Supplementary Material for ‘“Information Theoretic Properties
of Markov Random Fields, and their Algorithmic Applications”

A Omitted Proofs in Section 2

A.1 Markov Random Fields and the Canonical Form

Claim A.1. Every Markov random field can be put in canonical form

Proof. We will recenter the tensors one by one without changing the law in (1). Starting with
an arbitrary parameterization, observe that if the sum along some tensor fiber is s # 0, we can
subtract s/k;, from each of the entries in the tensor fiber, so the sum over the tensor fiber is now
zero, and add s to 8~ (a..,,,) without changing the law of X in (1). Here i, is our notation for

U1,y lm—1,%m+1, - - - L. By iterating this process from the tensors representing the highest-order
interactions down to the tensors representing the lowest-order interactions', we obtain the desired
canonical form. O

A.2 Lower Bounds for Conditional Mutual Information

As in Bresler’s work on learning Ising models [1], certain information theoretic quantities will play
a crucial role as a progress measure in our algorithms. Specifically, we will use the functional

[ E H Pr(X, = R, X; = G|Xs) — Pr(X, = R|Xs) Pr(X; = G\Xs)m

Uu’[|5 = E e
s

R,G

where R is a state drawn uniformly at random from [k,], uniformly at random and G is an |I|-
tuple of states drawn independently uniformly at random from [k;, ]| x [k;,] x ... x [k;, | where
I = (i1,i2,...4)7)). This will be used as a proxy for conditional mutual information which can
be efficiently estimated from samples. The following lemma is a version of Lemma 5.1 in [1] that
works over non-binary alphabets.

Lemma A.2. Fix a set of nodes S. Fix a node u and a set of nodes I that are not contained in S.
Then

1
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Proof.
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where the first inequality follows from Jensen’s inequality, and the second inequality follows from
Pinsker’s inequality. O

"We treat C' as the lowest order interaction, so when we are subtracting from the 1-tensors (vectors) 0 to
recenter them, we add the corresponding amount to C'.



A.3 No Cancellation

In this subsection we will show that a clique interaction of order s cannot be completely cancelled
out by clique interactions of lower order.

Lemma A.3. Let T 5 be a centered tensor of dimensions di X - -- X ds and suppose there exists
at least one entry of Tl""s which is lower bounded in absolute value by a constant k. For any £ < s
and iy < --- < g let T"* " be an arbitrary centered tensor of dimensions d;, X --- X d;,. Define

T(al,...,as):z Z Til'“”(ail,...,au) 7

=111 < <ip

and suppose the entries of T' are bounded by a constant 1. Then for any £ and i; < --- < iy, the
entries of T (a, , ..., a;,) are bounded above by ut".

Proof. The sum over all values of indices a1, . . ., as on the right hand side is zero, so the same must
hold for the left hand side. Assume for contradiction that every entry of 7" is upper bounded by p,
to be optimized later. For each m from 1 to s, consider summing over all of the indices except a.,,,
which is held fixed. Using that the sum over tensor fibers is zero, we observe that the right hand side

of (8) is just
T (a1) [] dm
m’#m

and the left hand side is strictly bounded in norm by p[], ., ‘tm, Ay 50 [T (an)] < o for all ay,.
We have proven this for all m from 1 to s.

Now we proceed by induction, assuming that ¢ indices are fixed. We will show that the entries of the
t-tensors are bounded above by jg(t) for g(t) = 2¢(*+1/2 and have already proven this for t = 1.
Now suppose we fix a1, ..., a:;. We rearrange (8) to get

Tal,..., Z Z Tilmi[((lil,...,aie)

=1 {i1<---<ig}C[t]

_T'1 t al,..., +Z Z T“"'“(ail,...,an)

=1 {i1 <---<ig}Z[t]

When we fix indices aq, ..., a; and sum over the others, all but the first term on the rhs vanishes,
and by applying the triangle inequality on the lhs and the induction hypothesis we get that

t—1
t S
dity - ds (“ + Z (5)“9(€)> > dpprds T (an, . ar)
=1

so taking g(¢) such that g(0) = 1 and

and in particular g(t) = ' works, because

t t—1
t
1+ (t-1) = -1 > £
=y =3 (a0 =3 ()
=0 £=0
Thus we get that all the entries of %% (a;, , ..., a;,) are bounded above by 1¢°, which completes
the proof. [

