suffices to observe that for α ≥ 1 we have that s ≤ v (coordinate-wise) and
hence for every f ∈ F we have that s · f ≤ v · f (recall that F ⊂ Rd+). Similarly, when α < 1, we
note that s ≥ v.

The third item holds trivially.

B.2 Proof of Lamma 2.2

Proof. Fix x ∈ S. Assume that the vectors f1, ..., fT are losses. By the definition of the infeasible
projection xt+1, for any iteration t ≥ 1 it holds that

‖xt+1 − x‖2 ≤ ‖yt+1 − x‖2 = ‖xt − ηft − x‖2

= ‖xt − x‖2 − 2η(xt − x) · ft + η2‖ft‖2

Rearranging and summing over all iterations we have that
T∑
t=1

(xt − x) · ft ≤
1

2η

T∑
t=1

(‖xt − x‖2 − ‖xt+1 − x‖2) +
η

2

T∑
t=1

‖ft‖2

≤ 1

2η
‖x1 − x‖2 +

η

2

T∑
t=1

‖ft‖2.

It is immediate to see that the proof of the result in case of payoffs instead of losses (for which the
only change is in the update of yt+1 in Algorithm 1), follows the same lines as the one for losses
given above.

C Lemmas and Proofs Omitted from Section 3

C.1 Proof of Lemma 3.1

Proof. To prove the first part of the lemma, suppose there exists some iteration during which the
Ellipsoid method declares Problem (4) feasible, and let w be the corresponding iterate and let (v, s)
be the output of the extended approximation oracle on that iteration. Clearly it holds that

ε ≤ (x− v) ·w = x ·w + v · (−w) ≤ x ·w + min
z∈αK

z · (−w) = min
z∈αK

(x− z) ·w,

12

where the first inequality follows from the fact that the Ellipsoid method declared Problem (4) feasible,
and the second inequality follows from the definition of the extended approximation oracle. Since the
Ellipsoid method declared Problem (4) feasible, it also follows that ‖w‖ ≤ 1 and hence w is indeed
a feasible solution to Problem (4).

Consider now the case that all N iterations are executed without declaring Problem (4) feasible and
let v1, ...,vN be as defined in the lemma. We would like to show that this implies that

∀ unit vector w : min
i∈{1,...,N ′}

(x− vi) ·w ≤ 3ε. (6)

Then, the second part of the lemma follows from applying the next lemma, Lemma C.1, which shows
that (6) implies that the point p defined in the lemma indeed satisfies ‖p− x‖ ≤ 3ε, as required.

Towards proving (6), suppose that there exists a unit vector h ∈ Rd such that for all i ∈ {1, ..., N},
(x− vi) · h > 3ε. It follow that ∀i ∈ {1, ..., N} : (x− vi) · h/2 > 3ε/2. It follows from a simple
application of the Cauchy-Swartz inequality and the observation that ‖x− vi‖ ≤ ‖x‖ + ‖vi‖ ≤
‖x‖+ (α+ 2)R, that denoting r := ε

2(α+2)R+‖x‖ , we have that

∀h′ ∈ B(h/2, r) : min
i∈[N]

(x− vi) · h′ > ε. (7)

Note that on one hand, by the above and our assumption on ε, every point in B(h/2, r) satisfies the
stopping criteria of the Ellipsoid method described in the lemma. On the other-hand, on every iteration
in which the current iterate w is not declared feasible, it follows that the separating hyperplane fed
to the Ellipsoid method indeed separates w from B(h/2, r). To see why this is true, we consider
the two possible options for the separating hyperplane. If the hyperplane is vi − x, where vi is the
output of the extended approximation oracle on that iteration, then we have that

∀h′ ∈ B(h/2, r) : (w − h′) · (vi − x) = (x− vi) · h′ − (x− vi) ·w > ε− ε = 0,

where the first inequality follows from Eq. (7) and the fact that (x− vi) ·w < ε on this iteration. If
the hyperplane used was w, which guarantees that on that iteration ‖w‖ > 1 , then we have that

∀h′ ∈ B(h/2, r) : (w − h′) ·w = ‖w‖ −w · h′ > 1− 1 = 0,

where the last inequality follows since by our assumption on ε, it holds that B(h/2, r) ⊂
B(0, 1). Thus, we can conclude that if the number of Ellipsoid method iterations satisfies
N ≥ cd2 ln

(
(α+1)R+‖x‖

ε

)
for an appropriate universal constant c > 0, and all N iterations were

completed without declaring feasibility, it follows that no such unit vector h can exist, which means
Eq. (6) holds, and the result follows.

