
A Proof of Proposition 1

Proof. Since X is a compact space, by Theorem 5.10 of [24], part (iii), we know that there is an
optimal f⇤. By Theorem 5.10 of [24], part (ii) we know that if ⇡ is an optimal coupling,

P(x,y)⇠⇡

[f

⇤

(y) � f

⇤

(x) = ky � xk] = 1

Let (x, y) be such that f⇤

(y)�f

⇤

(x) = ky�xk. We can safely assume that x 6= y as well, since this
happens under ⇡ with probability 1. Let (t) = f

⇤

(x

t

) � f

⇤

(x). We claim that (t) = kx
t

� xk =

tky � xk.

Let t, t0 2 [0, 1], then

| (t) � (t

0

)| = kf⇤

(x

t

) � f

⇤

(x

t

0
)k

 kx
t

� x

t

0k
= |t � t

0|kx � yk

Therefore, is kx � yk-Lipschitz. This in turn implies

 (1) � (0) = (1) � (t) + (t) � (0)

 (1 � t)kx � yk + (t) � (0)

 (1 � t)kx � yk + tkx � yk
= kx � yk

However, | (1) � (0)| = |f⇤

(y) � f

⇤

(x)| = ky � xk so the inequalities have to actually be
equalities. In particular, (t) � (0) = tkx � yk, and (0) = f

⇤

(x) � f

⇤

(x) = 0. Therefore,
 (t) = tkx � yk and we finish our claim.

Let

v =

y � x

t

ky � x

t

k

=

y � ((1 � t)x � ty)

ky � ((1 � t)x � ty)k

=

(1 � t)(y � x)

k(1 � t)ky � xk

=

y � x

ky � xk

Now we know that f⇤

(x

t

) � f

⇤

(x) = (t) = tkx � yk, so f

⇤

(x

t

) = f

⇤

(x) + tkx � yk. Then, we
have the partial derivative

@

@v

f

⇤

(x

t

) = lim

h!0

f

⇤

(x

t

+ hv) � f

⇤

(x

t

)

h

= lim

h!0

f

⇤

⇣
x + t(y � x) +

h

ky�xk

(y � x)

⌘
� f

⇤

(x

t

)

h

= lim

h!0

f

⇤

⇣
x

t+ h

ky�xk

⌘
� f

⇤

(x

t

)

h

= lim

h!0

f

⇤

(x) +

⇣
t +

h

ky�xk

⌘
kx � yk � (f

⇤

(x) + tkx � yk)

h

= lim

h!0

h

h

= 1

12

If f⇤ is differentiable at x
t

, we know that krf

⇤

(x

t

)k 1 since it is a 1-Lipschitz function. There-
fore, by simple Pythagoras and using that v is a unit vector

1 krf

⇤

(x)k2

= hv,rf

⇤

(x

t

)i2 + krf

⇤

(x

t

) � hv,rf

⇤

(x

t

)ivk2

= | @
@v

f

⇤

(x

t

)|2 + krf

⇤

(x

t

) � v

@

@v

f

⇤

(x

t

)k2

= 1 + krf

⇤

(x

t

) � vk2

 1

The fact that both extremes of the inequality coincide means that it was all an equality and 1 =

1+krf

⇤

(x

t

)�vk2 so krf

⇤

(x

t

)�vk = 0 and therefore rf

⇤

(x

t

) = v. This shows that rf

⇤

(x

t

) =

y�x

t

ky�x

t

k

.

To conclude, we showed that if (x, y) have the property that f

⇤

(y) � f

⇤

(x) = ky � xk, then
rf

⇤

(x

t

) =

y�x

t

ky�x

t

k

. Since this happens with probability 1 under ⇡, we know that

P(x,y)⇠⇡

rf

⇤

(x

t

) =

y � x

t

ky � x

t

k

�
= 1

and we finished the proof.

B Experimental details and results for training random architectures within
a set

Table 5: Outcomes of training 200 random architectures, for different success thresholds. For
comparison, our standard DCGAN achieved a score of 7.24.

Min. score Only GAN Only WGAN-GP Both succeeded Both failed
1.0 0 8 192 0
1.5 0 50 150 0
2.0 0 60 140 0
2.5 0 74 125 1
3.0 1 88 110 1
3.5 0 111 86 3
4.0 1 126 67 6
4.5 0 136 55 9
5.0 0 147 42 11
5.5 0 148 32 20
6.0 0 145 21 34
6.5 1 131 11 57
7.0 1 104 5 90
7.5 2 67 3 128
8.0 1 34 0 165
8.5 0 6 0 194
9.0 0 0 0 200

All models were trained on 32⇥32 ImageNet for 100K iterations using Adam with hyperparameters
as recommended in [21] (↵ = 0.0002,�1 = 0.5,�2 = 0.999) for the standard GAN objective and
our recommended settings (↵ = 0.0001,�1 = 0,�2 = 0.9) for WGAN-GP.

