
A Proofs

Proof of Property 1. Suppose v ∈ S ∈ S(xt). Then there exists α ∈ (0, 1) and z ∈ P such that
xt = αv + (1 − α)z. If 〈aj ,xt〉 = bj , then the fact that 〈aj , z〉 ≤ bj implies that 〈aj ,v〉 = bj .
Conversely, suppose v ∈ P satisfies 〈aj ,xt〉 = bj ⇒ 〈aj ,v〉 = bj for all j. Then consider
zα := 1

1−α (xt − αv) for α ∈ (0, 1). If j satisfies 〈aj ,xt〉 = bj , then clearly 〈aj , zα〉 = bj .
Otherwise if 〈aj ,xt〉 < bj , then limα↓0 〈aj , zα〉 = 〈aj ,xt〉 < bj . Since the number of inequality
constraint is finite, we can guarantee that zα ∈ P as long as the value of α is small enough.

Proof of Lemma 1. Denote U = (u1, . . . ,us). Clearly the lowest possible value of 1>∆ is at most
the solution to the following optimization problem

min
∆,z

1>∆ (24)

s.t. 0 ≤∆ ≤ γ (25)

y = x− U∆ + (1>∆)z (26)
z ∈ P, (27)

where the inequalities are both elementwise. Obviously the feasible region is not empty because
∆ = γ and z = y is always feasible. When ∆ = 0 is feasible (i.e. y = x), (33) is obviously satisfied.
Otherwise, we have

z = (1>∆)−1 (y − x + U∆) ∈ P. (28)

Notice that Cz = d is automatically satisfied because by x,y,ui all lying in P , we have

Cz = (1>∆)−1 (Cy − Cx + CU∆) = (1>∆)−1
(
d− d + d1>∆

)
= d. (29)

So to ensure z ∈ P , we just need to further enforce Az ≤ b, which is equivalent to:

(b1> −AU)∆ ≥ A(y − x). (30)

Denote F = b1> −AU . Then by the definition of gk, all entries in the k-th row of F are either 0, or
at least gk. For any i ∈ [s], there exists a row index ki of F such that Fki,i > 0 and the inequality in
(30) holds with equality for the ki-th row. This is because, we can otherwise further reduce ∆i to
improve the objective function. Denoting by I(ki) the set of columns that are not zero in the ki-th
row of F , we now have

Fki,:∆ = a>ki(y − x) ⇒ a>ki(y − x) ≥ gki
∑

j∈I(ki)

∆j . (31)

Therefore, denoting K = {ki : i ∈ [s]}, we have |K| ≤ s and we finally arrive at

s∑
i=1

∆i ≤
∑
k∈K

∑
i∈I(k)

∆i ≤
∑
k∈K

1

gk
a>k (y − x) =

n∑
j=1

[(∑
k∈K

akj
gk

)
(yj − xj)

]
(32)

≤ ‖y − x‖

 n∑
j=1

(∑
k∈K

akj
gk

)2
1/2

≤ Hs ‖y − x‖ .

Incidentally, if P is not a polytope, then generally there is some ak such that the gk defined in (5) is
0, even though ak is not an equality constraint. Besides there can be an uncountable number of linear
inequality constraints to define, say, a unit L2 ball.

Before proving (4), we need a slight enhancement of Lemma 1 that swaps the role of x and y.
Lemma 5. Let x,y ∈ P . Suppose y can be written as the convex hull of s vertices of P . Then we
can write x as the convex combination of vertices of P , x =

∑k
i=1 λivi for some integer k, such that

y can be written as y =
∑k
i=1(λi −∆i)vi + (1>∆)z with ∆i ∈ [0, λi] for all i ∈ [k], z ∈ P , and

1>∆ ≤
√
Hs ‖x− y‖ . (33)
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Proof of Lemma 5. By assumption we can write y =
∑s
i=1 γiui for ui being vertices of P , γi ≥ 0,

and 1>γ = 1. By Lemma 1, x can be written as x =
∑s
i=1(γi − δi)ui + (1>δ)w, where w ∈ P ,

δi ∈ [0, γi], and
∑s
i=1 δi ≤ Hs ‖x− y‖.