Lemma C.1. Fix x ∈ Rd, vectors v1, ...,vN ∈ Rd and ε > 0. If for any unit vector w it holds that
mini∈{1,...,N}(x− vi) ·w ≤ ε, then it follows that the point p =

∑N
i=1 aivi, where (a1, ..., aN) is

an optimal solution to Problem (5), satisfies ‖p− x‖ ≤ ε.

Proof. First we show that the following holds:

∀i, j s.t. ai > 0, aj > 0 : (p− x) · vi = (p− x) · vj ,
∀i, j s.t. ai > 0, aj = 0 : (p− x) · vi ≤ (p− x) · vj . (8)

To see why this is true, fix some i, j such that ai > 0 and consider the point p′ = p + δ(vj − vi)
such that 0 < δ ≤ ai. Clearly p′ lies in the convex hull of {v1, ...,vN} and hence is a feasible
solution to Problem (5). It holds that

1

2
‖p′ − x‖2 =

1

2
‖p− x‖2 + δ(vj − vi) · (p− x) +

δ2

2
‖vi − vj‖2. (9)

Thus, we can see that if (8) does not hold, then without loss of generality we can always choose i, j
such that ai > 0 and (p− x) · vi > (p− x) · vj , and thus as can be seen from Eq. (9), choosing δ
to be sufficiently small it follows that ‖p′ − x‖2 < ‖p− x‖2, contradicting the optimality of p.

Denoting by u the unit vector in the direction of x− p, we can rewrite Eq. (8) as follows:

∀i, j s.t. ai > 0, aj > 0 : (x− vi) · u = (x− vj) · u,
∀i, j s.t. ai > 0, aj = 0 : (x− vi) · u ≤ (x− vj) · u. (10)

13

Using our assumption, we in particular have that mini∈[N](x− vi) · u ≤ ε, and using Eq. (10) we
have that

‖p− x‖ = (x− p) · u =

N∑
i=1

ai(x− vi) · u = min
i∈[N]

(x− vi) · u ≤ ε,

where the last equality is a consequence of Eq. (10) and the fact that (a1, ..., aN) is a distribution.
Thus the lemma follows.

C.2 Proof of Lemma 3.2

Proof. Note that the second item in the lemma is a straightforward guarantee of Lemma 3.1.

To prove the first item, suppose that the algorithm terminates after the for loop was entered k times,
and let ỹ1, ..., ỹk denote the values of ỹ throughout the run of the algorithm, where ỹi is the value of
ỹ at the beginning of the ith iteration of the for loop. Note that since CH(αK) ⊆ B(0, αR) and ỹ1 is
the projection of y onto B(0, αR), we have that ∀z ∈ CH(αK) : ‖ỹ1 − z‖2 ≤ ‖y − z‖2.

We are now going to show that for any i ≥ 1 it holds that

∀z ∈ CH(αK) : ‖ỹi+1 − z‖2 ≤ ‖ỹi − z‖2, (11)

which clearly yields item 1 in the lemma.

To prove that Eq. (11) holds throughout the run of the algorithm, consider an iteration i of the for
loop during which, the SEPARATION-OR-DECOMPOSTION procedure returns a separating hyperplane
w. It holds that

∀z ∈ CH(αK) : ‖ỹi − z‖2 = ‖ỹi − ỹi+1 + ỹi+1 − z‖2

= ‖ỹi − ỹi+1‖2 + ‖ỹi+1 − z‖2 + 2(ỹi − ỹi+1) · (ỹi+1 − z)

≥ ‖ỹi+1 − z‖2 + 2(ỹi − ỹi+1) · (ỹi+1 − z)

= ‖ỹi+1 − z‖2 + 2εw · [(ỹi − z)− εw]

= ‖ỹi+1 − z‖2 + 2ε(ỹi − z) ·w − 2ε2‖w‖2

≥ ‖ỹi+1 − z‖2,

where the third equality follows from the update rule of ỹ in the algorithm, and the last inequality is a
direct consequence of the guarantees of Lemma 3.1. Thus, Eq. (11) indeed holds for all i ≥ 1, which
gives the first item listed in the lemma.

