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Figure 4: Plots of rejection rate against the number of test locations J in the three toy problems in
Section A.

The aim of this section is to explore the test power of the proposed FSSD test as a function of the
number of test locations J . We consider three synthetic problems to illustrate three phenomena
depending on the characteristic of the problem. We note that the test power may not necessarily
increase with J . Figure 4 shows the rejection rate as a function of the test locations J in the three
problems described below. In all cases, the sample size is set to n = 500, the train/test ratio is 50%,
and the significance level is α = 0.05. All rejection rates are computed with 200 trials with data
sampled from the specified q in every trial.

We emphasize that the FSSD test is not designed to be used with large J , since doing so defeats the
purpose of a linear-time test. We show in the main text in Section 2 that using J = 5 is typically
sufficient in practice.

Same Gaussian (SG): In this problem, p = q = N (0, I) in R5 i.e., H0 is true. It can be seen in
Figure 4a that both the FSSD tests with and without optimization achieve correct false positive rate at
roughly α for all J considered. That is, under H0, the false rejection rate stays at the right level for
all J .

Gaussian vs. Gaussian mixture model (GMM): This is a one-dimensional problem where
p = N (0, 1) and q = 0.9N (0, 1) + 0.1N (0, 0.12) i.e., a mixture of two normal distributions. In this
problem, p significantly differs from q in a small region around 0. This difference is created by the
second mixture component. The characteristic of this problem is the local difference of p and q.

Figure 4b indicates that using random test locations (FSSD-rand) does not give high test power. With
optimization (FSSD-opt), the power increases as J increases up to a point, after which it slightly
drops down and reaches a plateau. This behavior can be explained by noting that there is only a
very small region around 0 to detect the difference. More signal can be gained with diminishing
return by increasing the number of test locations around 0. When J is sufficiently high, the increase
in the variance of the statistic outweighs the gain of the signal (recall that the variance of the null
distribution increases with J). This increase in the variance reduces the test power.

Gaussian Variance Difference (GVD): This is a synthetic problem studied in [19] where p =
N (0, I) and q = N (0,diag(2, 1 . . . , 1)) in R5. In this case, the region of difference between q and
p exists only along the first dimension, and is broad.

In this case, Figure 4c shows that, with optimization, the power increases as the number of test
locations increases. Unlike the case of Gaussian vs. GMM, the region of difference in this case is
broad, and can accommodate more test locations to increase the signal. Despite this, we expect the
test power to reach a plateau when J is sufficiently large for the same reason as described previously.
In FSSD-rand, random test locations decrease the power due to the increase in the variance. Since
only one dimension is relevant in determining the difference of p and q, it is unlikely that random
locations are in the right region.
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B More Experiments
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Figure 5: Rejection rates of the six tests in the RBM problem with d = 50 and dh = 10.
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(a) d = 50, dh = 10
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(b) d = 50, dh = 40

Figure 6: Pairwise scatter plots of 1000 points drawn from RBMs. Only the first 4 variates out of 50
are shown. (a): RBM with d = 50 dimensions with dh = 10 latent variables. (b): RBM with d = 50
dimensions with dh = 40 latent variables.

Recall that in Section 5, we evaluate the test powers of all the six tests on the RBM problem with
d = 50 and dh = 40 (i.e., the number of latent variables). We aim to provide more evaluations in this
section. In [22], the setting of d = 50 and dh = 10 was studied. Here we consider the same setting
and show the results in Figure 5 where all other problem configurations are the same as in Section 5.

