A Proof of Theorem 2

Theorem 2 (Mass Transport Equation for Point Processes). Let A(t) := \(t|H,- ) be the conditional
intensity function of the point process N (t) and ¢(x,t) := P[N(t) = x|H;-] be its conditional
probability mass function; then ¢(x,t) satisfies the following differential-difference equation:

- L 0p(zt)  [AB)d(x,t) FADG(x —1,t) ifx=1,2,3, -
ol t) = =g = {—A(t)a;(g;,t) if 2= 0 @

Proof. For the simplicity of notation, we define a functional operator F [(z)} as follows:

Flo) = =A®)o(x,t) + Mt)o(x — 1, )z > 1],
where I(-) is an indicator function.

Our goal is to prove F [gzNS] = ¢,. For the simplicity of notation, we define the inner product [11]
between functions f(z) and g(x) as the summation of the product of of f(z) and g(x), where z € N:

(f.9) = _ f(@)g(x)
x=0

To prove the equality ¢, = F|[@], we will prove that the equality (v, ¢;) = (v, F[4]) holds for any
test function v(x). Then the equality ¢ = F[¢] follows from the famous Fundamental Lemma of
Calculus of Variations [15]. To show the above equality, we start by computing (v, ¢;).

Computing (v, ét) According to the definition of expectation and the fact that qg(m, t) is the
conditional probability mass, we have

Ep(N()Hy-] =D v@PNE) =2l ] =D v(@)d(,t) = (v,0).

Taking the gradient with respect to ¢ yields

OE[v(N (t))|H- S ~ -
[U( ({gt)” t ] — Zmzov(x)¢t($’t) _ (U7¢t)- (8)
Next, we obtain another expression for (v, ¢; ). First we show the following property of dv(N (t))
do(N(t)) = (o(N(t) +1) = v(N(t)))dN(t) ©)

In fact, from the definition of the differential operator d, we have the following property:
dv(N(t)) == v(N(t+dt)) —v(N(t)) = v(N(t) +dN(t)) —v(N(t))

Since dN(t) = {0,1}, if dN(¢) = 0, we have dv(N(t)) = 0; otherwise, we have dv(N(t)) =
v(N(t) + 1) — v(N(t)). For both cases, equation (9) holds.

Next, we integrate both sides of (9) on [0, ¢] and express v(N(t)) as follows:
t
v(N(t)) = v(N(0)) +/ (v(N(t) + 1) — v(N(t)))dN () (10)
0

Given H,-, we take the conditional expectation of (10) and obtain the following expression:

t
Bu(N(0)[H-) = o(N(O0) + B[ [ (V(0) + ) —o(NO)A@de[s| D
0
Now we differentiate both sides of (11) with respect to time ¢ and obtain the following expression:

BNl g2 / (vt as| )|

= E[BR)(V(0) [, |
=37 BRl(®)d.1)
= (B[], 9) "
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where B[v] is another functional operator defines as

B[u](N(t)) = (v(N(t) +1) = v(N (1)) A(t) (13)

Since (12) and (8) are equivalent, we have:

(v, é1) = (B[v], 9)
Now we have finished the first part of the proof. In the second part, our goal is to move the operator
from test function v to the conditional probability mass function ¢ and prove (B[v], ¢) = (v, F[¢]).
We start by computing (B[v], ¢) as follows.

Computing (B[v], ). We define a new ' post-jump variable as y = « + 1, and conduct a change of
variable from z to y = x + 1 in (B[v], ¢). Specifically, we express (B[v], $) as follows

oo oo o0

> (@ +1) —v@)ABG(x,t) = > vz + DABG(x,t) = > v(@)A(t)d(, 1)
=0 x=0 x=0
=Y v@ABOe(y —1,) = > v(@AB)d(x,t)  (14)
y=1 =0

Next, we use an indicator function and let the value of y to start from 0 in the first term of (14):

S vABG(y — 1,6) = > vm)AB)d(y — 1, 1)y > 1]
y=1 y=0
= (v(). Ay — 1,0)1y > 1)) (1s)
Now we substitute (15) back to (14) and obtain the following equation:
> (@ +1) = v(@) A, t) = (o), AO)Sy — 1.Ily > 1]) = (v(@), A(B)d(x,1))
x=0

= (0(@), A3 — 1,01 > 1)) = (v(@), AO)3(, 1))
= (v, Flg]) (16)