We now turn to upper bound the number of iterations performed by the algorithm. Consider again
an iteration i of the loop during which the SEPARATION-OR-DECOMPOSTION procedure returns a
separating hyperplane w. We are going to show that

dist2(ỹi+1,CH(αK)) ≤ dist2(ỹi,CH(αK))− ε2,

which, together with the fact that dist2(ỹ1,CH(αK)) ≤ 2α2R2, gives the desired upper bound on
the number of iterations.

Denote xi = arg minx∈CH(αK) ‖x− ỹi‖ and xi+1 = arg minx∈CH(αK) ‖x− ỹi+1‖. It holds that

dist2(ỹi+1,CH(αK)) = ‖xi+1 − ỹi+1‖2 ≤ ‖xi − ỹi+1‖2 = ‖xi − ỹi + εw‖2

= dist2(ỹi,CH(αK)) + ε2‖w‖2 − 2ε(ỹi − xi) ·w
≤ dist2(ỹi,CH(αK))− ε2,

where the inequality is a direct consequence of the guarantees of Lemma 3.1. Thus, we obtain both
the desired bound on the number of iterations and the bound on the distance of the final point ỹ from
CH(αK).

Finally, we turn to upper bound to overall number of queries to the approximation oracle. Using the
bound in Lemma 3.1, we have that the number of calls to the oracle on the ith iteration of the loop is

14

upper bounded by O
(
d2 ln

(
(α+1)R+‖ỹi‖

ε

))
. As we have shown, the values dist(ỹi,CH(αK)) are

monotonically decreasing with i and hence we can upper bound

‖ỹi‖ ≤ max
x∈CH(αK)

‖x‖+ dist(ỹi,CH(αK)) ≤ αR+ dist(ỹ1,CH(αK)) ≤ αR+
√

2αR,

where the last inequality holds since ỹ1 is the projection of y onto the ball B(0, αR). Thus,
the overall number of queries to the approximation oracle after k iterations is upper bounded by
O
(
kd2 ln

(
(α+1)R

ε

))
.

D Algorithms and Proofs Omitted from Section 4

D.1 Proof of Theorem 4.1

Proof. For the proof we focus on the case α ≥ 1 since the proof for the complementary follows from
the same derivations up to changes in the obvious places. To prove the regret bound, we simply apply
Lemma 2.2 with respect to the sequence of points {ỹt}Tt=1 and the feasible set CH(αK) and plugin
the guarantee of Lemma 3.2, which gives

T∑
t=1

ỹt · ft − min
x∈αK

T∑
t=1

x · ft =

T∑
t=1

ỹt · ft − α ·min
x∈K

T∑
t=1

x · ft

≤ α2R2

η
+ T

ηF 2

2
,

where we have used the the fact that ‖ỹ1‖ ≤ αR and ‖ft‖ ≤ F for all t ∈ [T]. For every iteration t ≥
1, let us denote pt+1 =

∑N
i=1 aivi, s̄t =

∑N
i=1 aisi, where (a1, ..., aN), {(v1, s1), ..., (vN , sN)}

are the outputs of the call to Algorithm 2 on iteration t, and for t = 1 we denote p1 = ỹ1 and s̄1 = s1.
By the guarantee of Lemma 3.2, we have that

T∑
t=1

pt · ft − α ·min
x∈K

T∑
t=1

x · ft ≤
α2R2

η
+ T

ηF 2

2
+ 3TεF,

where the inequality holds since for all t ≥ 1: |(pt − ỹt) · ft| ≤ ‖pt − ỹt‖ · ‖ft‖ ≤ 3εF . The
regret bound now follows since for any iteration t, s̄t dominates pt for any vector f ∈ F , and since
E[st] = s̄t.

