
Supplementary Material – TernGrad: Ternary
Gradients to Reduce Communication in Distributed

Deep Learning

Wei Wen1, Cong Xu2, Feng Yan3, Chunpeng Wu1, Yandan Wang4, Yiran Chen1, Hai Li1

1Duke University, 2Hewlett Packard Labs, 3University of Nevada – Reno, 4University of Pittsburgh
1{wei.wen, chunpeng.wu, yiran.chen, hai.li}@duke.edu

2cong.xu@hpe.com, 3fyan@unr.edu, 4yaw46@pitt.edu

Abstract

This supplementary material provides the proof of the convergence of TernGrad,
and details of our performance model.

1 Convergence Analysis of TernGrad

Theorem 1. When online learning systems update as wt+1 = wt − γt (st · sign (gt) ◦ bt)
using stochastic ternary gradients, they converge almost surely toward minimum w∗, i.e.,
P (limt→+∞wt = w∗) = 1.

Proof.

ht+1 − ht = −2γt(wt −w∗)T (st · sign (gt) ◦ bt) + γ2t ||st · sign (gt) ◦ bt||
2
. (1)

We have
E {(ht+1 − ht) |Xt} = −2γt(wt −w∗)TE {(st · sign (gt) ◦ bt) |Xt}

+ γ2tE
{
||st · sign (gt) ◦ bt||2

∣∣∣Xt

}
.

(2)

Eq. (2) satisfies based on the fact that γt is deterministic, and wt is also deterministic given Xt.
According to E {st · sign (gt) ◦ bt} = ∇wC(wt),

E {(ht+1 − ht) |Xt}+ 2γt · (wt −w∗)T · ∇wC(wt)

= γ2t ·E
{
||st · sign (gt) ◦ bt||2

∣∣∣Xt

}
= γ2t ·E

{
s2t ||bt||

2
∣∣∣wt

}
= γ2t ·E

{
s2t ·E

{
||bt||2

∣∣∣ zt,wt

} ∣∣∣wt

}
= γ2t ·E

{
s2t ·

∑
k

E
{
b2tk
∣∣ zt,wt

} ∣∣∣∣∣wt

} (3)

Based on the Bernoulli distribution of btk and Assumption 3, we further have
E {(ht+1 − ht) |Xt}+ 2γt · (wt −w∗)T · ∇wC(wt)

= γ2t ·E {st ||gt||1} = γ2t ·E {max (abs (gt)) · ||gt||1}
≤ Aγ2t +Bγ2t ||wt −w∗| |2 = Aγ2t +Bγ2t ht.

(4)

That is
E
{(
ht+1 −

(
1 + γ2tB

)
ht
)
|Xt

}
≤ −2γt(wt −w∗)T∇wC(wt) + γ2tA, (5)

which satisfies the condition of Lemma 1 and proves Theorem 1. The proof can be extended to
mini-batch SGD by treating z as a mini-batch of observations instead of one observation.

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.

2 Performance Model

As mentioned in the main context of our paper, the performance model was developed based on the
one initially proposed for CPU-based deep learning systems [1]. We extended it to model GPU-
based deep learning systems in this work. Lightweight profiling is used in the model. We ran all
performance tests with distributed TensorFlow on a cluster of 4 machines, each of which has 4 GTX
1080 GPUs and one Mellanox MT27520 InfiniBand network card. Our performance model was
successfully validated against the measured results by the server cluster we have.

There are two scaling schemes for distributed training with data parallelism: a) strong scaling that
spreads the same size problem across multiple workers, and b) weak scaling that keeps the size per
worker constant when the number of workers increases [2]. Our performance model supports both
scaling models.

We start with strong scaling to illustrate our performance model. According to the definition of
strong scaling, here the same size problem is corresponding to the same mini-batch size. In other
words, the more workers, the less training samples per worker. Intuitively, more workers bring more
computing resources, meanwhile inducing higher communication overhead. The goal is to estimate
the throughput of a system that uses j machines with i GPUs per machine and mini-batch size of
K1. Note the total number of workers equals to the total number of GPUs on all machines, i.e.,
N = i∗j. We need to distinguish workers within a machine and across machines due to their different
communication patterns. Next, we illustrate how to accurately model the impacts in communication
and computation to capture both the benefits and overheads.