In Figure 5a, p is set to an RBM with parameters randomly drawn (described in Section 5), and q
is the same RBM with all entries of the parameter B ∈ R50×10 perturbed by independent Gaussian
noise with standard deviation σper, which varies from 0 to 0.06. We observe that the proposed
FSSD-opt and KSD perform comparably. Figure 5b considers a hard problem where only the first
entry B1,1 is perturbed by noise following N (0, 0.12), and the sample size n is varied. In both of
these two cases, the overall trend is similar to the case of d = 50 and dh = 40 presented in Figure 2.
It is interesting to note that FSSD-rand, relying on random test locations, performs comparably or
even outperforms FSSD-opt in the case of d = 50, dh = 10, but not in the case of d = 50, dh = 40.
This phenomenon can be explained as follows. In the case of d = 50, dh = 10, the data generated
from the RBM tend to have simple structure (see Figure 6a). By contrast, data generated from the
RBM with d = 50, dh = 40 (more latent variables) have larger variance, and can form a complicated
structure (Figure 6b), requiring a careful choice of test locations to detect differences of p and q.
When d = 50, dh = 10, however, random test locations given by random draws from a Gaussian
distribution fitted to the data are sufficient to capture the simple structural difference. This explains
why FSSD-rand can perform well in this case. Additionally, FSSD-rand also has 20% more testing
data, since FSSD-opt uses 20% of the sample for parameter tuning.

Figure 5d shows the rejection rates of all the tests as the sample size increases when p and q are
the same RBM. All the tests have roughly the right false rejection rates at the set significance level
α = 0.05.
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C Proof of Theorem 1

Recall Theorem 1:
Theorem 1 (The Finite Set Stein Discrepancy (FSSD)). Let V = {v1, . . . ,vJ} ⊂ Rd be random
vectors drawn i.i.d. from a distribution η which has a density. Let X be a connected open set
in Rd. Define FSSD2

p(q) := 1
dJ

∑d
i=1

∑J
j=1 g

2
i (vj). Assume that 1) k : X × X → R is C0-

universal [6, Definition 4.1] and real analytic i.e., for all v ∈ X , f(x) := k(x,v) is a real analytic
function on X . 2) Ex∼qEx′∼qhp(x,x

′) < ∞. 3) Ex∼q‖∇x log p(x) − ∇x log q(x)‖2 < ∞. 4)
lim‖x‖→∞ p(x)g(x) = 0.

Then, for any J ≥ 1, η-almost surely FSSD2
p(q) = 0 if and only if p = q.

Proof. Since k is real analytic, the components g1, . . . , gd of g are real analytic by Lemma 15. For
each i = 1, . . . , d, if gi is real analytic, then

∑J
j=1 g

2
i (vj) = 0 if and only if gi(y) = 0 for all

y ∈ X , η-almost surely (require that the domain X be a connected open set) [24]. This implies that
1
dJ

∑d
i=1

∑J
j=1 g

2
i (vj) = 0 if and only if g(y) = 0 for all y ∈ X , η-almost surely. By Theorem 14,

g = 0 (the zero function) if and only if p = q.

D More on Bahadur Slope

In practice, the main difficulty in determining the approximate Bahadur slope is the computation of
−2 plimn→∞

log(1−F (Tn))
ρ(n) , typically requiring the aid of the theory of large deviations. There are

further sufficient conditions which make the computation easier. The following conditions are due to
[12, 13], first appearing in [1] in a slightly less general form.
Definition 8. Let D(a, t) be a class of all continuous cumulative distribution functions (CDF) F
such that −2 log(1− F (x)) = axt(1 + o(1)), as x→∞ for a > 0 and t > 0.
Theorem 9 ([12, 13]). Consider a sequence of test statistic Tn. Assume that

1. There exists a function F (x) such that for θ ∈ Θ0, limn→∞ Pθ(Tn < x) = F (x), for all x,
and such that F ∈ D(a, t) for some a > 0 and t > 0 (see Definition 8).

2. There exists a continuous, strictly increasing function R : (0,∞) → (0,∞) with
limn→∞R(n) = ∞, and a function b(θ) with 0 < b(θ) < ∞ defined on Θ\Θ0, such
that for all θ ∈ Θ\Θ0, plimn→∞ Tn/R(n) = b(θ).

Then, −2 plimn→∞
log(1−F (Tn))

[R(n)]t
= a [b(θ)]

t
=: c(θ), the approximate slope of the sequence Tn,

where ρ(n) = R(n)t (see Section 4).