We are now ready to restate the above result in a more usable form:



Lemma A.4. Let T ° be a centered tensor of dimensions di X - -- x ds and suppose there exists
at least one entry ole""s which is lower bounded in absolute value by a constant k. For any £ < s
and iy < -+ <y let T """ be an arbitrary centered tensor of dimensions d;; X --- X d;,. Let

T(ay,...,as Z Z T (ay,,. .. aq,) (8)

=111 <---<ig

Then the sum over all the entries of T' is 0, and there exists an entry of T of absolute value lower

bounded by k/s°.

Proof. We apply the previous lemma with ;1 = r/s®, and get that all the entries of 7 are bounded
in absolute value by ps®, giving a contradiction. O

B Omitted Proofs in Section 3

Lemma B.1.

" {Z Z ( e —55R+553> (eXp(gz{R-FguZ,B)—eXp(gI,B +5uZ,R))} 2 %

R B#R

Proof. Settinga = &) p 4+ EZpand b= &) 5 + E7 . letting D' = K? exp(2y) > D, and taking
an expectation over the randomness in Y and Z, we have

YZ[ZZ (a—Db)(e" —e ] ZZ afb/ e’ dx]

R R#B R R#B
B S (0 072 H 3 S Varla
R R#B R R#B

where the inequality follows from the fact that a,b > —2~. In the following claim, we give a more
convenient expression for the above quantity.

ZZVara—b | = 4k, ZVar R

R R+#B

Claim B.2.

Proof. Using the fact thata — b = (€} r — £y g) + (2 5 — EZ ) we have that

S Varla—b =YY Var((€) g —E)p) + (€l — ELR)]

R R#B R B#R
R B#R
=233 (2 Varlel 5] - 2Cov (€1 4.€15))
R B#R
_ 22 ( 2(ky — 1) Var[£) ] — 2 Cov (SJR, 3 55[3))
B#R
- QZ ( 2(k, — 1) Var[€) ] — 2 Cov (5§R, —5,{3))
= 4k, Z Var(€
R
where the second to last equality follows from the fact that the tensors are centered which gives
>R 5}; r = 0 for any Y. This completes the proof. O



Now we can complete the proof by appealing to the law of total variance. By assumption there is a
maximal hyperedge J = {u, j1 ... js} containing u with |.J| < r, such that %’ is a-nonvanishing.
Then we have

> Varl€) p] > Y Varle) Ve, =Y Var[T(R,Yj,,...,Y;,)|Yu]
R R R

where the tensor 7' is defined by treating Y. ; as fixed as follows

T(R,}/jl7_.,7}/}s):z Z euiz---ig(R’nw“. a}/iz)
0=2 iy <+ <ip
Now we claim there is a choice of R, G and G’ so that |T'(R,G) — T(R,G’)| > a/r". This follows
because from Lemma A.4 we have that T' is «/r"-nonvanishing. Hence there is a choice of R and
G so that |T'(R,G)| > «/r". Because T is centered there must be a G’ so that T(R, G’) has the
opposite sign.
Finally for this choice of R we have
04257471
2727
which follows from the fact that Pr(Y;\,, = G) and Pr(Y;\,, = G') are both lower bounded by
6"~ and the following elementary lower bound on the variance:

Claim B.3. Let Z be a random variable such that Pr(Z = a) > p and Pr(Z = b) > p, then