We now turn to upper bound the overall number of queries to the approximation oracle of K. Let kt
be the number of iterations it took Algorithm 2 to terminate, when invoked on iteration t of Algorithm
3. Note that, by Lemma 3.2, we have that K(η, ε) = O

(
1
T

∑T−1
t=1 ktd

2 ln
(

(α+1)R
ε

))
. By Lemma

3.2, it follows that on any iteration t,

dist2(ỹt+1,CH(αK)) ≤ dist2(yt+1,CH(αK))− (kt − 1)ε2

= dist2(ỹt − ηft,CH(αK))− (kt − 1)ε2

≤ (dist(ỹt,CH(αK)) + ηF)2 − (kt − 1)ε2

= dist2(ỹt,CH(αK)) + 2ηFdist(ỹt,CH(αK)) + η2F 2 − ktε2 + ε2.

Rearranging, summing over all T iterations, and recalling that for all t, dist(ỹt,CH(αK)) ≤
√

2αR,
we have that
T−1∑
t=1

kt ≤
1

ε2

(
dist2(ỹ1,CH(αK))− dist2(ỹT ,CH(αK)) + (T − 1)

(
2
√

2ηαRF + η2F 2 + ε2
))

≤ (T − 1)

(
1 +

2
√

2ηαRF + η2F 2

ε2

)
.

15

D.2 Algorithm for the bandit setting and proof of Theorem 4.2

Algorithm 5 Bandit Algorithm

1: input: learning rate η > 0, projection error parameter ε > 0, {q1, ...,qd} - a β-BS(K) for some
β > 0, exploration parameter γ ∈ (0, 1)

2: instantiate Algorithm 3 with parameters (η, ε)
3: for t = 1 . . . T do
4: receive (st, ỹt) ∈ K × B(0, αR) from Algorithm 3

5: bt ←
{

EXPLORE with prob. γ
EXPLOIT with prob. 1− γ

6: if bt = EXPLORE then
7: sample it ∈ [d] uniformly at random
8: play ŝt = qit
9: receive loss/payoff `t = qi · ft

10: set f̂t ← d`t
γ Q−1qit {recall Q =

∑d
i=1 qiq

>
i }

11: else
12: play ŝt = st
13: receive loss/payoff `t = st · ft
14: set f̂t ← 0
15: end if
16: feed f̂t to Algorithm 3 as the loss/payoff vector for round t
17: end for

proof of Theorem 4.2. The proof is very similar to that of Theorem 4.1 and we focus on the modifica-
tions of it required to prove Theorem 4.2. Again, we focus on the case α ≥ 1 since the complementary
case follows the same lines with the obvious modifications. Let x∗ ∈ arg minx∈K

∑T
t=1 x · ft. Ap-

plying Lemma 2.2 with respect to the sequence of points {ỹt}Tt=1 and the sequence of losses {f̂t}Tt=1,
we have that

T∑
t=1

ỹt · f̂t − α ·
T∑
t=1

x∗ · f̂t ≤
α2R2

η
+
η

2

T∑
t=1

‖f̂t‖2.

Taking expectation with respect to the random variables b1, i1, ..., bT , iT and noting that for all
t ∈ [T], both x∗ and ỹt are independent of the randomness in f̂t, we have that

E{(bt,it)}Tt=1

[
T∑
t=1

ỹt · ft

]
− α ·

T∑
t=1

x∗ · ft ≤
α2R2

η
+ T

ηd2C2β2

2γ
,

were we have used the observations that

Ebt,it [f̂t] = γ

d∑
i=1

1

d
· dq

>
i ft
γ

Q−1qi =

d∑
i=1

Q−1qiq
>
i ft = Q−1Qft = ft,

Ebt [‖f̂t‖2] = γ
d2

γ2
`2t‖Q−1qit‖2 + (1− γ)0 ≤ (dCβ)2

γ
.

As in the proof of Theorem 4.1, for every iteration t ≥ 1, let us denote pt+1 =
∑N
i=1 aivi,

s̄t =
∑N
i=1 aisi, where (a1, ..., aN), {(v1, s1), ..., (vNt

, sN)} are the outputs of the call to Algorithm
2 on that iteration. Also define p1 = ỹ1. Again, by the guarantee of Lemma 3.2, we have that

E{(bt,it)}Tt=1

[
T∑
t=1

pt · ft

]
− α ·

T∑
t=1

x∗ · ft ≤
α2R2

η
+ T

ηd2C2β2

2γ
+ 3TεF.