Theorem 10 ([12, 13]). Consider two sequences of test statistics T (1)
n and T (2)

n . Let F (i) be the
CDF of T (i)

n for i = 1, 2. Assume that each sequence satisfies all the conditions in Theorem 9 with
F (i) ∈ D(ai, ti). Further, assume that

[
R(1)(x)

]t1
=
[
R(2)(x)

]t2 for all x. Then

plim
n→∞

log(1− F (1)(T
(1)
n ))

log(1− F (2)(T
(2)
n ))

=
c(1)(θ)

c(2)(θ)
= ϕ1,2(θ),

which is the approximate Bahadur efficiency of T (1)
n relative to T (2)

n .

With Theorem 9, the difficulty is in showing that F ∈ D(a, t) for some a > 0, t > 0. Typically
verification of the assumption 2 of Theorem 9 poses no problem. [1] showed that the CDF of N (0, 1)
belongs to D(1, 2) and the CDF of χ2

k (chi-squared distribution with k degrees of freedom, fixed k)
belongs to D(1, 1). The following results make it easier to determine whether a given CDF is in the
class D(a, t).
Theorem 11 ([13, Theorem 6, 7]). Let X have CDF F ∈ D(a, t), and X1, . . . , Xm be independent
random variables, each with CDF Fi ∈ D(a, t). Then, the following statements are true.

1. If b > 0, then the CDF of bX is in D(ab−t, t).

13



2. X − b has CDF in D(a, t) provided that t ≥ 1.

3. For r > 0, Xr has CDF in D(a, r−1t) provided that F (0) = 0.

4. max(X1, . . . , Xm) has CDF in D(a, t).

5. Let a1, . . . , am be non-negative real numbers such that amax := max(a1, . . . , am) > 0.
Then,

∑m
i=1 aiXi has CDF in D(a · a−tmax, t) provided that

∑m
i=1Xi has CDF in D(a, t)

and Xi ≥ 0 for all i = 1, . . . ,m.

E Proof of Theorem 3

Recall Theorem 3:
Theorem 3. Let Σ̂q := 1

n

∑n
i=1 τ (xi)τ

>(xi)− [ 1n
∑n
i=1 τ (xi)][

1
n

∑n
j=1 τ (xj)]

> with {xi}ni=1 ∼
q. Suppose that the test threshold Tα is set to the (1−α)-quantile of the distribution of

∑dJ
i=1(Z2

i −1)ν̂i

where {Zi}dJi=1
i.i.d.∼ N (0, 1), and ν̂1, . . . , ν̂dJ are eigenvalues of Σ̂q . Then, underH0, asymptotically

the false positive rate is α. Under H1, for {vj}Jj=1 drawn from a distribution with a density, the test

power PH1
(nF̂SSD2 > Tα)→ 1 as n→∞.

Proof. Under H0, p = q implies that Σ̂q = Σ̂p (empirical estimate of Σp). Let λj(A) denote the
jth eigenvalue of the matrix A. Lemma 16 implies that A 7→ λj(A) is continuous on the space of
real symmetric matrices, for all j. Since plimn→∞ ‖Σ̂p − Σp‖ = 0, by the continuous mapping
theorem, the eigenvalues of Σ̂p converge to the eigenvalues of Σp in probability. This implies
that

∑dJ
i=1(Z2

i − 1)ν̂i converges in probability to
∑dJ
i=1(Z2

i − 1)ωi as n→∞, where {ωi}dJi=1 are
eigenvalues of Σp. By Lemma 17, the quantile also converges, and the test threshold thus matches
that of the true asymptotic null distribution given in claim 1 of Proposition 2.

Assume H1 holds. Let t̂α, tα be (1 − α)-quantiles of the distributions of
∑dJ
i=1(Z2

i − 1)ν̂i and∑dJ
i=1(Z2

i − 1)νi, respectively, where {νi}dJi=1 are eigenvalues of Σq . By the same argument as in the
previous paragraph, t̂α converges in probability to tα, which is a constant independent of the sample
size n. Given {vj}Jj=1 ∼ η, where η is a distribution with a density, FSSD2 > 0 by Theorem 1. It
follows that

lim
n→∞

P
(
nF̂SSD2 > t̂α

)
= lim
n→∞

P
(

F̂SSD2 − t̂α
n
> 0

)
(a)
= P

(
FSSD2 > 0

)
= 1,

where at (a), we use the fact that F̂SSD2 converges in probability to FSSD2 by the law of large
numbers, and that limn→∞ t̂α/n = 0.