Var[T(R, }/jl7 s 7}95)‘Y~J] >

Var(Z) > g(a —b)?
Proof.
b\ 2 b\ 2
Var(2) > pla —B[Z)? + p(B[Z] - b)? 2 p(a— ) +p(b-117) = Pla—bp?
O
Putting this all together we have
b 4a26r—1
a
y:7EZ |:Z Z (CL - b)(e - )] Z r2re2y
R R#B
which is the desired bound. This completes the proof. O
C Omitted Proofs in Section 4
C.1 Mutual Information in Markov Random Fields
Lemma C.1. For any strategy,
D
< = — =
E[A] < 7K (r " 1> B [I1PrlX, = RIX,| - Pr{X, = R
Proof. Intuitively this follows because Bob’s optimal strategy given I, X; and R is to guess
r = sgn(Pr[X, = R|X;] — Pr[X, = R))vK
More precisely, we have
E[A] = I,)E,R [XN]?,X’ [T]lXu:R — TILX,;:R I, X], R:H
- E [7’ Pr[X, = R|X;] - r Pr[X/, = R]}
I,X1,R
- B [7’ Pr[X, = R|X;] - r Pr[X, = R]}
<k(P) B [\P[X = R|X;] — Pr[X —R]ﬂ
=7 r—1 I.X1.R r u I r u —
which completes the proof. O



Next we lower bound the mutual information using (essentially) the same quantity. We prove

Lemma C.2.
2 us 1) = PrT I u I u

Proof. Applying Lemma A.2 with S = () we have that

1
S X)) > B [| Pr(X, = R, X; = G) — Pr(X, = R)P }
- E [Pr(X, G)|Pr(X, = R|IX; = G) — Pr(X, = R)| }
1
=—=——) Pr(X;=G)E E[| Pr(X, = B|X; = G) — Pr(X, = R)]]
HiGI kl a
1

> = =

> = B [|Pr(X, = RIX)) - Pr(X, = B)|
where R and G are uniform (as in the definition of v,, 1|5). O

Appealing to Lemma C.1, Lemma C.2 and Theorem 3.2 we conclude:

Theorem C.3. Fix a non-isolated vertex u contained in at least one a-nonvanishing maximal
hyperedge. Then taking I uniformly at random from the subsets of the neighbors of u of size
s =min(r — 1, deg(u)),

E

1
E §I(XU,XI)

> ];3[1/1L,I|(0] > C(’Yv Kv Oé)

where explicitly
4@2 5 1

C(y, K,a) = P2 KL ( D )yer

C.2 Extensions to Conditional Mutual Information

In the previous subsection, we showed that X,, and X; have positive mutual information. Here we
show that the argument extends to conditional mutual information when we condition on X g for any
set S that does not contain all the neighbors of u. The main idea is to show that there is a setting of
X s where the hyperedges do not completely cancel out each other in the new Markov random field
we obtain by conditioning on Xg.

More precisely fix a set of nodes S that does not contain all the neighbors of « and let I be chosen
uniformly at random from the subsets of neighbors of « of size s = min(r — 1, |I'(v) \ S|). Then
we have

1 1
Bly 3% XXl =B 3 B 10X Xi1Xs = )]
\/11 Xo; X1|Xs =
= 2 V3 (Xu; X1|Xs =2s)

which follows from Jensen’s inequality. Now conditioned on Xg = z g the resulting distribution is
again a Markov random field and ~ does not increase.

Definition C.4. Let E be the event that conditioned on Xg = xg, node u is contained in at least
one «/r"-nonvanishing maximal hyperedge.

Lemma C.5. Pr(E) > ¢¢

Proof. When we fix Xg = zg we obtain a new Markov random field where the underlying hyper-
graph is
H' :=([n]\ S,H') where H = {h\ S|h € H)



For notational convenience let ¢(h) be the image of a hyperedge h in H in the new hypergraph #'.
What makes things complicated is that a hyperedge in H’ can have numerous preimages. The crux
of our argument is in how to select the right one to show is a;/r"-nonvanishing. First we observe
that u is contained in at least one non-empty hyperedge in 7{’. This is because by assumption .S does
not contain all the neighbors of w. Hence there is some neighbor v ¢ S. Since v is a neighbor of u
it means that there is a hyperedge h € H that contains both « and v. In particular ¢(h) contains u
and is nonempty.