Now suppose w =
∑t
j=1 αjsj , where sj are vertices of P , αj ∈ [0, 1] and 1>α = 1. Letting

r = 1>δ, we have

x =
∑
i

(γi − δi︸ ︷︷ ︸
λi

)ui +
∑
j

(rαj︸︷︷︸
λ′j

)sj (34)

y =
∑
i

(γi − δi︸ ︷︷ ︸
λi

− 0︸︷︷︸
∆i

)ui +
∑
j

(rαj︸︷︷︸
λ′j

− rαj︸︷︷︸
∆′j

)sj + r
∑
i

δi
r
ui︸ ︷︷ ︸

z

. (35)

So now we have found a decomposition of x, where {vi} corresponds to the union of {ui} (with
weights λi = γi− δi) and {sj} (with weights λ′j = rαj). Furthermore, ∆i = 0 for ui and ∆′j = rαj
for sj . z corresponds to

∑
i
δi
r ui ∈ P , and notice that

∑
i ∆i +

∑
j ∆′j = r =

∑
i δi.

One might thus wonder why we do not eliminate inequality constraints altogether by introducing
slack variables. The answer is that first the diameter D of the new polytope will grow in the
number of constraints which can be arbitrarily higher than the original dimensionality, and the rate of
convergence depends on D2. Second, even if the original polytope has all vertices being binary, the
vertices of the augmented polytope are not necessarily binary (e.g. Qk with y = k − 1>x). So in the
sequel, we will not complicate ourselves with “smart” reformulations of the polytope.

Proof of Equation (4). By strong convexity, we have
√

2Hsht/α ≥
√
Hs ‖xt − x∗‖. By Lemma 5,

we can write xt as a convex combination of xt =
∑k
i=1 ui and x∗ as x∗ =

∑k
i=1(λi − ∆i)vi +

(1>∆)z, where ∆i ∈ [0, λi], z ∈ P , and 1>∆ ≤
√
Hs ‖xt − x∗‖ ≤

√
2Hsht/α. Therefore, we

get the first inequality in (4) by〈√
2Hsht/α(v+

t − v−t ),∇f(xt)
〉
≤

k∑
i=1

∆i

〈
v+
t − v−t ,∇f(xt)

〉
(36)

≤
k∑
i=1

∆i 〈z− vi,∇f(xt)〉 = 〈x∗ − xt,∇f(xt)〉 , (37)

where the first inequality follows since
〈
v+
t − v−t ,∇f(xt)

〉
≤ 0, and the second inequality follows

from the optimality of v+
t and v−t (Property 1).

Lemma 6 (Feasibility of iterates for PFW-1). Suppose P is an SLP, and the reference step sizes
{γt}t≥1 are contained in [0, 1]. Then the iterates generated by PFW-1 are always feasible.

Proof of Lemma 6. We prove by induction that st := xt/ηt = qtxt is integral in all coordinates and
xt ∈ [0, 1]n. When t = 1, since x1 is an extreme point, it must lie in {0, 1}n. Then s1 = q1x1 must
be integral because q1 is. Now assuming the induction holds for some t ≥ 1, then

st+1 = qt+1xt+1 = qt+1(xt + ηt(v
+
t − v−t )) =

qt+1

qt
zt, where zt := st + v+

t − v−t . (38)

Consider three cases noting that both v+
t and v−t are in {0, 1}n:

• If xt(i) = 0, then v−t (i) = st(i) = 0, and so zt(i) ∈ {0, 1}.

• If xt(i) = 1, then v−t (i) = 1 and st(i) = qt. So 0 ≤ zt(i) ≤ qt + 1− 1 = qt.