Hence, for an arbitrary function v(x), we have shown the following equality:

(vvdgt) = (B[U]vé) = (va[(g])
This yields ¢; = F[¢] and the proof is now complete. O
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B Proof of unbiasedness of the estimator for the probability mass function

We just need to show the following equality: ¢(z,t) = Eq, [¢(x, t)]. For the simplicity of notation,
we define the inner product between functions f(x) and g(x) as (f,g) := >_, f(x)g(x), where
e N

First, according to the definition of expectation, we have

E[f(N(#)] := (£ ¢)

Next, from the definition of conditional probability mass, g(#;- ) can be expressed as
g(Hi-) =D f@)b(z,t) = (f,9) (17)

Taking expectation to both sides of (17) yields
Ey, [9(He-)] = (f, En,_ [4])

Finally, since E[f(N(?))] = Ey, [9(H:- )]s we have (f,9) = (f, By, [¢]), which holds for an

arbitrary function f. Hence the equality Ey, [¢] = ¢ follows from the Fundamental Lemma of
Calculus of Variations [15].
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C Proof of Theorem 1

Theorem 1. For time t > 0 and an arbitrary function f, we have:
VAR[g(H:-)] < VAR[f(N(1))] (18)

Proof. The proof contains two steps. We first compute the expected value of the conditional vari-
ance E {VAR [ f(N (t))|7—£t7} }, and next compute the variance of the conditional expected value

VAR [g(%ﬁ )} .

(i) Expected value of the conditional variance. Since VAR[f(N(t))|H;-] is a random variable,
we can compute its expected value. Using the definition of variance, i.e., VAR[f (N (¢))|H;-] =

ELF(N(2))?[H,-] ~ [BLF(N (1)) H,- 1%, we have
B[VAR[f(N0)H,- || =E[E[fv o)1 || ~E[[rvenne-] ] a9

= Elf(N®)] - B[ [E (V@) -] | 0)

(if) Variance of the conditional expected value. We express VAR [g(Ht_ )} as follows
VAR[g(Hr)} :VAR[E[ (N(t))|%(t)” @1)
o] Bon o
- ]E[IE[ ) H,y- } ] E[f(N(t)]2 23)

Combining (20) and (23) yields the followmg equation:
VAR[g(H, )] +E[VAR[f(N(1)[H,-] | = VARIN(1)]

Next, we show that the inequality in our theorem is strict. According to the definition of counting
process, we have N (0) = 0. Moreover, we are only interested in the scenarios where the number
of events are positive, i.e., N(¢) > 0 for future time ¢ > 0. Since the point process N(¢) is right
continuous and not a predictable process [4], we obtain the fact that conditioning on H,—, there
is a stochastic jump at time ¢ and the value of f(NN(t)) is random and not a constant. Hence the

conditional variance VAR [ f(N(t))|H,-] is positive and we have E{VAR[ (N(t))|[Hs- H > 0.
The proof is now complete.

O
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D Details on the Runge-Kutta (RK) method

We present details of the RK method. For the simplicity of notation, we set @' (t) = f(¢,t) =

Q(t)o(1).

The RK method divides the interval [ty, t;41] into intervals [7;, 7;41], for¢ =0, .- | I, with AT =

Ti+1—7;. This method conducts linear extrapolation on contiguous subintervals [7;, 7;11]. Specifically,

it starts from 7y := t, and within [7o, 71| the RK method of stage s computes y,, = f (cZ)m7 T0 +

ATeyy,) at s recursively defined input locations, form = 1,-- - | s, where D 1S computed as a linear
m

combination of previous Y, <, as (Z)m = (;30 + AT 2”;11 WmnYn- Then, it returns the prediction
for the solution at 71 as ¢(19 + A7). In the compact form,

m—1 s
Ym = f((io + AT Z WmnYn, T0 +A7-Cm>a m=1,---,s, é(TO +AT) = &0 + AT Z bmYm
n=1

m=1

Next, (]3(7'0 + A7) is taken as the initial value for 7y = 79 + A7 and the process is repeated until
77 := tr4+1. Note that RK outputs the conditional probability mass at all timestamps {7 }; hence it
captures the mass transport on [tx, tx11]-

The main computation in RK is the matrix-vector product. Since the matrix Q(t) is sparse and
bi-diagonal with O (M) non-zero elements, the cost for this operation is only O(M).
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