F Proof of Theorem 5 (Slope of nF̂SSD2)

Recall Theorem 5:
Theorem 5. The approximate Bahadur slope of nF̂SSD2 is c(FSSD) := FSSD2/ω1, where ω1 is the
maximum eigenvalue of Σp := Ex∼p[τ (x)τ>(x)] and ρ(n) = n.

Proof. We will use Theorem 9 to derive the slope. For the assumption 1 of Theorem 9, we first
show that the asymptotic null distribution belongs to the class D(a = 1/ω1, t = 1) as defined in
Definition 8. By Proposition 2, the asymptotic null distribution is

∑dJ
i=1 ωiZ

2
i −

∑dJ
i=1 ωi where

Z1, . . . , ZdJ
i.i.d.∼ N (0, 1) and ω1 ≥ · · · ≥ ωdJ ≥ 0 are eigenvalues of Σp. It is known from [1]

that the CDF of χ2
f is in D(1, 1) for any fixed degrees of freedom f . Thus, it follows from claim

5 of Theorem 11 that the CDF of
∑dJ
i=1 ωiZ

2
i is in D(a = 1/ω1, t = 1). Claim 2 of Theorem 11

guarantees that the CDF of
∑dJ
i=1 ωiZ

2
i −

∑dJ
i=1 ωi is in D(a = 1/ω1, t = 1) as desired.

For assumption 2 of Theorem 9, choose R(n) := n. It follows from the weak law of large numbers
that under H1, nF̂SSD2/R(n)

p→ FSSD2. By Theorem 9, the approximate slope is FSSD2/ω1.
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G Proof of Theorem 6 (Slope of
√
nŜ2

l )

Recall Theorem 6:

Theorem 6. The approximate Bahadur slope of the linear-time kernel Stein (LKS) test statistic
√
nŜ2

l

is c(LKS) = 1
2

[Eqhp(x,x′)]
2

Ep[h2
p(x,x

′)]
, where hp is the U-statistic kernel of the KSD statistic, and ρ(n) = n.

Proof. We will use Theorem 9 to derive the slope. By the central limit theorem,
√
n
(
Ŝ2
l − S2

p(q)
)

d→ N (0, 2Vq[hp(x,x′)]),

where Vq[hp(x,x′)] := Ex∼qEx′∼q[h
2
p(x,x

′)]−(Ex∼qEx′∼q[hp(x,x
′)])

2. UnderH0 : p = q, it fol-

lows that S2
p(q) = Ex∼qEx′∼q[hp(x,x

′)] = 0 by Theorem 14, and
√
nŜ2

l
d→ N (0, 2Vp[hp(x,x′)])

where Vp[hp(x,x′)] := Ex∼pEx′∼p[h
2
p(x,x

′)]. It is known from [1] that the CDF ofN (0, 1) is in the
classD(1, 2) (see Definition 8). Thus, by property 1 of Theorem 11, the CDF ofN (0, 2Vp[hp(x,x′)])
is in D

(
a = 1

2Vp[hp(x,x′)] , t = 2
)

.

For assumption 2 of Theorem 9, choose R(n) :=
√
n. It follows from the weak law of large

numbers that under H1,
√
nŜ2

l /R(n) = Ŝ2
l

p→ S2
p(q). By Theorem 9, the approximate slope is

S4
p(q)

2Vp[hp(x,x′)] .

H Proof of Theorem 7

We will first prove a number of useful results that will allow us to prove Theorem 7 at the end. Recall
that v denotes a test location in the FSSD test, σ2

k denotes the Gaussian kernel bandwidth of the FSSD
test, and κ2 denotes the Gaussian kernel bandwidth of the LKS test.