C Experiments with one-sided penalty

We considered a one-sided penalty of the form �E
x̂⇠P

x̂

⇥
max(0, kr

x̂

D(

ˆ

x)k2 � 1)

2
⇤

which would
penalize gradients larger than 1 but not gradients smaller than 1, but we observe that the two-sided

13

version seems to perform slightly better. We sample 174 architectures from the set specified in
Table 1 and train each architecture with the one-sided and two-sided penalty terms. The two-sided
penalty achieved a higher Inception score in 100 of the trials, compared to 77 for the one-sided
penalty. We note that this result is not statistically significant at p < 0.05 and further is with respect
to only one (somewhat arbitrary) metric and distribution of architectures, and it is entirely possible
(likely, in fact) that there are settings where the one-sided penalty performs better, but we leave a
thorough comparison for future work. Other training details are the same as in Appendix B.

D Nonsmooth activation functions

The gradient of our objective with respect to the discriminator’s parameters contains terms which
involve second derivatives of the network’s activation functions. In the case of networks with ReLU
or other piecewise linear activation functions, this means the gradient is undefined at some points
(albeit a measure zero set), and the gradient penalty objective might not be continuous with respect
to the parameters, causing optimization to fail. Empirically, this seems not to be a problem for some
common activation functions: in our random architecture and LSUN architecture experiments we
find that we are able to train networks with piecewise linear activation functions as well as smooth
activation functions. We do note that we were unable to train networks with ELU activations, whose
derivative is continuous but not smooth. Replacing ELU with a very similar nonlinearity which is
smooth (softplus(2x+2)

2 � 1) fixed the issue.

E Hyperparameters used for LSUN robustness experiments

• WGAN with gradient penalty: Adam (↵ = .0001,�1 = .5,�2 = .9)

• WGAN with weight clipping: RMSProp (↵ = .00005)

• DCGAN: Adam (↵ = .0002,�1 = .5)

• LSGAN: RMSProp (↵ = .0001) [chosen by search over ↵ = .001, .0002, .0001]

F CIFAR-10 ResNet architecture

The generator and critic are residual networks; we use pre-activation residual blocks with two 3 ⇥ 3

convolutional layers each and ReLU nonlinearity. Some residual blocks perform downsampling
(in the critic) using mean pooling after the second convolution, or nearest-neighbor upsampling (in
the generator) before the second convolution. We use batch normalization in the generator but not
the critic. We optimize using Adam with learning rate 2 ⇥ 10

�4, decayed linearly to 0 over 100K
generator iterations, and batch size 64.

For further architectural details, please refer to our open-source implementation.

Generator G(z)

Kernel size Resample Output shape

z - - 128
Linear - - 128 ⇥ 4 ⇥ 4

Residual block [3⇥3] ⇥ 2 Up 128 ⇥ 8 ⇥ 8

Residual block [3⇥3] ⇥ 2 Up 128 ⇥ 16 ⇥ 16

Residual block [3⇥3] ⇥ 2 Up 128 ⇥ 32 ⇥ 32

Conv, tanh 3⇥3 - 3 ⇥ 32 ⇥ 32

14

Critic D(x)

Kernel size Resample Output shape

Residual block [3⇥3] ⇥ 2 Down 128 ⇥ 16 ⇥ 16

Residual block [3⇥3] ⇥ 2 Down 128 ⇥ 8 ⇥ 8

Residual block [3⇥3] ⇥ 2 - 128 ⇥ 8 ⇥ 8

Residual block [3⇥3] ⇥ 2 - 128 ⇥ 8 ⇥ 8

ReLU, mean pool - - 128

Linear - - 1

G CIFAR-10 ResNet samples

Figure 6: (left) CIFAR-10 samples generated by our unsupervised model. (right) Conditional
CIFAR-10 samples, from adding AC-GAN conditioning to our unconditional model. Samples from
the same class are displayed in the same column.

15

H More LSUN samples

Method: DCGAN Method: DCGAN
G: DCGAN, D: DCGAN G: No BN and const. filter count

Method: DCGAN Method: DCGAN
G: 4-layer 512-dim ReLU MLP No normalization in either G or D

Method: DCGAN Method: DCGAN
Gated multiplicative nonlinearities tanh nonlinearities

16

Method: DCGAN Method: LSGAN
101-layer ResNet G and D G: DCGAN, D: DCGAN

Method: LSGAN Method: LSGAN
G: No BN and const. filter count G: 4-layer 512-dim ReLU MLP

Method: LSGAN Method: LSGAN
No normalization in either G or D Gated multiplicative nonlinearities

17

Method: LSGAN Method: LSGAN
tanh nonlinearities 101-layer ResNet G and D

Method: WGAN with clipping Method: WGAN with clipping
G: DCGAN, D: DCGAN G: No BN and const. filter count

Method: WGAN with clipping Method: WGAN with clipping
G: 4-layer 512-dim ReLU MLP No normalization in either G or D

18

Method: WGAN with clipping Method: WGAN with clipping
Gated multiplicative nonlinearities tanh nonlinearities

Method: WGAN with clipping Method: WGAN-GP (ours)
101-layer ResNet G and D G: DCGAN, D: DCGAN

Method: WGAN-GP (ours) Method: WGAN-GP (ours)
G: No BN and const. filter count G: 4-layer 512-dim ReLU MLP

19

Method: WGAN-GP (ours) Method: WGAN-GP (ours)
No normalization in either G or D Gated multiplicative nonlinearities

Method: WGAN-GP (ours) Method: WGAN-GP (ours)
tanh nonlinearities 101-layer ResNet G and D

20