Now that we know w is not isolated in H’, let h* be a hyperedge in H that contains u and where
¢(h*) is maximal. Now let f1, fo, ... f, be the preimages of ¢(h*) so that without loss of generality
f1 is maximal in H. Now let J = UY_, f; \ {u}. In particular, J is the set of neighbors of u that
are contained in at least one of fi, fa,... fp. Finally let J; = J NS = {i1,42,...4%,} and let
Jy = J\ S :={i},ih,...4,,}. We can now define

P
/ / i
T(R,a1,...,65,G7,...,0) = g 6/
i=1

which is the clique potential we get on hyperedge ¢(h*) when we fix each index in J; C S to their
corresponding value.

Suppose for the purposes of contradiction that all the entries of T are strictly bounded in absolute
value by «/r". Then applying Lemma A.3 in the contrapositive we see that the entries of f; are
strictly bounded above in absolute value by «, but f; is maximal and thus a-nonvanishing, which
yields a contradiction. Thus there is some setting a7, ..., a} such that the tensor

T'(R,ay,...,a,) =T(R,a},...,a%,a},...,aL)

S

has at least one entry with absolute value at least a/r". Under this setting, ¢(h*) is a/r"-
nonvanishing and by construction maximal in H’ and thus we would be done. All that remains
is to lower bound the probability of this setting. Since J; is a subset of the neighbors of u we have
|J1] < d. Thus the probability that (X;,,...,X;.) = (a,...,a?) is bounded below by §* > §4,
which completes the proof. O

Now we are ready to prove a lower bound on conditional mutual information:

Theorem C.6. Fix a vertex u such that all of the maximal hyperedges containing u are «-
nonvanishing, and a subset of the vertices S which does not contain the entire neighborhood of
u. Then taking I uniformly at random from the subsets of the neighbors of u not contained in S of
size s = min(r — 1, |T(u) \ S)),
E
I

1
§I(Xu;XI|XS) > Erlvuns] > C'(v, K, @)

where explicitly
4a25r+d— 1
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C'(v,K,a) :=

Proof. We have
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where the last inequality follows by invoking Lemma C.5 and applying Theorem C.3 to the new
Markov random field we get by conditioning on Xg = xg. O

D Omitted Proofs in Section 5

D.1 Learning Markov Random Fields

The algorithm will succeed provided that 7, 1|5 is sufficiently close to the true value v, 1|5. This
motivates the definition of the event A:



Definition D.1. We denote by A(Z, €) the event that for all u, I and S with |[I| <r —1and |S| < ¢
simultaneously,

‘Vu,i|S - /V\u,i|S| <€
We let A denote the event A(L, 7/2).
The proof of the following technical lemma is left to an appendix.
Lemma D.2. Fix a set S with |S| < £ and suppose that for any set T D S with |T \ S| < r, that

Pr(Xr = a7) — Pr(Xr = 27)| < 0.
Ifo < eK_[g then for any I with |I| <r — 1,
|Vu,i|S - f/\u,i|S| <€

Lemma D.3. Fix ¢, e and w > 0. If the number of samples satisfies
2¢

252t
then Pr(A(L,e)) > 1 — w.

m > <log(1/w) +log(¢ + 1)+ (L4 r)log(nK) + log 2)

Proof of Lemma D.3. Fix £;e and w > 0. Let m denote the number of samples. By Hoeffding’s
inequality, for any set T',

Pr[|Pr(X; = 27) — Pr(Xr = 27)| > 0] < 2exp(—20°m)
and taking the union bound over all possibly 27 for T with |T| < ¢ + r, of which there are at most

L+r n l+r
K’i < K 7 < (¢ K l4r
> (7) s Sy < e i)
many, we find the probability that \f’}(XT =xr) — Pr(Xr = x7)| > o for any such T is at most
(0 +7)(nK)** "2 exp(—20%m)

Therefore taking

s log(1/w) +log(£ +7) + (¢ + 7)log(nK) + log 2

- 202

(€))
ensures this probability is at most w.

Now applying Lemma D.2 and substituting 0 = e K ’Z§ into (9), we see that the result holds if

15K
m > W(log(l/w) +log({ 4+ 1) + (€ +r)log(nk) + log 2)
O
Lemma D.4. Assume that the event A holds. Then every time a node i is added to S in Step 2 of the
algorithm, the mutual information I(X,; Xs) increases by at least 72 /8.