Proposition 12. Under the assumption that J = 1 (i.e., one test location v), p = N (0, 1) and
q = N (µq, σ

2
q ), the approximate Bahadur Slope of nF̂SSD2 is

c(FSSD) :=

(
σ2
k

)
3/2
(
σ2
k + 2

)
5/2e

v2

σ2
k
+2
− (v−µq)2

σ2
k
+σ2q

((
σ2
k + 1

)
µq + v

(
σ2
q − 1

))2(
σ2
k + σ2

q

)
3 (σ6

k + 4σ4
k + (v2 + 5)σ2

k + 2)
. (3)

Proof. This result follows directly from Theorem 5 specialized to the case of p = N (0, 1), q =
N (µq, σ

2
q ), and J = 1. Since dJ = 1, the covariance matrix

Σp = Ex∼p
[
ξ2p(x, v)

]
=
e
− v2

σ2
k
+2
(
σ6
k + 4σ4

k +
(
v2 + 5

)
σ2
k + 2

)
σk (σ2

k + 2) 5/2

reduces to a scalar, where ξp(x, v) =
[
∂
∂x log p(x)

]
k(x, v) + ∂

∂xk(x, v) =

−e−
(v−x)2

2σ2
k

(
xσ2

k − v + x
)
/σ2

k. In this case,

FSSD2 = E2
x∼q [ξp(x, v)] =

σ2
ke
− (v−µq)2

σ2
k
+σ2q

((
σ2
k + 1

)
µq + v

(
σ2
q − 1

))2(
σ2
k + σ2

q

)3 .

Taking the ratio FSSD2/Ex∼p
[
ξ2p(x, v)

]
gives the result.

Proposition 13. Assume that p = N (0, 1) and q = N (µq, σ
2
q ). Let

√
nŜ2

l be the linear-time

kernel Stein (LKS) test statistic where Ŝ2
l is defined in Section 2 with a Gaussian kernel k(x, y) =

exp
(
− (x−y)2

2κ2

)
. Then, the following statements hold.
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1. The population kernel Stein discrepancy is

S2
p(q) =

µ2
q

(
κ2 + 2σ2

q

)
+
(
σ2
q − 1

)
2(

κ2 + 2σ2
q

)√ 2σ2
q

κ2 + 1

.

2. The approximate Bahadur slope of
√
nŜ2

l is

c(LKS) :=
κ5
(
κ2 + 4

)5/2 [
µ2
q

(
κ2 + 2σ2

q

)
+
(
σ2
q − 1

)2]2
2 (κ8 + 8κ6 + 21κ4 + 20κ2 + 12)

(
κ2 + 2σ2

q

)3 . (4)

3. Let

c
(LKS)
1 =

(
κ2
)5/2 (

κ2 + 4
)5/2

µ4
q

2 (κ2 + 2) (κ8 + 8κ6 + 21κ4 + 20κ2 + 12)

denote the approximate slope c(LKS) specialized to when q = N (µq, 1). Then, for any
µq 6= 0, the function κ2 7→ c

(LKS)
1 (µq, κ

2) is strictly increasing on (0,∞). Further,

lim
κ2→∞

c
(LKS)
1 (µq, κ

2) = µ4
q/2. (5)

Proof. Proof of Claim 1, 2. Recall Ŝ2
l := 2

n

∑n/2
i=1 hp(x2i−1, x2i). With p = N (0, 1), and

k(x, y) = exp
(
− (x−y)2

2κ2

)
, hp(x, y) can be written as

hp(x, y) :=
e−

(x−y)2

2κ2
(
κ2 −

(
κ2 + 1

)
x2 +

(
κ4 + 2κ2 + 2

)
xy −

(
κ2 + 1

)
y2
)

κ4
.

By Theorem 6, c(LKS) = 1
2

[Eqhp(x,x′)]
2

Ep[h2
p(x,x

′)]
which mainly involves expectations with respect to a normal

distribution. In computing the expectation Ex′∼qhp(x, x′), the idea is to form the density for a new

normal distribution by combining 1√
2πσ2

q

e−(x−µq)
2/2σ2

q (the density of q) and the term e−
(x−y)2

2κ2 in

the expression of hp(x, y). Computation of Ex′∼qhp(x, x′) will then boil down to computing an
expectation wrt. a new normal distribution.