Communication. For GPUs within a machine, first, the gradient g computed at each GPU needs to be
accumulated together. Here we assume all-reduce communication model, that is, each GPU communi-
cates with its neighbor until all gradient g is accumulated into a single GPU. The communication com-
plexity for i GPUs is log2i. The GPU with accumulated gradient then sends the accumulated gradient
to CPU for further processing. Note for each communication (either GPU-to-GPU or GPU-to-CPU),
the communication data size is the same, i.e., |g|. Assume that within a machine, the communication
bandwidth between GPUs is Cgwd

2 and the communication bandwidth between CPU and GPU is
Ccwd, then the communication overhead within a machine can be computed as |g|

Cgwd
∗ log2i+ |g|

Ccwd
.

We successfully used NCCL benchmark to validate our model. For communication between machines,
we also assume all-reduce communication model, so the communication time between machines are:
(Cncost+

|g|
Cnwd

)∗ log2j, where Cncost is the network latency and Cnwd is the network bandwidth. So

the total communication time is Tcomm(i, j,K, |g|) = |g|
Cgwd

∗log2i+ |g|
Ccwd

+(Cncost+
|g|

Cnwd
)∗log2j.

We successfully used OSU Allreduce benchmark to validate this model.

Computation. To estimate computation time, we rely on profiling the time for training a mini-batch
of totally K images on a machine with a single CPU and a single GPU. We define this profiled time
as T (1, 1,K, |g|). In strong scaling, each work only trains K

N samples, so the total computation
time is Tcomp(i, j,K, |g|) = (T (1, 1,K, |g|)− |g|

Ccwd
) ∗ 1

N , where |g|
Ccwd

is the communication time
(between GPU and CPU) included in when we profile T (1, 1,K, |g|).
Therefore, the time to train a mini-batch of K samples is:

Tstrong(i, j,K, |g|) = Tcomp(i, j,K, |g|) + Tcomm(i, j,K, |g|)

= (T (1, 1,K, |g|)− |g|
Ccwd

) ∗ 1

N

+
|g|
Cgwd

∗ log2i+
|g|
Ccwd

+ (Cncost +
|g|
Cnwd

) ∗ log2j.

(6)

The throughput of strong scaling is:

Tputstrong(i, j,K, |g|) =
K

Tstrong(i, j,K, |g|)
. (7)

1For ease of the discussion, we assume symmetric system architecture. The performance model can be easily
extended to support heterogeneous system architecture.

2For ease of the discussion, we assume GPU-to-GPU communication has Dedicated Bandwidth.

2

For weak scaling, the difference is that each worker always trains K samples. So the mini-batch size
becomes N ∗K. In the interest of space, we do not present the detailed reasoning here. Basically, it
follows the same logic for developing the performance model of strong scaling. We can compute the
time to train a mini-batch of N ∗K samples as follows:

Tweak(i, j,K, |g|) = Tcomp(i, j,K, |g|) + Tcomm(i, j,K, |g|)

= T (1, 1,K, |g|)− |g|
Ccwd

+
|g|
Cgwd

∗ log2i+
|g|
Ccwd

+ (Cncost +
|g|
Cnwd

) ∗ log2j

= T (1, 1,K, |g|) + |g|
Cgwd

∗ log2i+ (Cncost +
|g|
Cnwd

) ∗ log2j.

(8)

So the throughput of weak scaling is:

Tputweak(i, j,K, |g|) =
N ∗K

Tweak(i, j,K, |g|)
. (9)

References

[1] Feng Yan, Olatunji Ruwase, Yuxiong He, and Trishul M. Chilimbi. Performance modeling and scalability
optimization of distributed deep learning systems. In Proceedings of the 21th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, Sydney, NSW, Australia, August 10-13, 2015, pages
1355–1364, 2015. doi: 10.1145/2783258.2783270. URL http://doi.acm.org/10.1145/2783258.
2783270.

[2] Allan Snavely, Laura Carrington, Nicole Wolter, Jesus Labarta, Rosa Badia, and Avi Purkayastha. A
framework for performance modeling and prediction. In Supercomputing, ACM/IEEE 2002 Conference,
pages 21–21. IEEE, 2002.

3

http://doi.acm.org/10.1145/2783258.2783270
http://doi.acm.org/10.1145/2783258.2783270

	Convergence Analysis of TernGrad
	Performance Model
	References