Since pt is dominated by s̄t = E[st] for all t ∈ [T], we have that

E{(bt,it,st)}Tt=1

[
T∑
t=1

st · ft

]
− α ·

T∑
t=1

x∗ · ft ≤
α2R2

η
+ T

ηd2C2β2

2γ
+ 3TεF.

16

Finally, since

∀t ∈ [T] : Ebt [ŝt · ft] = (1− γ)st · ft + γqit · ft
{
≤ st · ft + γC if α ≥ 1
≥ st · ft − γC if α < 1

,

we have that

E

[
T∑
t=1

ŝt · ft

]
− α ·

T∑
t=1

x∗ · ft ≤
α2R2

η
+ T

ηd2C2β2

2γ
+ 3TεF + TγC,

as required.

We now turn to upper bound the overall number of queries to the approximation oracle of K. Note
that we require to compute a new approximated projection only after rounds for which it holds
that bt = EXPLORE, since otherwise it holds that f̂t = 0, and there is no update to the iterates
maintained by Algorithm 3. For any t ∈ [T] we define the indicator variable:

It ←
{

1 if bt = EXPLORE;
0 if bt = EXPLOIT.

Define F̂ := dCβ
γ , and observe that for all t ∈ [T] it holds that

‖f̂t‖ ≤
∥∥∥∥dQ−1qit`tγ

∥∥∥∥ ≤ d

γ
|qit · ft| · ‖Q−1qit‖ ≤

d

γ
Cβ = F̂ .

Now, we continue to bound the number of calls to Algorithm 2, very similarly to the analysis in the
proof of Theorem 4.1.

Let kt be the number of iterations it took Algorithm 2 to terminate when invoked on iteration t
of Algorithm 3 (w.l.o.g. this happens when Algorithm 5 sends the feedback f̂t to Algorithm 3),
and note that E[K(η, ε, γ)] = 1

T E
[∑T−1

t=1 kt

]
· O
(
d2 ln

(
(α+1)R

ε

))
. Note that for all t ≥ 1,

yt+1 = ỹt − Itηf̂t. Thus, by Lemma 3.2, it follows that on any iteration t,

dist2(ỹt+1,CH(αK)) ≤ dist2(yt+1,CH(αK))− (kt − 1)ε2

= dist2(ỹt − Itηf̂t,CH(αK))− (kt − 1)ε2

≤ (dist(ỹt,CH(αK)) + ItηF̂)2 − (kt − 1)ε2

= dist2(ỹt,CH(αK)) + 2ItηF̂dist(ỹt,CH(αK)) + Itη
2F̂ 2 − ktε2 + ε2.

Rearranging, summing over all iterations 1...T−1, and recalling that for all t, dist(ỹt−1,CH(αK)) ≤√
2αR, we have that

T−1∑
t=1

kt ≤
1

ε2

(
dist2(ỹ1,CH(αK))− dist2(ỹT ,CH(αK)) + 2

√
2

T−1∑
t=1

ItηαF̂R+

T−1∑
t=1

Itη
2F̂ 2 + (T − 1)ε2

)
.

Taking expectation with respect to the random variables I1, ..., IT−1 we have that

E

[
T−1∑
t=1

kt

]
≤ (T − 1)

(
1 +

2
√

2γηαF̂R+ γη2F̂ 2

ε2

)

= (T − 1)

(
1 +

2
√

2ηαβdCR+ (ηdCβ)2/γ

ε2

)
,

as required.

17

	Introduction
	Additional related work

	Preliminaries
	Online linear optimization with approximation oracles
	Online linear optimization with full information
	Bandit feedback

	Additional notation
	Basic algorithmic tools
	The extended approximation oracle
	Online gradient descent with and without feasibility

	Oracle-efficient Computation of (infeasible) Projections onto CH(K)
	Efficient Algorithms for the Full Information and Bandit Settings
	Algorithm for the full information setting
	Algorithm for the bandit information setting

	The KKL approach
	Proofs Omitted from Section 2
	Proof of Lamma 2.1
	Proof of Lamma 2.2

	Lemmas and Proofs Omitted from Section 3
	Proof of Lemma 3.1
	Proof of Lemma 3.2

	Algorithms and Proofs Omitted from Section 4
	Proof of Theorem 4.1
	Algorithm for the bandit setting and proof of Theorem 4.2