It turns out that

Ex∼qEx′∼q[hp(x, x′)] =
µ2
q

(
κ2 + 2σ2

q

)
+
(
σ2
q − 1

)2(
κ2 + 2σ2

q

)√ 2σ2
q

κ2 + 1

= S2
p(q),

Ep
[
h2p(x,x

′)
]

=

(
κ2 + 4

) (
κ4 + 4κ2 + 5

)
κ2 + 12

κ3 (κ2 + 4)
5/2

.

Computing 1
2

S4
p(q)

Ep[h2
p(x,x

′)]
gives the slope.

Proof of Claim 3. The expression for c(LKS)
1 is obtained straightforwardly by plugging σ2

q = 1 into

the expression of c(LKS). Assume µq 6= 0. It can be seen that c(LKS)
1 (µq, κ

2) is differentiable with
respect to κ2 on the interval (0,∞). The partial derivative is given by

∂

∂κ2
c
(LKS)
1 =

(
κ2
)3/2 (

κ2 + 4
)3/2 (

7κ8 + 56κ6 + 166κ4 + 216κ2 + 120
)
µ4
q

(κ2 + 2)
2

(κ8 + 8κ6 + 21κ4 + 20κ2 + 12)
2 .

Since for any µq 6= 0, ∂
∂κ2 c

(LKS)
1 > 0 for κ2 ∈ (0,∞), we conclude that κ2 7→ c

(LKS)
1 (µq, κ

2) is
a strictly increasing function on (0,∞). By taking the limit, we have limκ2→∞ c

(LKS)
1 (µq, κ

2) =
µ4
q/2.
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We are ready to prove Theorem 7. Recall that σ2
k is the kernel bandwidth of nF̂SSD2, and κ2 is the

kernel bandwidth of
√
nŜ2

l (see Section 2). Recall Theorem 7:

Theorem 7 (Efficiency in the Gaussian mean shift problem). Let E1(µq, v, σ
2
k, κ

2) be the approxi-

mate Bahadur efficiency of nF̂SSD2 relative to
√
nŜ2

l for the case where p = N (0, 1), q = N (µq, 1),

and J = 1 (i.e., one test location v for nF̂SSD2). Fix σ2
k = 1 for nF̂SSD2. Then, for any µq 6= 0,

for some v ∈ R, and for any κ2 > 0, we have E1(µq, v, σ
2
k, κ

2) > 2.

Proof. By Proposition 12, the approximate slope of nF̂SSD2 when σ2
q = 1 is

c
(FSSD)
1 (µq, v, σ

2
k) =

σ2
k

(
σ2
k + 2

)
3µ2
qe

v2

σ2
k
+2
− (v−µq)2

σ2
k
+1√

2
σ2
k

+ 1 (σ2
k + 1) (σ6

k + 4σ4
k + (v2 + 5)σ2

k + 2)
.

Theorem 10 states that the approximate efficiency E1(µq, v, σ
2
k, κ

2) is given by the ratio
c
(FSSD)
1 (µq,v,σ

2
k)

c
(LKS)
1 (µq,κ2)

(see Propositions 12 and 13) of the approximate slopes of the two tests. Pick

σ2
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I Known Results

This section presents known results from other works.
Theorem 14 ([9, Theorem 2.2]). If the kernel k is C0-universal [6, Definition 4.1],
Ex∼qEx′∼qhp(x,x

′) <∞, and Ex∼q‖∇x log p(x)
q(x)‖2 <∞, then Sp(q) = ‖Ex∼qξp(x, ·)‖Fd = 0 if

and only if p = q.

Lemma 15 ([8, Lemma 1]). Let U be an open subset of Rd. If k is a bounded, analytic kernel on
U × U , then all functions in the RKHS associated with k are analytic.4

Lemma 16 (Weyl’s Perturbation Theorem [4, p. 152]). Let λj(A) denote the jth eigenvalue of a
square matrix A. If A,B are two Hermitian matrices, then

max
j
|λj(A)− λj(B)| ≤ ‖A−B‖,

where ‖ · ‖ denotes the operator norm.

Lemma 17 ([31, Lemma 21.2]). For any sequence of cumulative distribution functions, F−1n
d→ F−1

if and only if Fn
d→ F .

4The result of [8] considers only the case where U = Rd. However, the same proof goes through for any
open subset U ⊆ Rd.
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