• If xt(i) ∈ (0, 1), then st(i) ∈ [1, qt − 1]. So 0 ≤ zt(i) ≤ qt − 1 + 1 = qt.

To summarize, in all these cases, xt+1(i) = zt(i)/qt ∈ [0, 1], and zt(i) is obviously integral.
Therefore, st+1 = qt+1

qt
zt is integral as qt+1

qt
is integral.
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Proof of Lemma 2. To present a unified proof, we do not consider the phase of t < n0 and t ≥ n0

separately. When t < n0 we can equivalently set γt = 1 and let AFW-1 always take a FW step up
to step n0. We prove by induction that st := qt−1xt is integral in all coordinates and xt ∈ [0, 1]n.
When t = 1, since x1 is an extreme point, it must lie in {0, 1}n. Then s1 = q0x1 = x1 must be
integral because q0 = 1. Now assuming the induction holds for some t ≥ 1, then

st+1 = qtxt+1 =

qt
(
qt−1
qt

xt + 1
qt
v+
t

)
= 2sqt−1xt + v+

t = 2sst + v+
t , if step t is FW

qt

(
qt+1
qt

xt − 1
qt
v−t

)
= 2sqt−1xt − v−t = 2sst − v−t , if step t is away

.

(39)

So in both cases, st+1 is integral by induction. Obviously xt+1 ∈ [0, 1]n if step t is FW. When step t
is away, consider three cases noting that both v+

t and v−t are in {0, 1}n:

• If xt(i) = 0, then v−t (i) = 0 and st(i) = 0. Thus st+1(i) = 0 and xt+1(i) = 0.

• If xt(i) = 1, then v−t (i) = 1 and xt+1(i) = 1.

• If xt(i) ∈ (0, 1), then st(i) ∈ [1, qt−1 − 1]. So

xt+1(i) =

(
1 +

1

qt

)
xt(i)−

1

qt
v−t (i) =

1

qt

(
2sqt−1xt(i)− v−t (i)

)
 ≥ 1

qt
(2s − 1) ≥ 0

≤ 1
qt

2s(qt−1 − 1) = 2s(qt−1−1)
2sqt−1−1 ≤ 1

.

Proof of Lemma 3. By Eq 4 of [4], we have ht+1 ≤ (1 − ηt)ht + η2
tM2. Clearly h1 ≤ M2 and

h2 ≤M2. Assume the result holds for some t ∈ [2, n0 − 1]. Then by induction,

ht+1 ≤
t− 1

t
ht +

1

t2
M2 ≤

t− 1

t

3

t
M2 log t+

1

t2
M2 ≤

3

t+ 1
M2 log(t+ 1).

Proof of Lemma 4. b) Since γ−1
t+1 − γ

−1
t increases in t, so

γ−1
t+1 − γ

−1
t ≥ 1 ⇔ γ−1

n0+1 − γ−1
n0
≥ 1 (40)

⇔ (1− c1)1−n0 ≥ M2
1 c0

θ2M2
2

(1− (1− c1)−0.5)−2 ≈ M2
1 c0

θ2M2
2

4

c21
(41)

⇔ c0n0

3M2 log n0
≥ M2

1 c0
θ2M2

2

4

c21
⇔ n0

log n0
≥ 12M2

1

θ2M2c21
. (42)

If we approximate n0/ log n0 by n0, then using n0c1 ≈ 1 we obtain

c1 ≥
12M2

1

M2
⇔ M2

1

M2

θ − 4

4θ2
≥ 12M2

1

θ2M2c21
. (43)

This holds as equality since θ = 52. If we do not ignore the log term, then note that for n0/ log n0 = a,
we only need to set n0 = a · log a · log log a . . ., until the log of the log (and so on) is less than 1.
Since log a = log(12M2

1 /(θ
2M2c

2
1)) can be considered as a small universal constant, the subsequent

proof only needs to be scaled slightly.