Proof. For a particular iteration of Step 2, let I denote the newly added set of nodes, and S the set
of candidate neighbors before adding I. Then we must show for Q = 72/8 that

I(Xu; XSU{I}) > I(Xua XS) +Q
which by the chain rule for expectation is equivalent to
I(Xu; X1|X5) > Q.

Applying Lemma A.2 and the fact that event A holds, we see

1 1 1,
\/2 . I(XuaXI|XS) > §Vu,I|S > 5 (Vu,i\S - T/2)

Thus the algorithm only adds node i to S’ if ﬁuﬂ s > T, so the chain of inequalities implies that

I(X,; Xi| Xs) > %(T — 7/2)2 = 7'2/8



Lemma D.5. If event A holds then at the end of Step 2, S contains all of the neighbors of u.

Proof. Step 2 ended either because |S| > L or because there was no set of nodes I C S¢ with
Vy,11s > 7. First we rule out the former possibility. Whenever a new element is added to S, the

quantity I(X,; Xg) increases by at least 72 /8. But
I(X4; Xs) < H(X,) < log K
because X, takes on at most K states. Thus if |S| > L then
log K > I(X,; Xg) > L(1*/8) =log K

which gives a contradiction.

Thus at the end of Step 2 we must have that there is no set of nodes I C S¢ with Vu)s > T.
Suppose for the purposes of contradiction that S' does not contain all of the neighbors of w. Then
by Theorem C.6, there exists a subset of the neighbors such that v, 15 > C'(v,k,a) = 27, and
because event A holds we know Uy, rjg > 27 — T /2 > 7, which gives us our contradiction and
completes the proof of the lemma. O

Lemma D.6. If event A holds and if at the start of Step 3 S contains all neighbors of u, then at the
end of Step 3 the remaining set of nodes are exactly the neighbors of .

Proof. If A(¢) holds, then during Step 3,

~ 1
Vu,i|S\{i} <Vu,i\S+7_/2§ il(Xu;Xz‘XS)+T/2:7_/2

for all nodes ¢ that are not neighbors of u. Thus all such nodes are pruned. Furthermore, by The-
orem C.6, Uy jis\{i} > Vu,ils\{i} — 7/2 = 27 — 7/2 = 37/2 for all neighbors of u and thus no
neighbor is pruned. This completes the proof. O

Kr+1,r,27‘

Recall that v < BrD", § = e /K, (C'(v,K,a))™' = O(Ez55-D""'ve ) and L =
O(C' (v, K, a)7?).

Theorem D.7. Fix w > 0. Suppose we are given m samples from an «, B-non-degenerate Markov
random field with r-order interactions where the underlying graph has maximum degree at most D
and each node takes on at most K states. Suppose that

60K 2E
m > W(log(l/w) +log(L+ 1)+ (L +7)log(nK) + log 2).
Then with probability at least 1 — w, MRFNBHD when run starting from each node u recovers the
correct neighborhood of u, and thus recovers the underlying graph G. Furthermore, each run of the
algorithm takes O(mLn") time.

Proof. Set ¢ = L and € = 7/2 in Lemma D.3. Then event A occurs with probability at least 1 — w
for our choice of m. Now by Lemma D.5 and Lemma D.6 the algorithm returns the correct set of
neighbors of u for every node u.

To analyze the running time, observe that when running algorithm MRFNBHD at a single node w,
the bottleneck is Step 2, in which there are at most L steps and in each step the algorithm must loop
over all subsets of the vertices in [n] \ S of size r — 1, of which there are Z;;ll (}) = O(n"™1)
many. Running the algorithm at all nodes thus takes O(mLn") time. O

Remark D.8. Note that when we plug in the values of v and § we get that the overall sample
complexity of our algorithm in terms of D and r is doubly exponential in D".



D.2 Extensions

D.2.1 Learning with Bounded Queries

Our starting point is an elementary observation about MRFNBHD:

Observation 1. In Step 2, MRFNBHD only needs U, 1|5 for all I with |I| < r — 1. Similarly at Step
3, MRFNBHD only needs v, ;|s\; for each i € S.