a) Obviously γt is decreasing and hence it suffices to show γn0 ≤ 1. By using (41), we get

γn0
=

M1

θM2

√
c0(1− c1)(n0−1)/2 ≤ M1

θM2

√
c0 ·

θM2c1
2M1
√
c0

=
c1
2
< 1. (44)

c) By definition, ηt = q−1
t ≤ 1/

⌈
γ−1
t

⌉
≤ γt. To show 1

4γt ≤ ηt, it suffices to show η−1
t ≤ 2

⌈
γ−1
t

⌉
because

⌈
γ−1
t

⌉
≤ 2γ−1

t (γt ≤ 1). To prove η−1
t ≤ 2

⌈
γ−1
t

⌉
, we first note that it holds for t = n0

because η−1
n0

= n0 =
⌈
c−1
1

⌉
≤ 2

⌈
2c−1

1

⌉
≤ 2

⌈
γ−1
n0

⌉
(the last inequality is by (44)). Assuming

qt = η−1
t ≤ 2

⌈
γ−1
t

⌉
holds for some t ≥ n0, we next perform induction on t+ 1 by considering four

cases.
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• s = 0 and the step is FW. Note qt+1 = qt + 1 ≤ 2
⌈
γ−1
t

⌉
+ 1 ≤ 2

⌈
γ−1
t+1

⌉
− 1. The last

inequality is because γ−1
t+1 − γ

−1
t ≥ 1 (in b) implies

⌈
γ−1
t+1

⌉
−
⌈
γ−1
t

⌉
≥ 1.

• s = 0 and the step is away. By induction, qt+1 = qt−1 ≤ 2
⌈
γ−1
t

⌉
−1 < 2

⌈
γ−1
t+1

⌉
because

γt is decreasing in t.

• s ≥ 1 and the step is FW. By definition, 2s−1qt + 1 <
⌈
γ−1
t+1

⌉
. Thus qt+1 = 2sqt + 1 ≤

2
⌈
γ−1
t+1

⌉
− 1 < 2

⌈
γ−1
t+1

⌉
.

• s ≥ 1 and the step is away. By definition, 2s−1qt − 1 <
⌈
γ−1
t+1

⌉
. Since both sides of the

inequality are integers, this means 2s−1qt − 1 ≤
⌈
γ−1
t+1

⌉
− 1. Thus

qt+1 = 2sqt − 1 ≤ 2
⌈
γ−1
t+1

⌉
− 1 < 2

⌈
γ−1
t+1

⌉
.

Proof of Example 5. In fact let n = 2q for some positive integer q, and x1 = ε
∑n
i=1 iei. Then

it is easy to see that x1 = H · nε
n−1 (20, 21, . . . , 2q−1)>, where H is a 2q × q matrix whose rows

enumerate all the binary assignments of q bits. So x1 is the convex combination of q + 1 vertices (0
included). It turns out that AFW-2 will first pick an away direction 1, then another away direction
1− e1, followed by 1− e1 − e2, etc.

B Details of Updates for AFW and PFW on SVM

Given the gradient g, the FW and away directions can be computed efficiently. The FW direction
needs to solve

min
v

v>g, s.t. v ∈ [0, 1]n,
∑

i∈P
vi =

∑
j∈N

vj , (45)

where P and N are the index set of positive and negative examples respectively. To solve it, one just
needs to sort {gi : i ∈ P} and {gj : j ∈ N} separately in a decreasing order, e.g. g+

i1
≥ g+

i2
≥ . . ..

Then we just need to find the smallest k such that g+
ik

+ g−jk < 0, or |P |, or |N |, whichever is the
smallest. The away direction is similar, and P(xt) simply forces some vi to be either 0 or 1.

The final line search can be written as minη≥0
1
2η

2d>t Qdt + η x>t Qdt − η 1
C1
>dt, s.t. xt + ηdt ∈

[0, 1]n. We have shown above how to compute Qdt efficiently. The constraint effectively restricts η
to an interval, and so the optimal η for the quadratic objective can be found in closed form.

B.1 Computational efficiency per iteration.

Denote z = [u;v]. At each step t of AFW and PFW, one needs to compute the gradient in z, which
is exactly Qzt. Suppose the part corresponding to u is gu. Then the FW direction needs to solve
minu∈PK

u>gu. This can be easily solved by finding the largest K coordinates of gu. For away-step,
it simply clamps some elements in u to 0 or 1. So dt in AFW and PFW have at most 2K and 4K
nonzeros respectively, and it costs O(nK) time to update the gradient. The scheme is very similar to
that for dual SVM.

B.2 Translation between RC-Hull (23) and SVM Dual (20)

Theorem 4.4 of [21] showed how to convert the optimal (u,v) of RC-Hull to the optimal solution
of SVM-Dual. In short, one first computes θ of RC-Margin by θ = 1

K (Au − Bv). Then fixing
θ, we can find the optimal α and β for RC-Margin with a closed form (see Appendix B.3). Next
we compute a scaling factor δ = 2

α+β , and the C can be recovered by C = δ
K . Finally the optimal

x of SVM-Dual is simply (u>,v>)>, assuming all positive examples are indexed before negative
examples. As a result, the number of support vector in SVM-Dual is exactly the number of zeros in
the optimal solution of RC-Hull.

B.3 Finding α and β given θ in RC-Margin

Given w to find the biases α and β we need to solve the following optimization problem:
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min
α,β,ξ,η

D(
∑
i

ξi +
∑
i

ηi)− α+ β

s.t. Aiw − α+ ξi ≥ 0 ξi ≥ 0

−Biw − β + ηi ≥ 0 ηi ≥ 0

Solution. Note that α and β are decoupled in the above equation so we’re going to solve them
separately:

min
α,ξ

D
∑
i

ξi − α

s.t. ξi ≥ α− ai ξi ≥ 0,

where ai = Aiw are constants. WOLG, assume a1 ≤ a2 ≤ ... ≤ an. Suppose α∗ is the solution
to this problem. We can easily show that a1 ≤ α∗ 2. Suppose k is the largest index that ak ≤ α∗.
Hence, we’ll have:

ξ∗i =

α∗ − ai if i ≤ k
0 if i > k

.

Thus, we have:

D
∑
i

ξ∗i − α∗ = D

k∑
i=1

(α∗ − ai)− α∗ = (kD − 1)α∗ −D
k∑
i

ai.

So α∗ is minimizing this expression subject to α∗ ≥ ak. It is obvious in this case α∗ = ak. Thus, we
can write down:

D
∑
i

ξ∗i − α∗ = ((k − 1)D − 1)ak −D
k−1∑
i

ai

So the problem is to find the k that minimizes −(1 − (k − 1)D)ak − D
∑k−1
i ai. As long as

k − 1 ≤ 1
D this expression is negative of a convex combination of a1, a2, ..., ak and since a′is are

increasing in k, the expression is decreasing in k as well until we reach a k that k − 1 > 1
D . After

that point the expression is increasing in k since the coefficient of largest ai is positive. To see this,
consider two consecutive expressions

((k − 1)D − 1)ak −D
k−1∑
i

ai < (kD − 1)ak+1 −D
k∑
i

ai

⇔ (kD − 1)ak < (kD − 1)ak+1.

So as long as kD < 1 or k < 1
D , the expression is decreasing in k and when k > 1

D it is increasing
so the minimum is where k = d 1

D e. If k = 1
D , the expression is the same for k and k + 1 (In this

case any ak ≤ α∗ ≤ ak+1 is a solution to this problem).

2Suppose α∗ < a1. Therefore, ξ∗i = 0 for all i. D
∑

i ξ
∗
i − α∗ = −α∗ > −a1.
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