Thus the number of distinct terms ;, ;|5 which MRFNBHD needs is at most L(r — 1)n"~* for Step
2 and R for Step 3, which in total is at most Lrn™1.
Lemma D.9. Fix a node u, a set S with £ = |S|, a set I with |I| <r — 1 and fix e and w > 0. If the
number of samples we observe of X syru(u) satisfies
1 20

"> W(log(l/w) +log(£ +r) + (¢ + r)log(nK) + log 2)

then
V118 — Vu1is] < €

with probability at least 1 — w.

Proof. This follows by the same Hoeffding and union bound as in proof of Lemma D.3. O

Theorem D.10. Fix an «, 3-non-degenerate Markov random field with r-order interactions where
the underlying graph has maximum degree at most D and each node takes on at most K states. The
bounded queries modification to the algorithm returns the correct neighborhood of every vertex u
using m' Lrn” bounded queries of size at most L + r where
,  60KZ2L -
m = ot ( log(Lrn" /w) 4+ log(L + r) + (L + r)log(nK) + log 2),

with probability at least 1 — w.

Proof. Invoking Lemma D.9 with ' = 72—, € = 7/2 and £ = L, we get that each query to 7, ;g
fails (i.e. is wrong by at least 7/2) with probability at most +=—. We observed that Algorithm

MRFNBHD makes at most Lrn"~! queries of the form, Vu,115- Therefore, by a union bound, with
probability at least 1 — w/n, the bounded queries algorithm answers all of those queries to within
tolerance 7/2.

Now it follows as in Theorem D.7 that the algorithm returns the correct neighborhood of node u with
probability at least 1 —w/n, and taking the union bound over all nodes w it follows that the algorithm
recovers the correct neighborhood of all nodes with probability at least 1 — w. This completes the
proof. O

D.2.2 Learning with Random Erasures

Here we consider another variant where we do not observe full samples from a Markov random
field. Instead we observe partial samples where the state of each node is revealed independently
with probability p, and the choice of which nodes to reveal is independent of the sample. We can
apply our algorithm in this setting, as follows.

Lemma D.11. With probability at least 1 — ¢, if we take N 18 ”HOIngHOg N/e samples then we will
see each set S at least N times for every |S| < L.

Proof. Each sample has at least a p’ chance of being observed, and there are at most /n‘ many
different sets .S. So by a union bound,

Prlexists unobserved S after ¢ steps] < n(1 — p*)! < ¢/N

if we take ¢ = £1°% "Hoﬁfﬂog N/e Repeating this V times, we see that with
Nt — Nflogn + logf +log N/e
p
many samples, we see every S at least NV times with probability at least 1 — e. O



Lemma D.12. Fix ¢, e and w > 0. If the number of samples satisfies

log N +1 log2N,
mZNeOg —|—0g§+ 0g2N/w
p
where
15K %
N = W(log(?/w) +log(l+7) + (£ +r)log(nK) + log 2)

then Pr(A(L,e)) > 1 — w.

Proof. Observe by Lemma D.11, taking ¢ = w/2 that with probability at least 1 —w /2, for every set
S with | S| < ¢ we see at least N samples revealing all of the members of S. Condition on this event;
now the proof is exactly the same as Lemma D.3 taking w’ = w/2, applying Hoeffding, Lemma D.2
and taking the union bound, we see that event A holds with probability at least w/2. Therefore the
total probability A occursisatleast] —w/2 —w/2 =1 — w. O

Theorem D.13. Fix w > 0. Suppose we are given m samples from an o, f-non-degenerate Markov
random field with r-order interactions where the underlying graph has maximum degree at most D
and each node takes on at most K states. Suppose that

I log L + log 2N
m2N€Ogn+ 0g2+ 0g2N/w
p
where -
60K
N = W(log@/w) +log(L+7)+ (L +r)log(nK) + log 2).

Then with probability at least 1 — w, MRFNBHD when run starting from each node u recovers the
correct neighborhood of u, and thus recovers the underlying graph G. Furthermore, each run of the
algorithm takes O(mLn") time.

Proof. By Lemma D.12, given our assumption on m the event A occurs with probability at least

1 — w. Conditioned on event A, the algorithm returns the correct answer by the same argument as
Theorem D.7. O

E Proof of Lemma D.2

Proof. Observe the left hand side of our desired inequality is bounded by
Era|Ex,[[Pr(X, = R, X; = G|Xs) - Pr(X, = R|Xs)Pr(X; = G| Xs)|]
— E[|Pr(X, = R, Xy = G|Xs) - Pr(X, = R|Xs) Pr(X; = G| Xs)|l|
S

So it suffices if we can bound for every R and G
[Ex.[IPr(X, = R, X; = GIXs) - Pr(X, = R|Xs)Pr(X; = G|Xs)]
—)}(3[|Pr(Xu:R,XI:G|XS) Pr(X, = R|Xs)Pr(X; = G|XS)|]‘
S

- ‘ 3 IPr(X, = R, X; = G, Xs = xs) - Pr(X, = R|Xs = x5)Pr(X; = G, X5 = z5))|

—|Pr(X, = R, X; = G, Xg = z5) — Pr(X —R|Xs—xS)Pr(XI—GXS—xS)|‘

<y ‘|1/)\1'(Xu =R, X; =G, Xs = 25) — Pr(X, = R|Xs = 25)Pr(X; = G, X5 = x|

x5

~|Pr(X, = R, X; = G, X5 = 25) — Pr(X, = R|Xs = 25) Pr(X; = G, X5 = ms)|‘

<y ‘P}(Xu =R, X; =G, Xg = z5) — Pr(X, = R|Xs = 25)Pr(X; = G, X5 = 5)

“Pr(X, =R, X; =G, X5 = z5) + Pr(X, = R|Xs = 25) Pr(X; = G, Xg = xs)‘
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<N Pr(X, = R, X; =G, Xs = 25) — Pr(X, = R, X; = G, X5 = a5)|

+ 3 |Pr(X, = R|Xs = 25)Pr(X; = G, X5 = 15) — Pr(X, = R|Xs) Pr(X; = G, Xg = x3)|

s

< K'5lo + 3" [Pr(X, = R|Xs = 25)Pr(X; = G, X5 = v5) — Pr(X, = R|Xs = 25) Pr(X; = G, X5 = x5)|

s
To bound the second term, observe
IPr(X, = R|Xs = 25)Pr(X; = G, Xg = 25) — Pr(X, = R|Xs)Pr(X; = G, X5 = z5)|
<Pr( —R|X5—xs)|Pr(X1 G, Xs=125)—Pr(X; =G, Xg =2xg)]
+Pr(X; =G, Xg= xg)\Pr( = R|Xs =25) — Pr(X, = R|Xs)|
< |Pr(X; =G, Xg =x5) — Pr(X; = G, Xg = 25)| + |Pr(X, = R|Xg = 25) — Pr(X, = R|Xs)|
<o+ |[Pr(X, = R|Xs = x5) — Pr(X, = R|Xs)|
and furthermore

IPr(X, = R|Xs = 25) — Pr(X, = R|Xg = 23)|

_|Pr(Xy =R, Xs=ws5) Pr(X, =R, Xg=us)
PI‘(XS = ﬂ;‘s) Pr(XS = Cﬂs)
_ |Pr(X, =R Xs=xs5) Pr(X,=R,Xs=uxs)
PI‘(XS = ms) la\l‘(Xs = xs)
Pr(X,=R,Xs =x5) Pr(X,=R,Xs=u1xg)
+ — —
PI'(XS = 1’5) Pr(XS = xS)

PI‘(XS = xs) — f)\I‘(XS = xs)
Pr(Xg = z5) Pr(Xs = x5)

g g o)
< <o + Pr(X, = R, X5 = x5) SE

RE =

Finally, if o < eK‘“é then because |S| < £ and o < 6°/5 < 6°/2

S| g _ KISl 1,1
K J+Z<0+5S 5|S|_0)K a<2+6s+5|5|_0>

2 1 2
K155 —
< <5|5| 15| 5|5|> <€
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